首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Reaction textures, fluid inclusions, and metasomatic zoning coupled with thermodynamic calculations have allowed us to estimate the conditions under which a biotite–hornblende gneiss from the Kurunegala district, Sri Lanka [hornblende (NMg=38–42) + biotite (NMg=42–44) + plagioclase + quartz + K-feldspar + ilmenite + magnetite] was transformed into patches of charnockite along shear zones and foliation planes. Primary fluid inclusion data suggest that two immiscible fluids, an alkalic supercritical brine and almost pure CO2, coexisted during the charnockitisation event and subsequent post-peak metamorphic evolution of the charnockite. These metasomatic fluids migrated through the amphibolite gneiss along shear zones and into the wallrock under peak metamorphic conditions of 700–750 °C, 5–6 kbar, and afl H2O=0.52–0.59. This resulted in the formation of charnockite patches containing the assemblage orthopyroxene (NMg=45–48) + K-feldspar (Or70–80) + quartz + plagioclase (An28) in addition to K-feldspar microveins along quartz and plagioclase grain boundaries. Remnants of the CO2-rich fluid were trapped as separate fluid inclusions. The charnockite patches show the following metasomatic zonation patterns: – a transition zone with the assemblage biotite (NMg= 49–51) + hornblende (NMg = 47–50) + plagioclase + quartz + K-feldspar + ilmenite + magnetite; – a KPQ (K-feldspar–plagioclase–quartz) zone with the assemblage K-feldspar + plagioclase + orthopyroxene (NMg=45–48) + quartz + ilmenite + magnetite; – a charnockite core with the assemblage K-feldspar + plagioclase + orthopyroxene (NMg = 39–41) + biotite (NMg=48–52) + quartz + ilmenite + magnetite. Systematic changes in the bulk chemistry and mineralogy across the four zones suggest that along with metasomatic transformation, this process may have been complicated by partial melting in the charnockite core. This melting would have been coeval with metasomatic processes on the periphery of the charnockite patch. There is also good evidence in the charnockitic core that a second mineral assemblage, consisting of orthopyroxene (NMg= 36–42) + biotite (NMg=50–51) + K-feldspar (Or70–80) + quartz + plagioclase (An28–26), could have crystallised from a partial melt during cooling from 720 to 660 °C at decreasing afl H2O from 0.67 to 0.5. Post-magmatic evolution of charnockite at T < 700 °C resulted in fluids being released during the crystallisation of the charnockitic core. These gave rise to the formation of late stage rim myrmekites along K-feldspar grain boundaries as well as late stage biotite, cummingtonite, and carbonates. Received: 15 September 1999 / Accepted: 8 June 2000  相似文献   

2.
Four different varieties of charnockitic rocks,with different modes of formation,from the Mesoproterozoic Natal belt are described and new C isotope data presented.Excellent coastal exposures in a number of quarries and river sections make this part of the Natal belt a good location for observing charnockitic field relationships.Whereas there has been much debate on genesis of charnockites and the use of the term charnockite.it is generally recognized that the stabilization of orthopyroxene relative to biotite in granitoid rocks is a function of low aH2O(±high CO2),high temperature,and composition (especially Fe/(Fe +Mg)).From the Natal belt exposures,it is evident that syn-emplacement.magmatic crystallization of chamockite can arise from mantle-derived differentiated melts that are inherently hot and dry(as in the Oribi Gorge granites and Munster enderbite),as well as from wet granitic melts that have been affected through interaction with dry country rock to produce localized charnockitic marginal facies in plutons(as in the Portobello Granite).Two varieties of post-emplacement sub-solidus chamockites are also evident.These include charnockitic aureoles developed in leucocratic,biotite.garnet granite adjacent to cross-cutting enderbitic veins that are attributed to metamorphic-metasomatic processes(as in the Nicholson’s Point granite,a part of the Margate Granite Suite),as well as nebulous,patchy charnockitic veins in the Margate Granite that are attributed to anatectic metamorphic processes under low-aHO fluid conditions during a metamorphic event.These varieties of chamockite show that the required physical conditions of their genesis can be achieved through a number of geological processes,providing some important implications for the classification of charnockites,and for the interpretation of charnockite genesis in areas where poor exposure obscures field relationships.  相似文献   

3.
Summary The low-pressure emplacement of a quartz diorite body in the metapelitic rocks of the Gennargentu Igneous Complex (Sardinia, Italy) produced a contact metamorphic aureole and resulted in migmatisation of part of the aureole through partial melting. The leucosome, formed by dehydration melting involving biotite, is characterised by granophyric intergrowth and abundant magnetite crystals. A large portion of the high temperature contact aureole shows petrographic features that are intermediate between quartz diorite and migmatite s.s. (i.e. hybrid rocks). A fluid inclusion study has been performed on quartz crystals from the quartz diorite and related contact aureole rocks, i.e. migmatite sensu stricto (s.s.) and hybrid rocks. Three types of fluid inclusions have been identified: I) monophase V inclusions, II) L + V, either L-rich or V-rich aqueous saline inclusions and III) multiphase V + L + S inclusions. Microthermometric data characterised the trapped fluid as a complex aqueous system varying from H2O–NaCl–CaCl2 in the quartz diorite to H2O–NaCl–CaCl2–FeCl2 in the migmatite and hybrid rocks. Fluid salinities range from high saline fluids (50 wt% NaCl eq.) to almost pure aqueous fluid. Liquid-vapour homogenisation temperatures range from 100 to over 400 °C with an average peak around 300 °C. Temperatures of melting of daughter minerals are between 300 and 500 °C. Highly saline liquid- and vapour-rich inclusions coexist with melt inclusions and have been interpreted as brine exsolved from the crystallising magma. Fluid inclusion data indicate the formation of fluid of high iron activity during the low-pressure partial melting and a fluid mixing process in the hybrid rocks.  相似文献   

4.
Understanding Neoproterozoic crustal evolution is fundamental to reconstructing the Gondwana supercontinent, which was assembled at this time. Here we report evidence of Cryogenian crustal reworking in the Madurai Block of the Southern Granulite Terrane of India. The study focuses on a garnet-bearing granite–charnockite suite, where the granite shows in situ dehydration into patches and veins of incipient charnockite along the contact with charnockite. The granite also carries dismembered layers of Mg–Al-rich granulite. Micro-textural evidence for dehydration of granite in the presence of CO2-rich fluids includes the formation of orthopyroxene by the breakdown of biotite, neoblastic zircon growth in the dehydration zone, at around 870°C and 8 kbar. The zircon U–Pb ages suggest formation of the granite, charnockite, and incipient charnockite at 836 ± 73, 831 ± 31, and 772 ± 49 Ma, respectively. Negative zircon εHf (t) (?5 to ?20) values suggest that these rocks were derived from a reworked Palaeoproterozoic crustal source. Zircon grains in the Mg–Al-rich granulite record a spectrum of ages from ca. 2300 to ca. 500 Ma, suggesting multiple provenances ranging from Palaeoproterozoic to mid-Neoproterozoic, with neoblastic zircon growth during high-temperature metamorphism in the Cambrian. We propose that the garnet-bearing granite and charnockite reflect the crustal reworking of aluminous crustal material indicated by the presence of biotite + quartz + aluminosilicate inclusions in the garnet within the granite. This crustal source can be the Mg–Al-rich layers carried by the granite itself, which later experienced high-temperature regional metamorphism at ca. 550 Ma. Our model also envisages that the CO2 which dehydrated the garnet-bearing granite generating incipient charnockite was sourced from the proximal massive charnockite through advection. These Cryogenian crustal reworking events are related to prolonged tectonic activities prior to the final assembly of the Gondwana supercontinent.  相似文献   

5.
Experiments were conducted at 1 GPa on four starting materials to investigate the effects of variable mineral proportions on the melting systematics of compositionally fertile peridotitic assemblages. Starting materials were constructed by recombining Kilbourne Hole xenolith mineral separates by weight into four mixtures with mineral proportions olivine (Ol): orthopyroxene (Opx): clinopyroxene (Cpx): spinel (Sp) of 0.50:0.07:0.40:0.03 (FER-B), 0.50:0.46:0.01:0.03 (FER-C), 0.50:0.30:0.10:0.10 (FER-D), and 0.50:0.235:0.235: 0.03 (FER-E). Experiments were performed on a 1.27-cm (0.5 in.) piston-cylinder apparatus over the temperature interval 1270–1390 °C, using a variation of the diamond aggregate melt extraction technique employing vitreous carbon spheres in place of diamonds as the melt extraction layer. The solidus temperatures are similar for all the starting materials, with an average value of 1250 °C. In FER-D and -E, the near-solidus melting reaction for a lherzolite assemblage was determined to be of the form Cpx + Opx + Sp → melt + Ol. A subsequent reaction of the form Opx + Sp → melt + Ol was determined for FER-D after the exhaustion of Cpx. Over the entire temperature interval investigated for FER-B and -C, reactions were determined to be of the form Cpx + Sp → melt + Ol and Opx + Sp → melt + Ol, respectively. Melt percent (F) vs temperature (T) curves are concave up for all starting materials, demonstrating that isobaric melt productivity increases with progressive batch melting. At any given melt fraction, (dF/dT)P increases with increasing amount of Cpx in the starting material, indicating that the modal proportion of Cpx is one of the primary controls on isobaric melt productivity of upwelling peridotite. The concave up melt productivity functions for peridotitic assemblages determined in this study suggest that assuming linear or concave down melt productivity functions for modeling mantle melting may not be appropriate. Received: 2 August 1999 / Accepted: 7 June 2000  相似文献   

6.
The SIMS U-Pb isotopic age of zircons from enderbite gneisses and their metaorthopyroxenite xenoliths in the Pobuzhie granulite complex, Ukrainian Shield (48°13′57.3″ N and 29°59′21.5″ E, WGS84 system), was determined. The chemical compositions of these rocks and composing minerals were studied. Enderbite gneisses contain quartz, antiperthite plagioclase, K-feldspar, clinoenstatite, diopside, amphibole, and a small amount of biotite; accessory minerals are ilmenite and apatite. The age of zircon from enderbite gneiss is estimated at about 3.15 Ga. Metaorthopyroxenites are composed of orthopyroxene, clinopyroxene, phlogopite (up to 6% TiO2), and plagioclase. The age of magmatic zircons from metaorthopyroxenite determined by the upper intercept of the discordia with the concordia is 3485 ± 33 Ma (MSVD = 1.6), and the age of metamorphic zircons is 2742 ± 22 Ma (MSVD = 0.22). Hence, the enderbite gneisses studied pertain to a young group of enderbites in the Pobuzhie granulite complex, while the age of metaorthopyroxenites from xenoliths in these rocks is similar to that of ancient Pobuzhie enderbites and pyroxenites of the Novopavlovsk complex in the Azov Region.  相似文献   

7.
Incipient charnockites represent granulite formation on a mesoscopic scale and have received considerable attention in understanding fluid processes in the deep crust.Here we report new petrological data from an incipient charnockite locality at Rajapalaiyam in the Madurai Block,southern India,and discuss the petrogenesis based on mineral phase equilibrium modeling and pseudosection analysis. Rajapalaiyam is a key locality in southern India from where diagnostic mineral assemblages for ultrahigh-temperature(UHT) metamorphism have been reported.Proximal to the UHT rocks are patches and lenses of charnockite(Kfs + Qtz + Pl + Bt + Opx + Grt + Ilm) occurring within Opx-free Grt-Bt gneiss(Kfs + Pl + Qtz + Bt + Grt + Ilm + Mt) which we report in this study.The application of mineral equilibrium modeling on the charnockitic assemblage in NCKFMASHTO system yields a p-T range of~820℃and~9 kbar.Modeling of the charnockite assemblage in the MnNCKFMASHTO system indicates a slight shift of the equilibrium condition toward lower p and T(~760℃and~7.5 kbar). which is consistent with the results obtained from geothermobarometry(710—760℃,6.7—7.5 kbar). but significantly lower than the peak temperatures(>1000℃) recorded from the UHT rocks in this locality,suggesting that charnockitization is a post-peak event.The modeling of T versus molar H2O content in the rock(M(H2O)) demonstrates that the Opx-bearing assemblage in charnockite and Opxfree assemblage in Grt-Bt gneiss are both stable at M(H2O) = 0.3 mol%-0.6 mol%.and there is no significant difference in water activity between the two domains.Our finding is in contrast to the previous petrogenetic model of incipient charnockite formation which envisages lowering of water activity and stabilization of orthopyroxene through breakdown of biotite by dehydration caused by the infiltration of CO2-rich fluid.T-XFe3+(= Fe2O3/(FeO + Fe2O3) in mole) pseudosections suggest that the oxidation condition of the rocks played a major role on the stability of orthopyroxene:Opx is stable at XFe3+ <0.03 in charnockite.while Opx-free assemblage in Grt-Bt gneiss is stabilized at XFe3+ >0.12.Such low oxygen fugacity conditions of XFe3+ <0.03 in the charnockite compared to Grt-Bt gneiss might be related to the infiltration of a reduced fluid(e.g.,H2O + CH4) during the retrograde stage.  相似文献   

8.
High temperature (>900 °C) metamorphism affected the New Russia gneiss complex in the aureole of the Marcy anorthosite, Adirondack Highlands, New York. Dehydration melting of pargasitic hornblende and plagioclase in metagabbro during contact metamorphism produced garnet among other phases, an indicator that pressure exceeded 700 MPa during anatexis. Partial melting also occurred in mangerite and charnockite. Minerals that equilibrated during melting yield barometric estimates of 970 ± 100 MPa (garnet–orthopyroxene–plagioclase–quartz in metagabbro and mangerite) and 735 ± 100 and 985 ± 100 MPa (garnet–hornblende–plagioclase–quartz, metagabbro and mangerite, respectively). From these results we infer that the Marcy anorthosite was emplaced at a depth of at least 23 km and probably near 32 km. Received: 9 February 2000 / Accepted: 4 April 2000  相似文献   

9.
The system KAlO2–MgO–SiO2–H2O–CO2 has long been used as a model for the processes of granulite-facies metamorphism and the development of orthopyroxene-bearing mineral assemblages through the breakdown of biotite-bearing assemblages. There has been considerable controversy regarding the role of carbon dioxide in metamorphism and partial melting. We performed new experiments in this system (at pressures of 342 to 1500 MPa with T between 710 and 1045 °C and X Fl H2O between 0.05 and 1.00), accurately locating most of the dehydration and melting equilibria in P-T-X Fl H2O space. The most important primary result is that the univariant reaction Phl + Qtz + Fl = En + Sa + melt must be almost coincident with the fluid-absent reaction (Phl + Qtz = En + Sa + melt) in the CO2-free subsystem. In conjunction with the results of previous measurements of CO2 solubility in silicate melts and phase equilibrium experiments, our theoretical analysis and experiments suggest that CO2 cannot act as a flux for partial melting. Crustal melting in the presence of H2O–CO2 mixed fluids will always occur at temperatures higher than with pure H2O fluid present. Magmas produced by such melting will be granitic (s.l.) in composition, with relatively high SiO2 and low MgO contents, irrespective of the H2O–CO2 ratio in any coexisting fluid phase. We find no evidence that lamprophyric magmas could be generated by partial fusion of quartz-saturated crustal rocks. The granitic melts formed will not contain appreciable dissolved CO2. The channelled passage of hot CO2-rich fluids can cause local dehydration of the rocks through which they pass. In rock-dominated (as opposed to fluid-dominated) systems, minor partial melting can also occur in veins initially filled with CO2-rich fluid, as dehydration and local disequilibrium drive the fluid towards H2O-rich compositions. However, CO2 is unlikely to be a significant agent in promoting regional granulite-grade metamorphism, melting, magma generation, metasomatism or long-range silicate mass transfer in Earth's crust. The most viable model for the development of granulite-facies rocks involves the processes of fluid-absent partial melting and withdrawal of the melt phase to higher crustal levels. Received: 28 November 1996 / Accepted: 25 June 1997  相似文献   

10.
The results of skarn-forming processes at contacts of the multiphase Southern California Batholith with carbonate rocks accessible to study in quarries in Riverside, California, involve prograde metasomatic transformations of marmorized dolomites and calcareous rocks in contact with granitic melts and contaminated magmas. The processes of contact assimilation are proved to have been controlled by the emplacement of granitic melts overheated relative to subliquidus melts (with the overheated melts prone to approach the composition of granodiorite, syenite, and gabbro) into skarnified marbles. The degree of magma overheating was evaluated based on G.F. Smith’s data on linear melting temperature variations for anhydrous intrusive rocks with various SiO2 concentrations (<750°C for granites and >1100°C for contaminated rocks, ΔT 350°). This corresponds to the thermal regime of the development of mineralogically contrasting hypabyssal skarn aureoles: magnesian at contacts with granite magmas and calcic at contacts with melts of high basicity. The peripheral parts of the aureoles ubiquitously contain preserved zones of forsterite calciphyres and periclase marbles, whereas skarns at mafic intrusions consist of high-temperature silicates of decreasing Mg contents: monticellite, merwinite, melilite, and spurrite. Prograde and retrograde mineralforming processes in the metasomatic rocks and their facies affiliation are analyzed, and the chemical composition of the minerals are examined. The Riverside skarn aureoles are compared with other compositionally contrasting skarn aureoles that developed in contacts with granite magmas and melts of increasing basisity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号