首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Pelitic and calcareous rocks in the Whetstone Lake area havean unusually wide range of chemical composition. Metamorphicreactions have been deduced that represent the observed ‘discontinuities’in compatible mineral assemblages, and by plotting the reactantand the product assemblage of each reaction on a map, metamorphicisograds have been delincated ‘from both sides’.For the pelitic rocks, successively higher-grade isograds arebased on the following reactions: (1)chlorite+muscovite+garnetstaurolite+biotite+quartz+water; (2) chlorite+muscovite+staurolite+quartz kyanite+biotite+water; (3) kyanitesillimanite; (4)staurolite+museovite+quartzsillimanite+garnet+biotite+water. A fifth isograd, based on the reaction (5) biotite+calcite+quartzCa-amphibole+K-feldspar+carbon dioxide+water intersects the isograds based on reactions (2), (3), and (4)in such a manner as to indicate that the H2O/CO2 fugacity ratiowas significantly higher in the vicinity of a granite plutonthan in the metasedimentary rocks remote from the pluton. Chemicalanalyses of the coexisting minerals in reaction (5) indicatethat the real reaction may involve plagioclase, epidote, sphene,and Fe-Ti oxides as well.  相似文献   

2.
Progress () of the infiltration-driven reaction, 4olivine +5CO2 + H2O = talc + 5magnesite, that occurred during Barrovianregional metamorphism, varies at the cm-scale by a factor of3·5 within an 3 m3 volume of rock. Mineral and stableisotope compositions record that XCO2, 18Ofluid, and 13Cfluidwere uniform within error of measurement in the same rock volume.The conventional interpretation of small-scale variations in in terms of channelized fluid flow cannot explain the uniformityin fluid composition. Small-scale variations in resulted insteadbecause (a) reactant olivine was a solid solution, (b) initiallythere were small-scale variations in the amount and compositionof olivine, and (c) fluid composition was completely homogenizedover the same scale by diffusion–dispersion during infiltrationand subsequent reaction. Assuming isochemical reaction, spatialvariations in image variations in the (Mg + Fe)/Si of the parentrock rather than the geometry of metamorphic fluid flow. Ifinfiltration-driven reactions involve minerals fixed in composition,on the other hand, spatial variations in do directly imagefluid flow paths. The geometry of fluid flow can never be determinedfrom geochemical tracers over a distance smaller than the oneover which fluid composition is completely homogenized by diffusion–dispersion. KEY WORDS: Alpine Barrovian metamorphism; diffusion; metamorphic fluid composition; metamorphic fluid flow; reaction progress  相似文献   

3.
Tourmaline in the Martinamor antiform occurs in tourmalinites(rocks with >15–20% tourmaline by volume), clasticmetasedimentary rocks of the Upper Proterozoic Monterrubio formation,quartz veins, pre-Variscan orthogneisses and Variscan graniticrocks. Petrographic observations, back-scattered electron (BSE)images, and microprobe data document a multistaged developmentof tourmaline. Overall, variations in the Mg/(Mg + Fe) ratiosdecrease from tourmalinites (0·36–0·75),through veins (0·38–0·66) to granitic rocks(0·23–0·46), whereas Al increases in thesame order from 5·84–6·65 to 6·22–6·88apfu. The incorporation of Al into tourmaline is consistentwith combinations of xAl(NaR)–1 and AlO(R(OH))–1exchange vectors, where x represents X-site vacancy and R is(Mg + Fe2+ + Mn). Variations in x/(x + Na) ratios are similarin all the types of tourmaline occurrences, from 0·10to 0·53, with low Ca-contents (mostly <0·10apfu). Based on field and textural criteria, two groups of tourmaline-richrocks are distinguished: (1) pre-Variscan tourmalinites (probablyCadomian), affected by both deformation and regional metamorphismduring the Variscan orogeny; (2) tourmalinites related to thesynkinematic granitic complex of Martinamor. Textural and geochemicaldata are consistent with a psammopelitic parentage for the protolithof the tourmalinites. Boron isotope analyses of tourmaline havea total range of 11B values from –15·6 to 6·8;the lowest corresponding to granitic tourmalines (–15·6to –11·7) and the highest to veins (1·9to 6·8). Tourmalines from tourmalinites have intermediate11B values of –8·0 to +2·0. The observedvariations in 11B support an important crustal recycling ofboron in the Martinamor area, in which pre-Variscan tourmaliniteswere remobilized by a combination of mechanical and chemicalprocesses during Variscan deformation, metamorphism and anatexis,leading to the formation of multiple tourmaline-bearing veinsand a new stage of boron metasomatism. KEY WORDS: tourmalinites; metamorphic and granitic rocks; mineral chemistry; whole-rock chemistry; boron isotopes  相似文献   

4.
Sapphirine occurs with humite-group minerals and forsteritein Precambrian amphibole-facies rocks at Kuhi-lal, SW PamirMountains, Tajikistan, a locality also for talc+kyanite magnesiohornblendewhiteschist. Most of these sapphirine-bearing rocks are graphiticand sulfidic (pyrite and pyrrhotite) and contain enstatite,clinohumite or chondrodite, spinel, rutile, gedrite, and phlogopite.A phlogopite schist has the assemblage with XFe = Fe/(Fe+Mg)increasing as follows: chlorite (0-003)<phlogopite (0.004–0.005)sapphirine (0.004–0.006) enstatite (0-006)forsterite (0-006–0-007)<spinel (0-014). This assemblage includes the incompatiblepair sapphirine+forsterite, but there is no textural evidencefor reaction. In one rock with clinohumite, XFe increases asfollows: clinohumite (0-002) <sapphirine (0-003) <enstatite(0-004–0-006) <spinel (0-010). Ion microprobe and wet-chemicalanalyses give 0-57–0-73 wt.% F in phlogopite and 0-27wt.% F in chlorite in the phlogopite schist; 0-04, 1.5–1.9,and 4.4 wt.% F in forsterite, clinohumite, and chondrodite,respectively; and 0-0-09 wt.% BeO and 0-05–0-21 wt.% B2O3in sapphirine. Stabilization of sapphirine+clinohumite or sapphirine+chondroditeinstead of sapphirine+phlogopite is possible at high F contentsin K-poor rocks, but minor element contents appear to be toolow to stabilize sapphirine as an additional phase with forsterite+enstatite+spinel.Although sapphirine+forsterite is metastable relative to spinel+enstatitein experiments conducted at aH2O=1 in the MgO-Al2O3-SiO2-H2Osystem, it might be stabilized at aH2O0.5, P4 kbar, T650–700C.Textures in the Kuhi-lal whiteschists suggest a polymetamorphicevolution in which the rocks were originally metamorphosed atT650C, P 7 kbar, conditions under which sapphirine+clinohumiteand sapphirine+chondrodite are inferred to have formed, andsubsequently affected by a later event at lower P, similar T,and lower aH2O. The latter conditions were favorable for sapphirine+forsteriteto form in a rock originally containing chlorite+forsterite+spinel+enstatite.  相似文献   

5.
Oxygen isotope analyses have been obtained on rocks and coexistingminerals, principally plagioclase and clinopyroxene, from about400 samples of the Skaergaard layered gabbro intrusion and itscountry rocks. The 18O values of plagioclase decrease upwardin the intrusion, from ‘normal’ values of about+6.0 to +6.4 in the Lower Zone and parts of the Middle Zone,to values as low as –2.4 in the Upper Border Group. The18O depletions of the plagioclase all took place under subsolidusconditions, and were produced by the Eocene meteoric-hydrothermalsystem established by this pluton. Clinopyroxene, which is moreresistant to 18O exchange than is plagioclase, also underwentdepletion in 18O, but to a lesser degree (18O = +5.2 to +3.5).The 18O-depleted rocks typically show reversed 18Oplag–pxfractionations, except at the top of the Upper Zone, where thepyroxenes are very fine-grained aggregates pseudomorphous afterferrowollastonite; these inverted pyroxenes were much more susceptibleto subsolidus 18O exchange (18O = +3–9 to +0.7). D/H analysesof the chloritized basalt country rocks and of the minor quantitiesof alteration minerals in the pluton (D = –116 to –149)confirm these interpretations, indicating that the rocks interactedwith meteoric groundwaters having an original D –100.and 18O –14. Low D values ( –125) were also foundthroughout the biotites of the Precambrian basement gneiss,requiring that small amounts of water penetrated downward todepths of at least 6 to 10 km. These values, together with thelack of 18O depletion of the gneiss, imply that the overallwater/rock ratios were very small in that unit (<0.01), andthus that convective circulation of these waters was much morevigorous in the overlying highly jointed plateau basalts (18O –4.0 to +4–0) than in the relatively impermeablegneiss (18O +7–3 to +7–7). This contrast in permeabilitiesof the country rocks is also reflected in the distribution of18O values in the pluton; the plagioclases with ‘normal’18O values all lie stratigraphically beneath the projectionof the basalt-gneiss unconformity through the pluton. Elsewhere,the 18O depletions are correlated with abundance of fracturesand faults, particularly in the NE portion of the intrusion,where the Layered Series is very shallow-dipping and permeablebasalts underlie the gabbro. The transgressive granophyres in the lower part of the intrusivehave 18O values identical to those of the basement gneiss, indicatingthey were probably formed by partial melting of stoped blocksof gneiss. In the upper part of the intrusion these granophyredikes have 18O values similar to the adjacent host gabbro; thissuggests that much of the hydrothermal alteration occurred aftertheir emplacement. However, because of the rarity of low-temperaturehydrous alteration minerals, it is also clear that most of theinflux of H2O into the layered gabbro occurred at very hightemperatures (>400–500 °C). Prior to flowing intothe gabbro, these fluids had exchanged with similar mineralassemblages in the basaltic country rocks, explaining the lackof chemical alteration of the gabbro. Xenoliths of roof rockbasalt and of Upper Border Group leucogabbro were strongly depletedin 18O by the hydrothermal system prior to their falling tothe bottom of the magma chamber and being incorporated in thelayered series. This proves that the hydrothermal system wasestablished very early, at the time of emplacement of the Skaergaardintrusion. However, no measurable 18O depletion of the gabbromagma could be detected, indicating that very little H2O penetrateddirectly into the liquid magma, in spite of the fact that ahydrothermal circulation system totally enveloped the magmachamber for at least 100, 000 years during its entire periodof crystallization. Only as crystallization proceeded was thehydrothermal system able to collapse inward and interact withthe solidified and fractured portions of the gabbro. Neverthelesssome H2O was clearly added directly to the magma by dehydrationof the stoped blocks of altered roof rock. It is also plausiblethat small amounts of meteoric water diffused directly intothe magma, most logically in the vicinity of major fracturezones that penetrated close to, or were underneath, the late-stagesheet of differentiated ferrodiorite magma. It is suggestedthat such influx of meteoric waters was responsible for manyof the gabbro pegmatite bodies that are common in the MarginalBorder Group; also, such H2O might have produced local increasesin Fe+3/Fe+2 in the magma that in turn could explain some ofthe asymmetric crystallization effects in the magma chamber.Local lowering of the liquidus temperature would also occur,perhaps leading to topographic irregularities on the floor ofthe magma chamber (e.g. the trough bands?).  相似文献   

6.
The digital image of airborne radiometric data across SouthAfrica reveals that the largest anomaly, 100 nGy/h, is causedby the granulite-facies rocks of the Namaquan metamorphic complex,whereas most of the country is <60 nGy/h. This observationis consistent with geochemical data that show that the 1900± 100 Ma greenschist-facies Richtersveld Terrane nearNamibia (max. U = 3·4 ppm; Th = 20·1 ppm) andthe adjacent, 1100 ± 100 Ma, amphibolite-facies Aggeneys/SteinkopfTerranes (max. U 10 ppm; Th 52 ppm) are the least enrichedin U, Th and K. In contrast, the lower-T granulite-facies OkiepTerrane near Springbok hosts more enriched granites (max. U 17 ppm; Th 66 ppm) and noritic intrusions (max. U = 14 ppm;Th = 83 ppm). The most enriched rocks are found in the 1030Ma higher-T granulite-facies core of the Namaquan belt and includequartzo-feldspathic gneisses (max. U = 46 ppm; Th = 90 ppm)and charnockites (max. U = 52 ppm; Th = 400 ppm). Our findingscontradict the notion that granulite-facies terrains are characteristicallydepleted in U and Th. In this study we modeled the heat productionin the core of the Namaquan complex, where the granulites havehad a very unusual metamorphic history, and show that ultra-high-T(1000°C, P 10 kbar) metamorphic conditions could have beenachieved by radiogenic heating without invoking external heatsources. However, monazite-rich veins of charnockite and patchesof granulites mark the passage of CO2-dominated melts and fluidsderived from fractionated noritic intrusions. KEY WORDS: charnockite; granulite; Namaqualand; thorium; uranium; radioactive heating; metamorphism  相似文献   

7.
Within the western Sierra Nevada metamorphic belt, linear bodiesof alpine-type ultramafic rock, now composed largely of serpentineminerals, parallel the regional strike and commonly coincidewith major fault zones. Within this metamorphic belt, east ofSacramento, California, ultramafic rocks near a large maficintrusion, the Pine Hill Intrusive Complex, have been emplacedduring at least two separate episodes. Those ultramafic rocks,evidently unaffected by the Pine Hill Intrusive Complex andcomposed largely of serpentine minerals, were emplaced alonga major fault zone after emplacement of the Pine Hill IntrusiveComplex. Those ultramafic rocks, contact metamorphosed by thePine Hill Intrusive Complex, show a zonation of mineral assemblagesas the igneous contact is approached: olivine+antigorite+chlorite+tremolite+Fe-Cr spinel olivine+talc+chlorite+tremolite+Fe-Crspinel olivine+anthophyllite+chlorite+tremolite+Fe-Cr spinel olivine+orthopyroxene+aluminous spinel+hornblende+Fe-Cr spinel.Superimposed on these mineral assemblages are abundant secondaryminerals (serpentine minerals, talc, chlorite, magnetite) whichformed after contact metamorphism. Correlation of observed mineralassemblages with the experimental systems, MgO-SiO2-H2O andMgO-Al2O3-SiO2-H2O suggests an initial contact temperature of775±25 °C for the Pine Hill Intrusive Complex assumingPtotal Pfluid PH2O. The pressure acting on the metamorphic rockduring emplacement of the intrusion is estimated to be a minimumof 1.5 kb.  相似文献   

8.
Marbles and metapelites from the Reynolds Range Group (centralAustralia) were regionally metamorphosed at low pressure duringM2 at 1.6 Ga, M2 ranged in grade from greenschist to granulitefacies along the length of the Reynolds Range, and overprinted1.78 Ga granites and their contact aureoles in the ReynoldsRange Group metasediments. At all M2 grades the marbles andmetapelites have highly variable oxygen isotope ratios [marbles:18O(carb) 14–20%; metapelites: 18O 6–14%). Similarly, 1.78 Ga granites have highly variable oxygen isotope ratios(18O 5–13%), with the lowest values occurring at thegranite margins. In all rock types, the lowest oxygen isotopevalues are consistent with the infiltration of channelled magmaticand/or meteoric fluids. The variable lowering of oxygen isotopevalues resulted from pre-M2 contact metamorphism and fluid—rockinteraction around the 1.78 Ga granites. In contrast, mineralassemblages in the marbles define a trend of increasing XCO2with increasing grade from <0.05 (greenschist facies) to0.7–1.0 (granulite facies). This, together with the lackof regionally systematic resetting of oxygen isotope ratios,implies that there was little fluid—rock interaction duringprograde regional metamorphism. KEY WORDS: low pressure; polymetamorphism; fluids; stable isotopes; petrology *Corresponding author Fax: 61–3–94791272. e-mail: geoisb{at}lure.latrobe.edu.au  相似文献   

9.
Geochemical and 40 Ar—39 Ar studies of the Malaita OlderSeries and Sigana Basalts, which form the basement of Malaitaand the northern portion of Santa Isabel, confirm the existenceof Ontong Java Plateau (OJP) crust on these islands. Sr, Nd,and Pb isotopic ratios of Malaita Older Series and Sigana lavasfall within limited ranges [(87Sr/86Sr)T= 0.70369–0.70423,ENd(T)= + 3.7 to +6.0, and 206Pb/204Pb = 18.25–18.64]virtually indistinguishable from those found in the three OJPbasement drill sites as far as 1600 km away, indicating a uniformhotspot-like mantle source with a slight ‘Dupal’signature for the world's largest oceanic plateau. Three chemicaltypes of basalts are recognized, two of which are equivalentto two of the three types drilled on the plateau, and one withno counterpart, as yet, on the plateau; the chemical data indicateslightly different, but all high, degrees of melting and slightvariation in source composition. All but one of the 40Ar-39Arplateau ages determined for Malaita Older Series and SiganaBasalt lavas are identical to those found at the distant drillsites: 121.30.9 Ma and 92.01.6 Ma, suggesting that two short-lived,volumetrically important plateau-building episodes took place30 m.y. apart. Aside from OJP lavas, three isotopically distinctsuites of alkalic rocks are present. The Sigana Alkalic Suitein Santa Isabel has an 40 Ar-39 Ar age of 91.70.4 Ma, the sameas that of the younger OJP tholeiites, yet it displays a distinct’HIMU‘ -type isotopic signature [206Pb/204Pb 20.20,(87Sr/86Sr) T 0.7032, Nd(T) 4.4], possibly representing small-degreemelts of a minor, less refractory component in the OJP mantlesource region. The Younger Series in southern Malaita has an40Ar-39Ar age of 44 Ma and isotopic ratios [Nd(T)=-0.5 to +1.0,(87Sr/86Sr)T =0.70404–0.70433, 206Pb/204Pb = 18.57–18.92]partly overlapping those of the ‘PHEM’ end-memberpostulated for Samoa, and those of present-day Rarotonga lavas;one or both of these hotspots may have caused alkalic volcanismon the plateau when it passed over them at 44 Ma. The NorthMalaita Alkalic Suite in northernmost Malaita is probably ofsimilar age, but has isotopic ratios [(87Sr/86Sr) T 0.7037,Nd(T) +4.5, 206pb/204pb 18.8) resembling those of some OJP basementlavas; it may result from a small amount of melting of agedplateau lithosphere during the OJP's passage over these hotspots.Juxtaposed against OJP crust in Santa Isabel is an 62–46-Maophiolitic (sensu lato) assemblage. Isotopic and chemical datareveal Pacific-MORB-like, backarc-basin-like, and arc-like signaturesfor these rocks, and suggest that most formed in an arc—backarcsetting before the Late Tertiary collision of the OJP againstthe old North Solomon Trench. The situation in Santa Isabelappears to provide a modern-day analog for some Precambriangreenstone belts. KEY WORDS: oceanic plateaux; Ontong Java Plateau; Solomon Islands; Sr-Nd-Pb isotopes; age and petrogenesis *Corresponding author.  相似文献   

10.
The Grønnedal-Ika complex is dominated by layered nephelinesyenites which were intruded by a xenolithic syenite and a centralplug of calcite to calcite–siderite carbonatite. Aegirine–augite,alkali feldspar and nepheline are the major mineral phases inthe syenites, along with rare calcite. Temperatures of 680–910°Cand silica activities of 0·28–0·43 weredetermined for the crystallization of the syenites on the basisof mineral equilibria. Oxygen fugacities, estimated using titanomagnetitecompositions, were between 2 and 5 log units above the fayalite–magnetite–quartzbuffer during the magmatic stage. Chondrite-normalized REE patternsof magmatic calcite in both carbonatites and syenites are characterizedby REE enrichment (LaCN–YbCN = 10–70). Calcite fromthe carbonatites has higher Ba (5490 ppm) and lower HREE concentrationsthan calcite from the syenites (54–106 ppm Ba). This isconsistent with the behavior of these elements during separationof immiscible silicate–carbonate liquid pairs. Nd(T =1·30 Ga) values of clinopyroxenes from the syenites varybetween +1·8 and +2·8, and Nd(T) values of whole-rockcarbonatites range from +2·4 to +2·8. Calcitefrom the carbonatites has 18O values of 7·8 to 8·6and 13C values of –3·9 to –4·6. 18Ovalues of clinopyroxene separates from the nepheline syenitesrange between 4·2 and 4·9. The average oxygenisotopic composition of the nepheline syenitic melt was calculatedbased on known rock–water and mineral–water isotopefractionation to be 5·7 ± 0·4. Nd and C–Oisotope compositions are typical for mantle-derived rocks anddo not indicate significant crustal assimilation for eithersyenite or carbonatite magmas. The difference in 18O betweencalculated syenitic melts and carbonatites, and the overlapin Nd values between carbonatites and syenites, are consistentwith derivation of the carbonatites from the syenites via liquidimmiscibility. KEY WORDS: alkaline magmatism; carbonatite; Gardar Province; liquid immiscibility; nepheline syenite  相似文献   

11.
Klauea historical summit lavas have a wide range in matrix 18OVSMOWvalues (4·9–5·6) with lower values in rockserupted following a major summit collapse or eruptive hiatus.In contrast, 18O values for olivines in most of these lavasare nearly constant (5·1 ± 0·1). The disequilibriumbetween matrix and olivine 18O values in many samples indicatesthat the lower matrix values were acquired by the magma afterolivine growth, probably just before or during eruption. BothMauna Loa and Klauea basement rocks are the likely sources ofthe contamination, based on O, Pb and Sr isotope data. However,the extent of crustal contamination of Klauea historical magmasis probably minor (< 12%, depending on the assumed contaminant)and it is superimposed on a longer-term, cyclic geochemicalvariation that reflects source heterogeneity. Klauea's heterogeneoussource, which is well represented by the historical summit lavas,probably has magma 18O values within the normal mid-ocean ridgebasalt mantle range (5·4–5·8) based on thenew olivine 18O values. KEY WORDS: Hawaii; Klauea; basalt; oxygen isotopes; crustal contamination  相似文献   

12.
An oxygen and hydrogen isotopic study of minerals and wholerocks from the granites of the Mourne Mountains Tertiary complex,and related rocks, shows that whereas a significant circulationof meteoric water was associated with the complex, it had onlyminor and localized effects on the granites themselves. TheSilurian slate and greywacke country rocks, which would havehad 18O(SMOW) values of +10 to +20 before the Tertiary igneousevents, have been depicted 18O to values of –40 to –05Tertiary acid minor intrusions outside the main granite massesare also 18O depleted. l8O whole-rock data on the granites showa range of +6.0 to +9.5, and include values significantly higherthan most of those obtained for the granites of the Tertiarycentral complexes of Skye, Mull, and Ardnamurchan. Many of thelowest whole-rock 18O values are found in samples where theminerals are not in isotopic equilibrium. The mineral oxygenisotopic data can be explained in terms of localized interactionwith meteoric water, resulting in preferential 18O depletionin feldspar(s) and biotite, with quartz being much less affected.The granites all show low values of D(SMOW) for biotite andamphibole separates (–137 to –104). The lowest valuesoccur close to the margins of the plutons, near internal contactsor near greisen localities, and these probably reflect limitedinteraction with meteoric water. The higher D values are fromsamples which show evidence of chloritization. This processappears to have occurred both during interaction with meteoricwater, and also during autometasomatism by an exsolved magmaticfluid in other parts of the plutons, including central locationswhere there is little or no evidence for the penetration ofmeteoric water. Granite samples which exhibit near-equilibriumoxygen isotope fractionations for constituent minerals are characterizedby magmatic O-isotopic compositions. The G2 granite, the largestpluton of the eastern centre, has a magmatic 18O(SMOW) valueof {small tilde}+95; intrusions G3 (eastern centre) and G4(western centre) both have 18O(SMOW) values of {small tilde}+90.The other two main intrusive phases have distinctly lower 18O(SMOW)values: {small tilde}+75 for Gl (the least fractionated graniteof the Mourne Mountains central complex), and from +75 to +85for G5. The oxygen isotopic data rule out simple partial meltingof the country rocks as the origin of the granites and alsopreclude an origin by closed-system fractional crystallizationof basaltic magma typical of that represented by Tertiary basicigneous rocks of the region. * Present address: NERC Isotope Geosciences Laboratory, Keyworth, Nottingham BG12 5GG, UK Present address: School of Engineering Technology, Georgian College, Barrie, Ontario, L4M 3X9, Canada  相似文献   

13.
Zircon Hf isotopic data from a zoned pluton of the Moonbi supersuite,New England batholith, eastern Australia, are consistent withmagma mixing between two silicic melts, each derived from isotopicallydistinct sources. Although zircons from three zones within theWalcha Road pluton give a U–Pb crystallization age of249 ± 3 Ma, zircon populations from each zone have arange in Hf. Zircons from the mafic hornblende–biotitemonzogranite pluton margin and intermediate zones have Hf +5to +11, whereas those from the more felsic centre of the plutonhave Hf +7 to +16, representing a total variation of 11 Hfunits. The Lu–Hf depleted mantle model ages range from650 to 250 Ma, with the younger zircons present only in thefelsic pluton centre. The variation in Hf indicates the involvementof silicic melts from at least two sources, one a crustal componentwith a Neoproterozoic model age and the other a primitive mantle-derivedcomponent with model ages similar to the U–Pb crystallizationage of the pluton. The zircons reflect the isotopic compositionsof the different proportions of crustal-derived silicic melt,relative to mantle-derived silicic melt, between melt generationand final pluton construction. The Walcha Road pluton is consideredto have formed by incremental assembly of progressively morefelsic melt batches resulting from mixing, replenishment andcrystal–melt separation, with final pluton constructioninvolving mechanical concentration as zones of crystal mush.The zoned pluton and, more broadly, the Moonbi supersuite provideexamples of magma mixing by which the more silicic units havemore juvenile isotopic compositions as a result of increasingproportions of residual melt from basalt fractionation, relativeto crustal partial melt. KEY WORDS: Australia; granite magma mixing; zircon; zoned pluton; Hf isotopes  相似文献   

14.
Quaternary lavas and pyroclastic rocks of Mount Mazama, CraterLake caldera, and the surrounding area have variable Sr, Nd,and Pb isotopic compositions. High-alumina olivine tholeiites(HAOT) have 87Sr/86Sr ratios of 0.70346–0.70364; basalticandesite, 0–70349–0.70372; shoshonitic basalticandesite, 0.70374–0.70388; and andesite, 0.70324–0.70383.Dacites of Mount Mazama have 87Sr/86Sr ratios of 0.70348–0.70373.Most rhyodacites converge on 0.7037. However, rhyodacite ofthe caldera-forming, climactic eruption has 87Sr/86Sr=0.70354because of an admixed low-87Sr/86Sr component. Andesitic tomafic-cumulate scoriae of the climactic eruption, and enclavesin preclimactic rhyodacites, cluster in two groups but shownearly the entire 87Sr/86Sr range of the data set, confirmingpreviously suggested introduction of diverse parental magmasinto the growing climactic chamber. Pb and Nd isotope ratiosdisplay less variation (206Pb/204Pb= 18.838–18.967, 207Pb/204Pb=15.556–15.616,208Pb/204Pb=38.405–38.619; Nd= +3.9 to +6.1) and generallycovary with 87Sr/86 Sr ratios. Radiogenic isotope data fromCrater Lake plot with published data for other Cascade volcanoeson isotope ratio correlation diagrams. The isotopic data for the Crater Lake area require sources ofprimitive magmas to consist of depleted mantle and a subductioncomponent, introduced in variable quantity to the depleted mantlewedge. Variable degrees of melting of this heterogeneous mantle,possibly at different depths, produced the diversity of isotopiccompositions and large-ion lithophile element (LILE) abundancesin primitive magmas. Trace element ratios do not indicate presenceof an ocean island basalt (OIB) source component that has beenreported in lavas of some other Cascade volcanoes. Crustal contamination may have affected isotope ratios and LILEconcentrations in evolved HAOT, where initial LILE concentrationswere low. Contamination is more difficult to detect in the calcalkalinelavas because of their higher LILE concentrations and the smallisotopic contrast with likely contaminants, such as mid- tolower-crustal rocks thought to be equivalents of igneous rocksof the Klamath Mountains and associated lower crust. Crustalassimilation appears to be required for calcalkaline rocks onlyby 18O values, which vary from lows of +5.6 to + 6.0% in HAOTand primitive basaltic andesites to a high of +7.0% in dacite,a range that is too high to be explained by plagioclase-dominatedclosed-system fractional crystallization. Elevated 18O valuesof differentiated lavas may be attributed to interaction withrelatively 18O-rich, 87Sr-poor crustal rocks. Variably fused granitoid blocks ejected in the climactic eruption,and rarely in late Pleistocene eruptive units, have 18Opl of–3.4 to +6.5% and 18Oqz of –2.2 to +8.0% but haveSr, Nd, and Pb isotope ratios similar to volcanic rocks (e.g.87Sr/86Sr0.7037). Rb and Sr data for glass separates from granodioritessuggest that the source pluton is Miocene. Glass from granodioritehas 87Sr/86Sr ratios as high as 0.70617. Oxygen isotope fractionationbetween quartz, plagioclase, and glass indicates requilibrationof O isotopes at magmatic temperatures, after 18O/16O had beenlowered by exchange with meteoric hydrothermal fluids. Unmeltedgranodiorite xenoliths from pre-climactic eruptive units have18O values that are consistent with onset of hydrothermal exchangeearly during growth of the climactic magma chamber. Assimilationof such upper-crustal granodiorite apparently lowered 18O valuesof rhyodacites without significantly affecting their magmaticcompositions in other ways.  相似文献   

15.
The volcanic history of Santo Antão, NW Cape Verde Islands,includes the eruption of basanite–phonolite series magmasbetween 7·5 and 0·3 Ma and (melilite) nephelinite–phonoliteseries magmas from 0·7 to 0·1 Ma. The most primitivevolcanic rocks are olivine ± clinopyroxene-phyric, whereasthe more evolved rocks have phenocrysts of clinopyroxene ±Fe–Tioxide ± kaersutite ± haüyne ± titanite± sanidine; plagioclase occurs in some intermediate rocks.The analysed samples span a range of 19–0·03% MgO;the most primitive have 37–46% SiO2, 2·5–7%TiO2 and are enriched 50–200 x primitive mantle in highlyincompatible elements; the basanitic series is less enrichedthan the nephelinitic series. Geochemical trends in each seriescan be modelled by fractional crystallization of phenocrystassemblages from basanitic and nephelinitic parental magmas.There is little evidence for mineral–melt disequilibrium,and thus magma mixing is not of major importance in controllingbulk-rock compositions. Mantle melting processes are modelledusing fractionation-corrected magma compositions; the modelssuggest 1–4% partial melting of a heterogeneous mantleperidotite source at depths of 90–125 km. Incompatibleelement enrichment among the most primitive magma types is typicalof HIMU OIB. The Sr, Nd and Pb isotopic compositions of theSanto Antão volcanic sequence and geochemical characterchange systematically with time. The older volcanic rocks (7·5–2Ma) vary between two main mantle source components, one of whichis a young HIMU type with 206Pb/204Pb = 19·88, 7/4 =–5, 8/4 0, 87Sr/86Sr = 0·7033 and 143Nd/144Nd= 0·51288, whereas the other has somewhat less radiogenicSr and Pb and more radiogenic Nd. The intermediate age volcanicrocks (2–0·3 Ma) show a change of sources to two-componentmixing between a carbonatite-related young HIMU-type source(206Pb/204Pb = 19·93, 7/4 = –5, 8/4 = –38,87Sr/86Sr = 0·70304) and a DM-like source. A more incompatibleelement-enriched component with 7/4 > 0 (old HIMU type) isprominent in the young volcanic rocks (0·3–0·1Ma). The EM1 component that is important in the southern CapeVerde Islands appears to have played no role in the petrogenesisof the Santo Antão magmas. The primary magmas are arguedto be derived by partial melting in the Cape Verde mantle plume;temporal changes in composition are suggested to reflect layeringin the plume conduit. KEY WORDS: radiogenic isotopes; geochemistry; mantle melting; Cape Verde  相似文献   

16.
Experiments in the system KAlSi04-NaAlSi04-SiOj-Fe-0-H indicatethat approximately 20 mole per cent of sodium annite [NaFe3AlSiO10(OH)2]can enter into solid solution with potassium annite. This substitutionreduces the biotite stability field. With excess alkali feldsparand no free quartz, the following reactions limit the biotitestability: Feldspar(s)+biotite feldspar(s)+magnetite+vapor. (1) Feldspar+biotite feldspar+fayalite+leucite+vapor. (2) Feldspar+biotite feldspar+fayalite+liquid+vapor. (3) Biotite feldspar+fayalite+nepheline+vapor. (4) On the QFM buffer (PTotal = 2 Kb), reaction 1 occurs at 685°C in the sodium free system and at 625 °C when twofeldspars are present; on NNO, it occurs at 630 and 590 °C.On the G-CH buffer, reaction 2 is stable at high temperatures(795–830 °Q and potassic compositions (), reaction3 at intermediate conditions (T = 740–95 °C; ) andreaction 4 at lower temperatures (710–40 °C) and sodiccompositions (). In the presence of excess quartz, reaction1 remains stable below the QFM buffer, but the reaction Feldspars)+biotite+quartz feldspars)+fayalite+vapor (5) is stable at higher hydrogenfugacities. On the G-CH buffer, reaction 5 occurs at 610 °Cin the sodium free system and at 595 °C when two alkalifeldspars are present. On the MW buffer, the temperatures are585 and 515 °C (M.I.). The experimental data presented suggest that biotite will notbe stable in the presence of granitic liquids at total pressuresbelow 4 kb, providing the fluorine and titanium content of thebiotite is low. They also suggest that gradients in the a£1S,l0 in a rock could produce variations in the biotite Fe/Fe+Mgratio and in extreme cases could result in the complete breakdown(decreased ) of biotite or its crystallization (increased )where previously there was none.  相似文献   

17.
Hafnium isotope and incompatible trace element data are presentedfor a suite of mid-ocean ridge basalts (MORB) from 13 to 47°Eon the Southwest Indian Ridge (SWIR), one of the slowest spreadingand most isotopically heterogeneous mid-ocean ridges. Variationsin Nd–Hf isotope compositions and Lu/Hf ratios clearlydistinguish an Atlantic–Pacific-type MORB source, presentwest of 26°E, characterized by relatively low Hf valuesfor a given Nd relative to the regression line through all Nd–Hfisotope data for oceanic basalts (termed the ‘Nd–Hfmantle array line’; the deviation from this line is termedHf) and low Lu/Hf ratios, from an Indian Ocean-type MORB signature,present east of 32°E, characterized by relatively high Hfvalues and Lu/Hf ratios. Additionally, two localized, isotopicallyanomalous areas, at 13–15°E and 39–41°E,are characterized by distinctly low negative and high positiveHf values, respectively. The low Hf MORB from 13 to 15°Eappear to reflect contamination by HIMU-type mantle from thenearby Bouvet mantle plume, whereas the trace element and isotopiccompositions of MORB from 39 to 41°E are most consistentwith contamination by metasomatized Archean continental lithosphericmantle. Relatively small source-melt fractionation of Lu/Hfrelative to Sm/Nd, compared with MORB from faster-spreadingridges, argues against a significant role for garnet pyroxenitein the generation of most central SWIR MORB. Correlations betweenHf and Sr and Pb isotopic and trace element ratios clearly delineatea high-Hf ‘Indian Ocean mantle component’ that canexplain the isotope composition of most Indian Ocean MORB asmixtures between this component and a heterogeneous Atlantic–Pacific-typeMORB source. The Hf, Nd and Sr isotope compositions of IndianOcean MORB appear to be most consistent with the hypothesisthat this component represents fragments of subduction-modifiedlithospheric mantle beneath Proterozoic orogenic belts thatfoundered into the nascent Indian Ocean upper mantle duringthe Mesozoic breakup of Gondwana. KEY WORDS: mid-ocean ridge basalt; isotopes; incompatible elements; Indian Ocean  相似文献   

18.
Glass inclusions in plagioclase and orthopyroxene from daciticpumice of the Cabrits Dome, Plat Pays Volcanic Complex in southernDominica reveal a complexity of element behavior and Li–Bisotope variations in a single volcanic center that would gounnoticed in a whole-rock study. Inclusions and matrix glassesare high-silica rhyolite with compositions consistent with about50% fractional crystallization of the observed phenocrysts.Estimated crystallization conditions are 760–880°C,200 MPa and oxygen fugacity of FMQ + 1 to +2 log units (whereFMQ is the fayalite–magnetite–quartz buffer). Manyinclusion glasses are volatile-rich (up to 6 wt % H2O and 2900ppm Cl), but contents range down to 1 wt % H2O and 2000 ppmCl as a result of shallow-level degassing. Sulfur contents arelow throughout, with <350 ppm S. The trace element compositionof inclusion glasses shows enrichment in light rare earth elements(LREE; (La/Sm)n = 2·5–6·6) and elevatedBa, Th and K contents compared with whole rocks and similaror lower Nb and heavy REE (HREE; (Gd/Yb)n = 0·5–1·0).Lithium and boron concentrations and isotope ratios in meltinclusions are highly variable (20–60 ppm Li with 7Li= +4 to +15 ± 2; 60–100 ppm B with 11B = +6 to+13 ± 2) and imply trapping of isotopically heterogeneous,hybrid melts. Multiple sources and processes are required toexplain these features. The mid-ocean ridge basalt (MORB)-likeHREE, Nb and Y signature reflects the parental magma(s) derivedfrom the mantle wedge. Positive Ba/Nb, B/Nb and Th/Nb correlationsin inclusion glasses indicate coupled enrichment in stronglyfluid-mobile (Ba, B) and less-mobile (Th, Nb) trace elements,which can be explained by fractional crystallization of plagioclase,orthopyroxene and Fe–Ti oxides. The 7Li and 11B valuesare at the high end of known ranges for other island arc magmas.We attribute the high values to a 11B and 7Li-enriched slabcomponent derived from sea-floor-altered oceanic crust and possiblyfurther enriched in heavy isotopes by dehydration fractionation.The heterogeneity of isotope ratios in the evolved, trappedmelts is attributed to shallow-level assimilation of older volcanicrocks of the Plat Pays Volcanic Complex. KEY WORDS: subduction; volcanic arcs; igneous processes; melt inclusions; SIMS; trace elements; lithium and boron isotopes; diffusion  相似文献   

19.
Komatiites from the 2 Ga Jeesiörova area in Finnish Laplandhave subchondritic Al2O3/TiO2 ratios like those in Al-depletedkomatiites from Barberton, South Africa. They are distinct inthat their Al abundances are higher than those of the Al-depletedrocks and similar to levels in Al-undepleted komatiites. Moderatelyincompatible elements such as Ti, Zr, Eu, and Gd are enriched.Neither majorite fractionation nor hydrous melting in a supra-subductionzone setting could have produced these komatiites. Their highconcentrations of moderately incompatible elements may haveresulted from contamination of their parental melt through interactionwith metasomatic assemblages in the lithospheric mantle or enrichmentof their mantle source in basaltic melt components. Re–Osisotope data for chromite from the Jeesiörova rocks yieldan average initial 187Os/188Os of 0·1131 ± 0·0006(2), Os(I) = 0·1 ± 0·5. These data, coupledwith an initial Nd of +4, indicate that melt parental to thekomatiites interacted minimally with ancient lithospheric mantle.If their mantle source was enriched in a basaltic component,the combined Os–Nd isotopic data limit the enrichmentprocess to within 200 Myr prior to the formation of the komatiites.Their Os–Nd isotopic composition is consistent with derivationfrom the contemporaneous convecting upper mantle. KEY WORDS: Finnish Lapland; Jeesiörova; komatiites; mantle geochemistry; petrogenesis; redox state; Re/Os isotopes; Ti enrichment  相似文献   

20.
In north-east Brazil, Archean and Paleoproterozoic cratonicblocks are enclosed within a network of Brasiliano-age (0·7–0·55Ga) metasedimentary foldbelts. The unfoliated Coronel JoãoSá granodiorite pluton, which contains magmatic epidoteand strongly resorbed clinopyroxene, intrudes the SergipanoFoldbelt. Zircons yield a concordant U–Pb crystallizationage of 625 ± 2 Ma; titanite ages are approximately 621Ma. Discordant zircons suggest inheritance from at least twomagma sources of ages <1·8 and >2·2 Ga.Model calculations based on diffusion parameters and Rb–Srisotope data from separated minerals indicate that the plutoncooled at a rate of 36°C/Myr. Whole-rock element compositionsand initial Sr–Nd isotopic compositions that are heterogeneouson all length scales suggest magma mixing. Trace-element concentrationsand Nd isotope data argue against a contribution from a contemporaneousmantle-derived magma. Values of magmatic Nd (at 625 Ma) resemblecontemporary Nd for local supracrustal rocks and basement, compatiblewith anatexis of a crustal source. In north-east Brazil, cratonicblocks could have amalgamated with foldbelts that originatedas: (1) a mosaic of island arcs and arc basins (traditionalallochthonous model), or as (2) extensional continental sedimentarybasins (but not oceanic crust) later involved in collision (autochthonousmodel). The Coronel João Sá isotopic and chemicaldata support an autochthonous origin. KEY WORDS: Brasiliano Orogeny; granodiorite pluton; Rb–Sr isotopes, Sm–Nd isotopes; U–Pb isotopes, magma cooling rate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号