首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
本文通过综述近年西特提斯带主要缝合带的研究进展及所代表洋盆的发育特征,提出了古特提斯缝合带可能的位置和俯冲消亡方式。结合区域资料探讨了西特提斯带古生代末—中生代洋陆构造格局,认为东、西古特提斯洋完全可以类比,自晚古生代末西特提斯带主要受古特提斯大洋双向俯冲制约,在俯冲带后缘以二叠纪裂谷带为基础逐渐发展成中生代多岛弧盆系的新特提斯构造格局,西特提斯造山系主要表现为弧后洋盆消减造山作用。  相似文献   

2.
塔仁本洋岛型玄武岩是中特提斯洋古洋壳的重要组成部分,是班公湖-怒江缝合带内构造混杂岩中局部有序部分的特殊洋壳残片.它以具有海底爆发相与远洋放射虫硅质岩相整合和大洋板内碱性玄武岩的构造环境为主要特征.它的发现丰富了班-怒带的研究内容,证明当时中特提斯洋曾经有发育完好的古洋壳存在.  相似文献   

3.
西藏西南部达巴-休古嘎布蛇绿岩带的形成与演化   总被引:16,自引:0,他引:16  
:该蛇绿岩带的岩体由地幔橄榄岩组成,主要岩石类型是方辉橄榄岩和纯橄榄岩,缺少典型蛇绿岩剖面中的洋壳单元.微量元素和稀土元素特征显示蛇绿岩形成于类似洋中脊的构造环境.笔者提出该区蛇绿岩来源于印度大陆北缘洋盆的洋壳碎片,这个陆缘洋盆与新特提斯洋主体的形成和演化准同步.洋盆的演化模式是:早三叠世,随着印度(冈瓦纳)大陆向南漂移,其北部边缘因引张裂解产生裂谷,于晚三叠世向东开口与新特提斯洋主体连通,洋盆初具洋壳性质,北侧形成阿依拉-仲巴微陆块.侏罗-白垩纪为洋盆洋壳演化期,处于类似洋中脊的构造环境.晚白垩世末洋盆开始闭合.在新特提斯洋板块向北俯冲消减过程中,阿依拉-仲巴微陆块、陆缘洋盆和印度大陆一起随着向北漂移,在印度大陆向北挤压作用下洋盆逐渐收缩以致最终闭合.  相似文献   

4.
雅鲁藏布江缝合带,作为新特提斯洋闭合和冈底斯弧诞生的板块聚合边界,过去通常以日喀则蛇绿岩带及相伴产出的高压低温变质带(肖序常和高延林,1984)和混杂堆积带(陈国铭等,1984)为典型标志。日喀则蛇绿岩带广布于雅鲁藏布江南岸,组合层序自南而北依次为变质橄榄岩带、镁铁—超镁铁杂岩、席状岩墙—岩床杂岩和基性熔岩(鲍佩声和  相似文献   

5.
李源  杨经绥  刘钊  贾毅  徐向珍 《岩石学报》2011,27(11):3239-3254
巴尔蛇绿岩属于雅鲁藏布江缝合带的西延部分,距拉萨约1200km,主要由地幔橄榄岩、少量的橄长堆晶岩和玄武岩组成.地幔橄榄岩主体为合单辉方辉橄榄岩,少量为二辉橄榄岩.根据巴尔蛇绿岩地幔橄榄岩的结构构造特征,将矿物组合划分为3个世代,第一世代残余地幔矿物组合:橄榄石+斜方辉石+单斜辉石;第二世代部分熔融及熔-岩反应矿物组合:橄榄石+斜方辉石+单斜辉石+尖晶石;第三世代地幔交代作用矿物组合,主要为含水矿物角闪石.将3个世代的矿物组合归并为2个演化阶段:第一阶段,包括第一世代和第二世代矿物组合,形成于MOR(mid-ocean ridge)构造环境下的洋脊扩张阶段;第二阶段,为第三世代矿物角闪石,形成于SSZ(super-subduction zone)环境下的俯冲阶段.对比雅鲁藏布江缝合带不同区段蛇绿岩中地幔橄榄岩的特征,发现雅鲁藏布江缝合带存在MOR和SSZ两种类型的蛇绿岩,其中中段的蛇绿岩主要以典型的SSZ型地幔橄榄岩为主,而东、西段则以受到不同程度SSZ环境改造的MOR型地幔橄榄岩为主,认为雅鲁藏布江缝合带蛇绿岩地幔橄榄岩演化分段性的特征,与新特提斯洋沿弧方向上板块活动的动力学机制的不均一有关.  相似文献   

6.
<正>班公湖-怒江缝合带是横亘于青藏高原中部的一条重要构造线,其南北两侧分别为冈底斯地块和羌塘地块。缝合带以断续分布的蛇绿岩碎块为标志,具有典型增生造山带的特征。南羌塘主体为侏罗纪海相盆地,南缘部分地段发育增生混杂岩(耿全如等,2011);拉萨地块可能起源于澳大利亚大陆北缘,具有中部老,两侧新的特征(Zhu et al.,2011)。受中、新特提斯洋构造演化的影响,拉萨地块中北部构造主线为近东西  相似文献   

7.
塔仁本洋岛型玄武岩是中特提斯洋古洋壳的重要组成部分,是班公湖怒江缝合带内构造混杂岩中局部有序部分的特殊洋壳残片。它以具有海底爆发相与远洋放射虫硅质岩相整合和大洋板内碱性玄武岩的构造环境为主要特征。它的发现丰富了班怒带的研究内容,证明当时中特提斯洋曾经有发育完好的古洋壳存在  相似文献   

8.
关于雅鲁藏布江缝合带(东段)的新认识   总被引:8,自引:2,他引:6       下载免费PDF全文
郝杰  柴育成 《地质科学》1995,30(4):423-431
国内外不少地质学家大都将雅鲁藏布江蛇绿岩带视为印度板块与亚洲板块之间的缝合带。但是,笔者等在喜玛拉雅造山带的东段即仁布-康马一线以东地区的研究却发现,在雅鲁藏布江蛇绿岩带的南侧发育着一个宽大的增生杂岩体,它与雅江蛇绿岩是同一大洋即特提斯喜玛拉雅洋俯冲消减的产物,前者代表着特提斯喜玛拉雅洋消亡遗迹的主体,是印度板块与拉萨地块之间缝合带的主要组成部分;而后者代表的是俯冲带与拉萨地块之间的残余洋壳,它由北向南仰冲,构成日喀则-桑日弧前盆地前缘脊和南部基底,因而其不代表主缝合带。北喜玛拉雅增生杂岩体的发现改变了以Gansser(1964)为代表提出的喜玛拉雅造山带的构造模式,为重新审视印度板块与拉萨地块缝合作用过程提供了一个重要的地质制约和新的研究途径。  相似文献   

9.
洪俊  姚文光  张晶  张辉善  吕鹏瑞  杨博 《地质学报》2015,89(9):1618-1628
新特提斯缝合带中的铬铁矿带是全球最重要的豆荚状铬铁矿成矿带之一,尤其是新特提斯缝合带中段,即穆斯林巴赫-科希斯坦-雅鲁藏布江一带,自东向西发育罗布莎、马拉坎德、穆斯林巴赫等若干大型铬铁矿床。本文系统总结和梳理新特提斯缝合带中段蛇绿岩的时空分布特征以及典型豆荚状铬铁矿的矿床特征、赋存规律和控矿因素。研究表明,蛇绿岩形成时代主体为中侏罗世—晚白垩世,自东向西大致呈逐渐变新的趋势,构造侵位的时代相近,为古新世—始新世;马拉坎德、瓦济里斯坦、穆斯林巴赫及贝拉铬铁矿,与罗布莎矿床相似,均属于富铬型铬铁矿,产于SSZ相关构造背景下,显示良好的岩相分带,具有良好的成矿条件;提出下一步找矿方向是针对成矿条件优越的蛇绿岩,解析层序剖面,识别纯橄岩与方辉橄榄岩的岩相分带,确定有利赋矿岩相。  相似文献   

10.
中国蛇绿岩的分布、时代及其形成环境   总被引:23,自引:22,他引:23  
中国蛇绿岩分布很广,主要在中国的西部,西南部和北部,中部和南部较少,蛇绿岩形成的时代可分为元古宙,早古生代、晚古生代和中-新生代四个时期,中国元古宙蛇绿岩分布零星。星生宙蛇绿岩主要分布在古亚洲洋,秦祁昆洋,古特提斯洋,新特提斯洋和和环太平洋等5个区域,古亚洲洋蛇绿岩位于塔里木和华北地块之北的中国北方,秦祁昆洋位于塔里木、华北和扬子地块之间,古特提斯洋和新特提斯洋位于中国的西南地区,环太平洋带有东北和台湾的蛇绿岩,中国蛇绿岩的地和玻安岩产出,指示产于消减带之上的构造环境,在这些蛇绿岩中也有MORB产出,可能是弧后盆地环境的,也可能有正常大洋岩石圈碎片的残留。古特提斯蛇绿岩MORB发育,而减少与消减作用有关的岩石组(IAT和玻安岩),推测形成在陆间洋盆环境。  相似文献   

11.
雅鲁藏布扛断裂带是印度板块与欧亚板块俯冲、碰撞的界面。通过对断裂带及邻近地质体的构造变形及大地构造背景研究,可将断裂带的发展划分成4个阶段:1)蛇绿岩侵位前的板块俯冲阶段(90Ma以前):2)蛇绿岩侵位时的板块俯冲阶段(90Ma左右—始新世);3)板块碰撞阶段(始新世以后);4)走滑阶段(现代)。  相似文献   

12.
雅鲁藏布江断裂带的构造特征   总被引:1,自引:0,他引:1  
雅鲁藏布扛断裂带是印度板块与欧亚板块俯冲、碰撞的界面。通过对断裂带及邻近地质体的构造变形及大地构造背景研究,可将断裂带的发展划分成4个阶段:1)蛇绿岩侵位前的板块俯冲阶段(90Ma以前):2)蛇绿岩侵位时的板块俯冲阶段(90Ma左右—始新世);3)板块碰撞阶段(始新世以后);4)走滑阶段(现代)。  相似文献   

13.
中国青藏高原特提斯的形成与演化   总被引:4,自引:0,他引:4  
青藏高原的形成是特提斯演化的结果。本文根据区域大地构造演化和沉积学证据,将青藏高原特提斯在时间上划分为3个阶段,即早期、中期和晚期。早期从震旦纪开始至奥陶—志留纪结束,这个阶段的大洋我们称作"原特提斯"。中期从泥盆纪开始至石炭—二叠纪结束,通常称这个大洋为"古特提斯"。晚期从二叠纪末、三叠纪初开始一直延续到第三纪早期,这个阶段的大洋通常被称作"新特提斯"。在空间上,青藏高原特提斯可以划分为3个区域相,即北区、中区和南区。上述3个阶段完全可以与空间上的3个区域相对应,原特提斯主要发育于北区,大洋消亡后的遗迹残留在青藏高原第5缝合带中,即西昆仑—阿尔金—北祁连缝合带。古特提斯主要发育于中区,大洋消亡后的遗迹残留在青藏高原第3、4缝合带中,即金沙江缝合带和昆仑南缘缝合带。新特提斯主要发育于南区,大洋主洋盆消亡后的遗迹残留在青藏高原第1缝合带中,即雅鲁藏布江缝合带,它的弧后盆地消亡后的遗迹残留在第2缝合带中,即班公湖—怒江缝合带。  相似文献   

14.
刘飞  杨经绥  连东洋  李观龙 《岩石学报》2020,36(10):2913-2945
西藏雅鲁藏布江缝合带(YZSZ)和班公湖-怒江缝合带(BNSZ)蛇绿岩代表了新特提斯洋壳和岩石圈地幔残余,是我国铬铁矿和蛇绿岩型金刚石的重要原产地,目前这两条蛇绿岩带的成因和相互关系还存在着争论。本文总结了YZSZ、BNSZ、狮泉河-纳木错蛇绿混杂岩带(SNMZ)和松多缝合带蛇绿岩的时空分布、组成和构造背景,归纳了拉萨地块晚古生以来的岩浆岩分布,获得以下主要认识:(1)Panjal地幔柱活动可能促使怒江洋和雅江西洋在早二叠世空谷期(283~272Ma)打开;(2)雅江东洋由于松多洋的南向俯冲在晚三叠世打开,与雅江西洋以萨嘎-措勤为界,并形成冈底斯东部245~200Ma岩浆热事件;(3)~140Ma班怒洋闭合以及南羌塘与北拉萨地块碰撞,导致雅江洋扩张速率加快而引发了北向拉萨地块的平板俯冲,进而导致班怒洋的再次裂解形成133~104Ma"红海型"小洋盆;(4)YZSZ缝合带西段南带蛇绿岩为北带的逆冲推覆体;(5)BNSZ和SNMZ蛇绿岩隶属于一个洋盆,后者代表了班怒洋成熟洋盆扩张脊的残余。  相似文献   

15.
雅鲁藏布江缝合带位于青藏高原南部,是印度板块向欧亚板块俯冲的产物,代表着新特提斯洋岩石圈的残片。文章对西藏乃东地区雅鲁藏布江缝合带中蛇绿混杂岩的变质作用及岩石学特征进行了研究。该带总体呈近东西向延伸,受变地质体主要为晚侏罗—早白垩世泽当蛇绿岩。通过野外地质调查、岩相学及岩石地球化学分析,结合岩石成因研究及构造环境判别,认为泽当蛇绿岩由地幔橄榄岩、辉长质杂岩、镁铁质杂岩、海相沉积物及伴生铬铁矿和斜长花岗岩等组成,属低绿片岩相—高绿片岩相区域变质岩。  相似文献   

16.
潘裕生  方爱民 《地质科学》2010,45(1):92-101
青藏高原的形成是特提斯演化的结果。本文根据区域大地构造演化和沉积学证据,将青藏高原特提斯在时间上划分为3个阶段,即早期、中期和晚期。早期从震旦纪开始至奥陶-志留纪结束,这个阶段的大洋我们称作“原特提斯”。中期从泥盆纪开始至石炭-二叠纪结束,通常称这个大洋为“古特提斯”。晚期从二叠纪末、三叠纪初开始一直延续到第三纪早期,这个阶段的大洋通常被称作“新特提斯”。在空间上,青藏高原特提斯可以划分为3个区域相,即北区、中区和南区。上述3个阶段完全可以与空间上的3个区域相对应,原特提斯主要发育于北区,大洋消亡后的遗迹残留在青藏高原第5缝合带中,即西昆仑-阿尔金-北祁连缝合带。古特提斯主要发育于中区,大洋消亡后的遗迹残留在青藏高原第3、4缝合带中,即金沙江缝合带和昆仑南缘缝合带。新特提斯主要发育于南区,大洋主洋盆消亡后的遗迹残留在青藏高原第1缝合带中,即雅鲁藏布江缝合带,它的弧后盆地消亡后的遗迹残留在第2缝合带中,即班公湖-怒江缝合带。  相似文献   

17.
The Dangqiong ophiolite, the largest in the western segment of the Yarlung-Zangbo Suture Zone(YZSZ)ophiolite belt in southern Tibet, consists of discontinuous mantle peridotite and intrusive mafic rocks. The former is composed dominantly of harzburgite, with minor dunite, locally lherzolite and some dunite containing lenses and veins of chromitite. The latter, mafic dykes(gabbro and diabase dykes), occur mainly in the southern part. This study carried out geochemical analysis on both rocks. The results show that the mantle peridotite has Fo values in olivine from 89.92 to 91.63 and is characterized by low aluminum contents(1.5–4.66 wt%) and high Mg# values(91.06–94.53) of clinopyroxene. Most spinels in the Dangqiong peridotites have typical Mg# values ranging from 61.07 to 72.52, with corresponding Cr# values ranging from 17.67 to 31.66, and have TiO2 contents from 0 to 0.09%, indicating only a low degree of partial melting(10–15%). The olivine-spinel equilibrium and spinel chemistry of the Dangqiong peridotites suggest that they originated deeper mantle(20 kbar). The gabbro dykes show N-MORB-type patterns of REE and trace elements. The presence of amphibole in the Dangqiong gabbro suggests the late-stage alteration of subduction-derived fluids. All the lherzolites and harzburgites in Dangqiong have similar distribution patterns of REE and trace elements, the mineral chemistry in the harzburgites and lherzolites indicates compositions similar to those of abyssal and forearc peridotites, suggesting that the ophiolite in Dangqiong formed in a MOR environment and then was modified by late-stage melts and fluids in a suprasubduction zone(SSZ) setting. This formation process is consistent with that of the Luobusa ophiolite in the eastern Yarlung-Zangbo Suture Zone and Purang ophiolite in the western Yarlung-Zangbo Suture Zone.  相似文献   

18.
The Zedong ophiolite is the largest ophiolite massif east of Dazhuqu in the Yarlung Zangbo Suture Zone in the southern Tibetan Plateau. However, its age, geodynamic setting and relationship to the Xigaze ophiolite remain controversial. New zircon U–Pb ages, whole-rock geochemical and Nd–Pb isotopic data from ophiolitic units provide constraints on the geodynamic and tectonic evolution of the Zedong ophiolite. U–Pb zircon geochronology of dolerite lavas and late gabbro–diabase dikes yield weighted mean ages of 153.9 ± 2.5 Ma and 149.2 ± 5.1 Ma, respectively. Strong positive εNd(t) and positive Δ7/4Pb and Δ8/4Pb values indicate derivation from a highly depleted mantle source with an isotopic composition similar to that of the Indian MORB-type mantle. The geochemistry of ophiolitic lavas and early dikes are analogous to typical island arc tholeiites whereas late dikes are similar to boninites. The geochemistry of these rock types suggests multi-stage partial melting of the mantle and gradually enhanced subduction influences to the mantle source through time. Combined with the MORB-like 162.9 ± 2.8 Ma Luobusha ophiolitic lavas, we suggest that the Luobusha lavas, Zedong lavas and early dikes originated in an infant proto-arc setting whereas late dikes in the Zedong ophiolite originated in a forearc setting. Together, they represent a Neo-Tethyan subduction initiation sequence. The Late Jurassic intra-oceanic proto-arc to forearc setting of the Zedong ophiolite contrasts with the continental margin forearc setting for the Xigaze ophiolite, which suggests a laterally complex geodynamic setting for ophiolites along the Yarlung Zangbo Suture Zone.  相似文献   

19.
《地学前缘(英文版)》2020,11(4):1123-1131
Collision between the Indian and Eurasian plates formed the ~2500 km long Yarlung Zangbo Suture Zone and produced the Himalaya mountains and Tibetan plateau.Here we offer a new explanation for tectonic events leading to this collision:that the northward flight of India was caused by an Early Cretaceous episode of subduction initiation on the southern margin of Tibet.Compiled data for ophiolites along the Yarlung Zangbo Suture Zone show restricted ages between 120 Ma and 130 Ma,and their supra-subduction zone affinities are best explained by seafloor spreading in what became the forearc of a north-dipping subduction zone on the southern margin of Tibet.The subsequent evolution of this new subduction zone is revealed by integrating data for arcrelated igneous rocks of the Lhasa terrane and Xigaze forearc basin deposits.Strong slab pull from this new subduction zone triggered the rifting of India from East Gondwana in Early Cretaceous time and pulled it northward to collide with Tibet in Early Paleogene time.  相似文献   

20.
The Raka ophiolite is located in the middle section of the plate suture zone in the Yarlung Zangbo region, Tibet. It is suggested that the genesis of the ophiolite is similar to that of non-typic MORB in a marginal ocean basin through field geological investigation, lithogeochemical analysis and synthetical comparison. It is concluded that the ophiolite in this region may be relics of the subducted oceanic lithosphere in the Neo-Tethys period. This project was financially supported by the National Natural Science Foundation of China (No. 49772109, No. 49472100) and the Key Projects for the “Eighth-Five Year Plan” period in the Tibet Autonomous Region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号