首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
吉林陨石中的球粒分为正常快速冷却和过冷冷却球粒两种。前一类球粒中的橄榄石和辉石的化学成份相对稳定,代表了平衡球粒陨石的特征。后一类球粒中的橄榄石和辉石不仅在总的化学成份上有别于前者,而且矿物本身成份不稳定,反映了平衡球粒陨石中存在着不平衡性。  相似文献   

2.
Many carbonaceous chondrites contain discrete olivine fragments that have been considered to be primitive material, i.e. direct condensates from the solar nebula or pre-solar system material. Olivine occurring in chondrules and as isolated grains in C3(0) chondrites has been characterized chemically and petrographically. Type I chondrules contain homogeneous forsterite grains that exhibit a negative correlation between FeO and CaO. Type II chondrules contain zoned fayalite olivines in which FeO is positively correlated with CaO and MnO. The isolated olivines in C3(0) chondrites form two compositional populations identical to olivines in the two types of porphyritic olivine chondrules in the same meteorites. Isolated olivines contain trapped melt inclusions similar in composition to glassy mesostasis between olivines in chondrules. Such glasses can be produced by fractional crystallization of olivine and minor spinel in the parent chondrule melts if plagioclase does not nucleate. The isolated olivine grains are apparently clastic fragments of chondrules. Some similarities between olivines in C3(0), C2, and Cl chondrites may suggest that olivine grains in all these meteorites crystallized from chondrule melts.  相似文献   

3.
We report in situ ion microprobe analyses of the oxygen isotopic composition of the major silicate phases (olivine, low-Ca pyroxene, silica, and mesostasis) of 37 magnesian porphyritic (type I) chondrules from CV (Vigarano USNM 477-2, Vigarano UH5, Mokoia, and Efremovka) and CR (EET 92042, EET 92147, EET 87770, El Djouf 001, MAC 87320, and GRA 95229) carbonaceous chondrites. In spite of significant variations of the modal proportions of major mineral phases in CR and CV chondrules, the same isotopic characteristics are observed: (i) olivines are isotopically homogeneous at the ‰ level within a chondrule although they may vary significantly from one chondrule to another, (ii) low-Ca pyroxenes are also isotopically homogeneous but systematically 16O-depleted relative to olivines of the same chondrule, and (iii) all chondrule minerals analyzed show 16O-enrichments relative to the terrestrial mass fractionation line, enrichments that decrease from olivine (±spinel) to low-Ca pyroxene and to silica and mesostasis. The observation that, in most of the type I chondrules studied, the coexisting olivine and pyroxene crystals and glassy mesostasis have different oxygen isotopic compositions implies that the olivine and pyroxene grains are not co-magmatic and that the glassy mesostasis is not the parent liquid of the olivine. The δ18O and δ17O values of pyroxene and olivine appear to be strongly correlated for all the studied CR and CV chondrules according to:
  相似文献   

4.
Major and minor element bulk compositions of 90 individual chondrules and 16 compound chondrule sets in unequilibrated (type 3) H-group chondrites were determined in polished thin sections by broad beam electron probe analysis and the chondrules were classified petrographically into six textural types (barred olivine, porphyritic olivine, porphyritic pyroxene, barred pyroxene, radiating pyroxene, fine-grained). Although analyses of individual chondrules scatter widely, the mean composition of each textural type (except barred pyroxene) is rather distinct, as verified by discriminant function analysis. Al2O3, TiO2 and Na3O are correlated in chondrules, but Al2O3 and CaO do not correlate. Compound chondrule sets were found to consist almost entirely of chondrules or partial chondrules of similar texture and composition.The data suggest that composition played a conspicuous role in producing the observed textures of chondrules, though other factors such as cooling rates and degrees of supercooling prior to nucleation were also important. If compound chondrules formed and joined when they were still molten or plastic, then the data suggest that chondrules of each textural type could have formed together in space or time. The correlation of Al2O3 and TiO2 with Na2O and not with CaO appears to rule out formation of chondrules by direct equilibrium condensation from the nebula. We conclude that the most reasonable model for formation of the majority of chondrules is that they originated from mixtures of differing fractions of high-, intermediate- and low-temperature nebular condensates that underwent melting in space. A small percentage of chondrules might have formed by impacts in meteorite parent-body regoliths.  相似文献   

5.
The recently discovered metal-rich carbonaceous chondrite Isheyevo consists of Fe, Ni-metal grains, chondrules, heavily hydrated matrix lumps and rare refractory inclusions. It contains several lithologies with mineralogical characteristics intermediate between the CH and CB carbonaceous chondrites; the contacts between the lithologies are often gradual. Here we report the mineralogy and petrography of chondrules in the metal-rich (70 vol%) and metal-poor (20 vol%) lithologies. The chondrules show large variations in textures [cryptocrystalline, skeletal olivine, barred olivine, porphyritic olivine, porphyritic olivine-pyroxene, porphyritic pyroxene], mineralogy and bulk chemistry (magnesian, ferrous, aluminum-rich, silica-rich). The porphyritic magnesian (Type I) and ferrous (Type II) chondrules, as well as silica- and Al-rich plagioclase-bearing chondrules are texturally and mineralogically similar to those in other chondrite groups and probably formed by melting of mineralogically diverse precursor materials. We note, however, that in contrast to porphyritic chondrules in other chondrite groups, those in Isheyevo show little evidence for multiple melting events; e.g., relict grains are rare and igneous rims or independent compound chondrules have not been found. The magnesian cryptocrystalline and skeletal olivine chondrules are chemically and mineralogically similar to those in the CH and CB carbonaceous chondrites Hammadah al Hamra 237, Queen Alexandra Range 94411 (QUE94411) and MacAlpine Hills 02675 (MAC02675), possibly indicating a common origin from a vapor–melt plume produced by a giant impact between planetary embryos; the interchondrule metal grains, many of which are chemically zoned, probably formed during the same event. The magnesian cryptocrystalline chondrules have olivine–pyroxene normative compositions and are generally highly depleted in Ca, Al, Ti, Mn and Na; they occasionally occur inside chemically zoned Fe, Ni-metal grains. The skeletal olivine chondrules consist of skeletal forsteritic olivine grains overgrown by Al-rich (up to 20 wt% Al2O3) low-Ca and high-Ca pyroxene, and interstitial anorthite-rich mesostasis. Since chondrules with such characteristics are absent in ordinary, enstatite and other carbonaceous chondrite groups, the impact-related chondrule-forming mechanism could be unique for the CH and CB chondrites. We conclude that Isheyevo and probably other CH chondrites contain chondrules of several generations, which may have formed at different times, places and by different mechanisms, and subsequently accreted together with the heavily hydrated matrix lumps and refractory inclusions into a CH parent body. Short-lived isotope chronology, oxygen isotope and trace element studies of the Isheyevo chondrules can provide a possible test of this hypothesis.  相似文献   

6.
Optical and cathodoluminescence petrography were coupled with electron microprobe analysis to relate the textures and chemical compositions of minerals in the chondrules and matrix of the Indarch, Kota-Kota, Adhi-Kot and Abee Type I enstatite chondrites. Clinoenstatites fall into two distinct chemical groups with characteristic red or blue luminescence; red crystals are higher in Ti, Al, Cr, Mn and Ca, and lower in Na, than blue ones. Rare forsterites in Indarch and Kota-Kota show distinct compositions associated with orange or blue luminescence. The chemical ranges are indistinguishable for each color type in chondrules of all textural types, and the presence of both color types in a single chondrule or a metal fragment requires mechanical aggregation of both crystals and liquids of both color types. Porphyritic chondrules are ascribed mainly to aggregation of existing crystals because both types of pyroxene and olivine occur in the same chondrule. Large crystals of one color type are surrounded by fine-grained crystals of another type in some barred and radiating chondrules. All types of chondrules are surrounded by fine-grained rims rich in sulfide. The matrix contains many broken chondrules and individual silicate grains but is rich in sulfide and metal. Analyses are given of albite (minor elements and luminescence color vary between chondrites), kamacite, schreibersite, oldhamite and niningerite.Although the mineral assemblages do not fit theoretical condensation sequences in detail, the red pyroxene and orange olivine might result ultimately from near-equilibrium crystallization in which early reduced condensates reacted with a gas, while the blue crystals might result from fractional condensation in which early condensates were removed mechanically from a gas. Subsequent episodes involving mixing, melting, crystallization, condensation, fracturing, and mechanical aggregation would be needed to produce the complex textures.  相似文献   

7.
In the Piancaldoli LL3 chondrite, we found a mm-sized clast containing ~100 chondrules 0.2–64 μm in apparent diameter (much smaller than any previously reported) that are all of the same textural type (radial pyroxene; FS1–17). This clast, like other type 3 chondrites, has a fine-grained Ferich opaque silicate matrix, sharply defined chondrules, abundant low-Ca clinopyroxene and minor troilite and Si- and Cr-bearing metallic Fe,Ni. However, the very high modal matrix abundance (63 ± 8 vol. %), unique characteristics of the chondrules, and absence of microscopically-observable olivine indicate that the clast is a new kind of type 3 chondrite. Most chondrules have FeO-rich edges, and chondrule size is inversely correlated with chondrule-core FeO concentration (the first reported correlation of chondrule size and composition). Chondrules acquired Fe by diffusion from Fe-rich matrix material during mild metamorphism, possibly before final consolidation of the rock. Microchondrules (those chondrules ? 100 μm in diameter) are also abundant in another new kind of type 3 chondrite clast in the Rio Negro L chondrite regolith breccia. In other type 3 chondrite groups, microchondrule abundance appears to be anticorrelated with mean chondrule size, viz. 0.02–0.04 vol. % in H and CO chondrites and ?0.006 vol. % in L, LL, and CV chondrites.Microchondrules probably formed by the same process that formed normal-sized droplet chondrules: melting of pre-existing dustballs. Because most compound chondrules in the clast and other type 3 chondrites formed by collisions between chondrules of the same textural type, we suggest that dust grains were mineralogically sorted in the nebula before aggregating into dustballs. The sizes of compound chondrules and chondrule craters, which resulted from collisions of similarly-sized chondrules while they were plastic, indicate that size-sorting (of dustballs) occurred before chondrule formation, probably by aerodynamic processes in the nebula. We predict that other kinds of type 3 chondrites exist which contain chondrule abundances, size-ranges and proportions of textural types different from known chondrite groups.  相似文献   

8.
Relatively coarse-grained rims occur around all types of chondrules in type 3 carbonaceous and ordinary chondrites. Those in H-L-LL3 chondrites are composed primarily of olivine and low-Ca pyroxene; those in CV3 chondrites contain much less low-Ca pyroxene. Average grain sizes range from ~4 μm in H-L-LL3 chondrites to ~10 μm in CV3 chondrites. Such rims surround ~50%, ~10% and ≤ 1% of chondrules in CV3, H-L-LL3 and CO3 chondrites, respectively, but are rare (≤1%) around CV3 Ca,Al-rich inclusions. Rim thicknesses average ~150 μm in H-L-LL3 chondrites and ~400 μm in CV3 chondrites.The rims in H-L-LL3 chondrites are composed of material very similar to that which comprises darkzoned chondrules and recrysiallized matrix. Dark-zoned chondrules and coarse-grained rims probably formed in the solar nebula from clumps of opaque matrix material heated to sub-solidus to sub-liquidus temperatures during chondrule formation. Mechanisms capable of completely melting some material while only sintering other material require steep thermal gradients; suitable processes are lightning, reconnecting magnetic field lines and, possibly, aerodynamic drag heating.CV chondrites may have formed in a region where the chondrule formation mechanism was less efficient, probably at greater solar distances than the ordinary chondrites. The lesser efficiency of heating could be responsible for the greater abundance of coarse-grained rims around CV chondrules. Alternatively, CV chondrules may have suffered fewer particle collisions prior to agglomeration.  相似文献   

9.
We found thirty compound chondrules in two CV3 carbonaceous chondrites. The abundance in each meteorite relative to single chondrules is 29/1846 (1.6%) in Allende and 1/230 (0.4%) in Axtell. We examined petrologic features, major element concentrations and oxygen isotopic compositions. Textural, compositional and isotopic evidence suggests that multiple, different mechanisms are responsible for the formation of compound chondrules.Seven compound chondrules are composed of two conjoined porphyritic chondrules with a blurred boundary. At the boundary region of this type of compounds, a poikilitic texture is commonly observed. This suggests that the two chondrules were melted when they came to be in contact. On the other hand, seventeen compound chondrules consist of two conjoined chondrules with a discrete boundary. The preservation of spherical boundary planes of an earlier-formed chondrule of this type implies that it already solidified before fusing with a later-formed chondrule that was still melted. Six samples out of 17 compound chondrules of this type are composed of two BO chondrules. The BO-BO compound chondrules have a unique textural feature in common: the directions of the barred olivines are mostly parallel between two chondrules. This cannot be explained by a simple collision process and forces another mechanism to be taken into consideration.The remaining six compound chondrules differ from the others; they consist of an earlier-formed chondrule enclosed by a later-formed chondrule. A large FeO enrichment was observed in the later-formed chondrules and the enrichment was much greater than that in the later-formed chondrules of other types of compounds. This is consistent with the relict chondrule model, which envisages that the later-formed chondrule was made by a flash melting of a porous FeO-rich dust clump on an earlier-formed chondrule. The textural evidence of this type of compound shows that the earlier-formed chondrule has melted again to varying degrees at the second heating event. This implies that FeO concentrations in bulk chondrules increases during the second heating event if an earlier-formed chondrule was totally melted together with the FeO-rich dust aggregates.Silicate minerals such as olivine and low-Ca pyroxene in compound chondrules have oxygen isotope compositions similar to those in single chondrules from CV3 chondrites. The oxygen isotope composition of each part of the compound chondrule is basically similar to their chondrule pair, but silicates in some chondrules show varying degrees of 16O-enrichment down to −15‰ in δ18O, while those in their partners have 16O-poor invariable compositions near 0 ‰ in δ18O. This implies that the two chondrules in individual compounds formed in the same environments before they became conjoined and the heterogeneous oxygen isotope compositions in some chondrules resulted from incomplete exchange of oxygen atoms between 16O-rich chondrule melts and 16O-poor nebular gas.  相似文献   

10.
New data on the U, Pu, and P distributions in less metamorphosed H-chondrites (type 3–5), coupled with literature results, permit a provisional picture to be assembled of the chemistry of these elements and for the rare earth elements in ordinary chondrites and the changes brought about by chondritic metamorphism. Preferential associations of phosphates with metals and/or sulndes in all chondrites strongly indicate an “initially” siderophile or conceivably chalcophile character for P in ordinary chondrite precursor materials with phosphate subsequently formed by oxidation. This oxidation occurred prior to or during chondritic metal-silicate fractionation. Uranium is initially concentrated in chondrule glass at ~ 100 ppb levels with phosphates (primarily merrillite) in H-3 chondrites being essentially U-free (<20 ppb). As chondrule glass devitrified during metamorphism, U migrated into phosphates reaching ~ 50 ppb in Nadiabondi (H-5) merrillite and 200–300 ppb in merrillite from equilibrated chondrites but “froze out” before total concentration in phosphates occurred. Relative 244Pu fission track densities in the outer 5 μm of olivine and pyroxene grains in contact with merrillite and with chondrule mesostasis in Bremervörde (H-3) give Pu(mesostasis)/Pu(merrillite) <0.01, implying total concentration of Pu in phosphates. Similarly, no detectable Pu (<0.1 ppb) was found in chondrule mesostasis in Tieschitz and Sharps; whereas, direct measurements of tracks in phosphates in H-3 chondrites are consistent with high (?10 ppb) Pu concentrations. Thus, a strong Pu-P correlation is indicated for ordinary chondrites. There is variable Pu/U fractionation in all chondritic phosphates reaching an extreme degree in the unequilibrated chondrites; therefore, the Pu/U ratio in phosphates appears relatively useless for relative meteorite chronology. Literature data indicate that the REE are located in chondrules in unequilibrated chondrites, most likely in glass; thus there may also be strong Pu/Nd fractionation within these meteorites. Like U, the REE migrate into phosphates during metamorphism but, unlike U, appear to be quantitatively concentrated in phosphates in equilibrated chondrites. Thus relative ages, based on Pu/Nd, may be possible for equilibrated chondrites, but the same chronological conclusions are probably obtainable from Pu concentrations in phosphates, i.e., on the Pu/P ratio. However, Pu/P chronology is possible only for ordinary chondrites; so there appears to be no universal reference element to cancel the effects of Pu chemical fractionation in all meteorites. Available data are consistent with — but certainly do not prove-that variations in Pu/P represent age differences, but if these age differences do not exist, then it is conceivable that the solar system 244Pu238U ratio, important for cosmochronology, is still lower than the presently accepted value of 0.007.  相似文献   

11.
We carried out a systematic study of spinel group minerals in LL3.00-3.9 and LL4-6 chondrites. With increasing petrologic type, the size and abundance of spinel increase. The compositions of spinel group minerals in type 3 chondrites depend on the occurrence; Mg-Al-rich spinel occurs mainly in chondrules. Some chromite occurs in chondrules and matrix, and nearly pure chromite is exclusively encountered in the matrix. The occurrence of nearly pure chromite and the wide compositional variations distinguish spinel group minerals in types 3.00-3.3 from those in the other types. Spinel group minerals in types 3.5-3.9 show a narrower range of compositions, and those in types 4-6 are homogeneous. The changes in composition and abundance of spinel in type 3 chondrites are most likely due to thermal metamorphism. Therefore, the chemistry of spinel group minerals could be used as a sensitive indicator of metamorphic conditions, not only for type 3-6, but also 3.00-3.9. They can be applied to identify the most primitive (least metamorphosed) chondrites. The bulk compositions of spinel-bearing chondrules and the textural setting of the spinel indicate that most spinel group minerals crystallized directly from chondrule melts. However, some spinel grains, especially those enclosed in olivine phenocrysts, can not be explained by in situ crystallization in the chondrule. We interpret these spinel grains to be relic phases that survived chondrule melting. This is supported by the oxygen isotopic composition of a spinel grain, which has significantly lighter oxygen than the coexisting olivine. The oxygen isotopic composition of this spinel is similar to those of Al-rich chondrules. Our discovery of relic spinel in chondrules is an indication of the complexities in the early solar nebular processes that ranged from formation of refractory inclusion, through Al-rich chondrule, to ferromagnesian chondrules, and attests to the recycling of earlier formed materials into the precursors of later formed materials. The characteristic features of spinel group minerals are not only sensitive to thermal metamorphism, but also shed light on chondrule formation processes.  相似文献   

12.
A set of troilite-silicate-metal (TSM) inclusions and chondrule rims in the Bishunpur (LL3.1) chondrite provide information regarding impact brecciation of small bodies in the early solar system. The TSM inclusions and chondrule rims consist of numerous angular to subrounded silicate grains that are individually enclosed by fine networks of troilite. FeNi metal also occurs in the troilite matrix. The silicates include olivine (Fo55-98), low-Ca pyroxene (En78-98), and high-Ca pyroxene (En48-68Wo11-32). Al- and Si-rich glass coexists with the silicates. Relatively coarse silicate grains are apparently fragments of chondrules typical of petrologic type-3 chondrites. Troilite fills all available cracks and pores in the silicate grains. Some of the TSM inclusions and rims are themselves surrounded by fine-grained silicate-rich rims (FGR).The TSM inclusions and rims texturally resemble the troilite-rich regions in the Smyer H-chondrite breccia. They probably formed by shock-induced mobilization of troilite during an impact event on a primitive asteroidal body. Because silicates in the TSM inclusions and rims have highly unequilibrated compositions, their precursor was presumably type-3 chondritic material like Bishunpur itself. The TSM inclusions and the chondrules with the TSM rims were fragmented and dispersed after the impact-induced compaction, then reaccreted onto the Bishunpur parent body. FGR probably formed around the TSM inclusions and rims, as well as around some chondrules, during the reaccumulation process. Components of most type-2 and 3 chondrites probably experienced similar processing, i.e., dispersal of unconsolidated materials and subsequent reaccumulation.  相似文献   

13.
Lanthanide tetrad effect in bulk chondrules from two moderately altered CM chondrites, Murchison and Yamato-793321 (Y-793321), are reported for the first time. Twenty-three chondrules were petrographically characterized and analyzed for 10 rare earth elements (REE) and other trace and major elements (Ba, Sr, Rb, K, Ca, Mg and Fe) using the precise isotope dilution technique. The results indicate systematic depletion (several times) of alkali and alkaline earths compared to CV and CO chondrules. Most of the porphyritic olivine (8 PO) and olivine-pyroxene (4 POP), porphyritic and radial pyroxene (2 PP, 1 RP), and granular olivine (1 GO) chondrules show a light-REE (L-REE) depleted, heavy-REE (H-REE) smoothly fractionated pattern composed of four (upward convex) segments possessing a relatively large negative Eu anomaly (CI-normalized La/Sm, Lu/Er and Eu/Eu* ratios = 0.3-1: Eu*, normal value). On the other hand, all barred-olivine (5 BO) chondrules, a few PO and POP indicate almost a flat L-REE pattern. In addition, regardless of their textural types, nearly half of the chondrules have a variable degree of Ce and Yb anomalies, and/or L/H-REE discontinuity, which is similar to CV and CO chondrules. The observed L- and H-convex REE patterns accompanied with the negative Eu anomaly is the first known case for chondrules as well as meteoritic materials, but have been previously reported for geological samples such as sedimentary rocks, late stage igneous and metamorphic rocks, and are explained as the lanthanide tetrad effect, which plausibly results from fluid-rock interaction. We suggest that the marked REE fractionations occurred by the selective incorporation of L-, H-REEs and Eu into alteration products in the matrix during alteration processes on the CM parent body, but that the gas/solid REE fractionation characteristics established in the nebula have basically remained unchanged. We suggest that the tetrad effects observed here represent a new index of physico-chemical conditions of fluid-rock interactions prevalent on the CM parent body.  相似文献   

14.
Northwest Africa (NWA) 12379 is a new metal-rich chondrite with unique characteristics distinguishing it from all previously described meteorites. It contains high Fe,Ni-metal content (∼ 70 vol.%) and completely lacks interchondrule matrix; these characteristics are typical only for metal-rich carbonaceous (CH and CB) and G chondrites. However, chondrule sizes (60 to 1200 μm; mean = 370 μm), their predominantly porphyritic textures, nearly equilibrated chemical compositions of chondrule olivines (Fa18.1–28.3, average Fa24.9±3.2, PMD = 12.8; Cr2O3 = 0.03 ± 0.02 wt.%; FeO/MnO = 53.2 ± 6.5 (wt.-ratio); n = 28), less equilibrated compositions of low-Ca pyroxenes (Fs3.2–18.7Wo0.2–4.5; average Fs14.7±3.7Wo1.4±1.3; n = 20), oxygen-isotope compositions of chondrule olivine phenocrysts (Δ17O ∼ 0.2–1.4‰, average ∼ 0.8‰), and the presence of coarse-grained Ti-bearing chromite, Cl-apatite, and merrillite, all indicate affinity of NWA 12379 to unequilibrated (type 3.8) ordinary chondrites (OCs). Like most OCs, NWA 12379 experienced fluid-assisted thermal metamorphism that resulted in formation of secondary ferroan olivine (Fa27) that replaces low-Ca pyroxene grains in chondrules and in inclusions in Fe,Ni-metal grains. Δ17O of the ferroan olivine (∼ 4‰) is similar to those of aqueously-formed fayalite in type 3 OCs, but its δ18O is significantly higher (15–19‰, average = 17‰ vs. 3―12‰, average = 8‰, respectively). We suggest classifying NWA 12379 as the ungrouped metal-rich chondrite with affinities of its non-metal fraction to unequilibrated OCs and speculate that it may have formed by a collision between an OC-like body and a metal-rich body and subsequently experienced fluid-assisted thermal metamorphism. Trace siderophile element abundances and isotopic compositions (e.g., Mo, Ni, Fe) of the NWA 12379 metal could help to constrain its origin.  相似文献   

15.
Non-spherical chondrules (arbitrarily defined as having aspect ratios ≥1.20) in CO3.0 chondrites comprise multi-lobate, distended, and highly irregular objects with rounded margins; they constitute ∼70% of the type-I (low-FeO) porphyritic chondrules in Y-81020, ∼75% of such chondrules in ALHA77307, and ∼60% of those in Colony. Although the proportion of non-spherical type-I chondrules in LL3.0 Semarkona is comparable (∼60%), multi-lobate OC porphyritic chondrules (with lobe heights equivalent to a significant fraction of the mean chondrule diameter) are rare. If the non-spherical type-I chondrules in CO chondrites had formed from totally molten droplets, calculations indicate that they would have collapsed into spheres within ∼10−3 s, too little time for their 20-μm-size olivine phenocrysts to have grown from the melt. These olivine grains must therefore be relicts from an earlier chondrule generation; the final heating episode experienced by the non-spherical chondrules involved only minor amounts of melting and crystallization. The immediate precursors of the individual non-spherical chondrules may have been irregularly shaped chondrule fragments whose fracture surfaces were rounded during melting. Because non-spherical chondrules and “circular” chondrules form a continuum in shape and have similar grain sizes, mineral and mesostasis compositions, and modal abundances of non-opaque phases, they must have formed by related processes. We conclude that a large majority of low-FeO chondrules in CO3 chondrites experienced a late, low-degree melting event. Previous studies have shown that essentially all type-II (high-FeO) porphyritic chondrules in Y-81020 formed by repeated episodes of low-degree melting. It thus appears that the type-I and type-II porphyritic chondrules in Y-81020 (and, presumably, all CO3 chondrites) experienced analogous formation histories. Because these two types constitute ∼95% of all CO chondrules, it is clear that chondrule recycling was the rule in the CO chondrule-formation region and that most melting events produced only low degrees of melting. The rarity of significantly non-spherical, multi-lobate chondrules in Semarkona may reflect more-intense heating of chondrule precursors in the ordinary-chondrite region of the solar nebula.  相似文献   

16.
We report the oxygen-isotope compositions of relict and host olivine grains in six high-FeO porphyritic olivine chondrules in one of the most primitive carbonaceous chondrites, CO3.0 Yamato 81020. Because the relict grains predate the host phenocrysts, microscale in situ analyses of O-isotope compositions can help assess the degree of heterogeneity among chondrule precursors and constrain the nebular processes that caused these isotopic differences. In five of six chondrules studied, the Δ17O (=δ17O −0.52 · δ18O) compositions of host phenocrysts are higher than those in low-FeO relict grains; the one exception is for a chondrule with a moderately high-FeO relict. Both the fayalite compositions as well as the O-isotope data support the view that the low-FeO relict grains formed in a previous generation of low-FeO porphyritic chondrules that were subsequently fragmented. It appears that most low-FeO porphyritic chondrules formed earlier than most high-FeO porphyritic chondrules, although there were probably some low-FeO chondrules that formed during the period when most high-FeO chondrules were forming.  相似文献   

17.
The mineralogy and bulk compositions of the matrices of the CR chondrites MET 00426 and QUE 99177 have been studied using a combination of SEM, EPMA, and TEM techniques. The matrices of these two chondrites are texturally, chemically, and mineralogically similar and are characterized by significant FeO-enrichments with respect to other CR chondrite matrices, nearly flat refractory lithophile patterns, variable volatile element patterns, and a simple mineral assemblage dominated by amorphous silicate material and Fe,Ni sulfides. Fine-grained, crystalline silicate phases such as olivine and pyroxene appear to be extremely rare in the matrices of both meteorites. Instead, the mineralogy of matrices and fine-grained rims of both meteorites consists of abundant amorphous FeO-rich silicate material, containing nanoparticles of Fe,Ni sulfides (troilite, pyrrhotite, and pentlandite). Secondary alteration minerals that are characteristic of other CR chondrites (e.g., Renazzo and Al Rais), such as phyllosilicates, magnetite, and calcite are also rare. The texture and mineralogy of the matrices of MET 00426 and QUE 99177 share many features with matrices in the primitive carbonaceous chondrites ALH A77307 (CO3.0) and Acfer 094 (unique). These observations show that MET 00426 and QUE 99177 are very low petrologic type 3 chondrites that have escaped the effects of aqueous alteration, unlike other CR chondrites, which are typically classified as petrologic type 2. We suggest that these meteorites represent additional samples of highly primitive, but extremely rare carbonaceous chondrites of petrologic type 3.00, according to the classification scheme of Grossman and Brearley (2005). The highly pristine nature of MET 00426 and QUE 99177 provides important additional insights into the origins of fine-grained materials in carbonaceous chondrites. Based on our new observations, we infer that the amorphous silicate material and nanosulfide particles that dominate the matrices of these meteorites formed in the solar nebula by rapid condensation of material following high-temperature events, such as those that formed chondrules.  相似文献   

18.
Chondrite groups (CV, CK, CR) with large average chondrule sizes have low proportions of RP plus C chondrules, high proportions of enveloping compound chondrules, high proportions of chondrules with (thick) igneous rims, and relatively low proportions of type-I chondrules containing sulfide. In contrast, chondrite groups (CM, CO, OC, R, EH, EL) with smaller average chondrule sizes have the opposite properties. Equilibrated CK chondrites have plagioclase with relatively low Na; equilibrated OC, R, EH and EL chondrites have more sodic plagioclase. Enveloping compound chondrules and chondrules with igneous rims formed during a remelting event after the primary chondrule was incorporated into a dustball. Repeated episodes of remelting after chondrules were surrounded by dust would tend to produce large chondrules. RP and C chondrules formed by complete melting of their precursor assemblages; remelting of RP and C chondrules surrounded by dust would tend to produce porphyritic chondrules as small dust particles mixed with the melt, providing nuclei for crystallizing phenocrysts. This process would tend to diminish the numbers of RP and C chondrules. Correlations among these chondrule physical properties suggest that chondrite groups with large chondrules were typically surrounded by thick dust-rich mantles that formed in locally dusty nebular environments. Chondrules that were surrounded by thick dust mantles tended to cool more slowly because heat could not quickly radiate away. Slow cooling led to enhanced migration of sulfide to chondrule surfaces and more extensive sulfide evaporation. These chondrules also lost Na; the plagioclase that formed from equilibrated CK chondrites was thus depleted in Na.  相似文献   

19.
An Fe isotope study of ordinary chondrites   总被引:3,自引:0,他引:3  
The Fe isotope composition of ordinary chondrites and their constituent chondrules, metal and sulphide grains have been systematically investigated. Bulk chondrites fall within a restricted isotopic range of <0.2‰ δ56Fe, and chondrules define a larger range of >1‰ (−0.84‰ to 0.21‰ relative to the IRMM-14 Fe standard). Fe isotope compositions do not vary systematically with the very large differences in total Fe concentration, or oxidation state, of the H, L, and LL chondrite classes. Similarly, the Fe isotope compositions of chondrules do not appear to be determined by the H, L or LL classification of their host chondrite. This may support an origin of the three ordinary chondrite groups from variable accretion of identical Fe-bearing precursors.A close relationship between isotopic composition and redistribution of Fe during metamorphism on ordinary chondrite parent bodies was identified; the largest variations in chondrule compositions were found in chondrites of the lowest petrologic types. The clear link between element redistribution and isotopic composition has implications for many other non-traditional isotope systems (e.g. Mg, Si, Ca, Cr). Isotopic compositions of chondrules may also be determined by their melting history; porphyritic chondrules exhibit a wide range in isotope compositions whereas barred olivine and radial pyroxene chondrules are generally isotopically heavier than the ordinary chondrite mean. Very large chondrules preserve the greatest heterogeneity of Fe isotopes.The mean Fe isotope composition of bulk ordinary chondrites was found to be −0.06‰ (±0.12‰ 2 SD); this is isotopically lighter than the terrestrial mean composition and all other published non-chondritic meteorite suites e.g. lunar and Martian samples, eucrites, pallasites, and irons. Ordinary chondrites, though the most common meteorites found on Earth today, were not the sole building blocks of the terrestrial planets.  相似文献   

20.
Petrographic study of 124 chondrules in the Hallingeberg (L-3) chondrite and electron probe microanalyses of olivine and low-Ca pyroxene in 96 of them reveal patterns of variation like those encountered previously in Sharps (H-3). Chondrule mineralogy, mineral composition, and the incidence of shock-related textures vary systematically with chondrule type. This fact and evidence of recrystallization in at least a fourth of the chondrules studied indicate that the pre-accretion histories of chondrules included complex and overlapping episodes of magmatic crystallization, burial, metamorphism and exhumation, in which impact shock was heavily involved. Data for Hallingeberg and Sharps suggest that orthopyroxene accompanies or replaces clinoenstatite in some chondrules and that its presence is due, in part at least, to pre-accretion recrystallization. A comparison of modes for chondrules in Sharps and Hallingeberg shows the former to contain more olivine, on the average, than the latter. It appears that the mean compositions of chondrules in H- and L-group chondrites reflect bulk chemical differences between the two groups, and that chondrule formation followed the siderophile fractionation which differentiated H-, L- and LL-group ordinary chondrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号