首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Located on a mountain pass in the west-central Pyrenees, the Col d'Ech peat bog provides a Holocene fire and vegetation record based upon nine 14C (AMS) dates. We aim to compare climate-driven versus human-driven fire regimes in terms of frequency, fire episodes distribution, and impact on vegetation. Our results show the mid-Holocene (8500–5500 cal yr BP) to be characterized by high fire frequency linked with drier and warmer conditions. However, fire occurrences appear to have been rather stochastic as underlined by a scattered chronological distribution. Wetter and colder conditions at the mid-to-late Holocene transition (4000–3000 cal yr BP) led to a decrease in fire frequency, probably driven by both climate and a subsequent reduction in human land use. On the contrary, from 3000 cal yr BP, fire frequency seems to be driven by agro-pastoral activities with a very regular distribution of events. During this period fire was used as a prominent agent of landscape management.  相似文献   

2.
The study of a 300-cm-thick exposed lacustrine sediment section in the Hedong village in Zhaoqing area which is located in sub-tropical west Guangdong Province in South China, demonstrates that the lacustrine sedimentary sequence possibly contains evidence for exploring variation of Asian monsoon climate. Multi-proxy records, including the humification intensity, total organic carbon, and grain size fractions, reveal a general trend towards dry and cold conditions in the late Holocene that this is because of a decrease in solar insolation on an orbital scale. Three intensified Asian summer monsoon (ASM) intervals (∼3300–3000 cal yr BP, ∼2600–1600 cal yr BP, and ∼900–600 cal yr BP), and three weakened ASM intervals (∼4000–3300 cal yr BP, ∼3000–2600 cal yr BP, and ∼1600–900 cal yr BP) are identified. Our humification record (HDcal) shows a good correlation on multi-centennial scale with the tree ring Δ14C record, a proxy of solar activity. A spectral analysis of HDcal reveals four significant cycles, i.e., ∼1250 yr, 300 yr, 110 yr, and 70 yr, and most of these cycles are related to the solar activity. Our findings indicate that solar output and oceanic–atmospheric circulation probably have influenced the late Holocene climate variability in the study region.  相似文献   

3.
We present detailed pollen and charcoal records from Lago Pichilafquén (~ 41°S) to decipher the effects of climate change and varying disturbance regimes on the composition and structure of the vegetation on the Andean foothills of northwestern Patagonia during the last 2600 yr. Here, temperate rainforests have dominated the landscape since 2600 cal yr BP with variations ranging from cool-temperate and wet north Patagonian rainforests to relatively warm and summer-drought-resistant Valdivian rainforests. We interpret relatively warm/dry conditions between 1900–2600, 690–750 and 320–430 cal yr BP, alternating with cold/wet conditions between 1500–1900, 750–1100 and 430–690 cal yr BP. Rapid deforestation and spread of plants introduced by Europeans occurred at 320 and 140 cal yr BP. The record includes five tephras with ages of 2130, 1460, 1310, 1210, and 340 cal yr BP, all of which precede local fire events and increases in trees favored by disturbance by less than 100 yr. We conclude that centennial-scale changes in the southern westerlies were the primary driver of vegetation shifts in northwestern Patagonia over the last 2600 yr. Within this interval, local disturbance regimes altered the structure, composition, and dynamics of the lowland rainforest vegetation during several discrete, short-lived episodes.  相似文献   

4.
Germania Havn Sø is located at the outermost coast of northeastern Greenland. According to radiocarbon dating, the lake basin was deglaciated in the early Holocene, around 11,000 cal yr BP. At that time the lake was a marine bay, but the lake was isolated soon after deglaciation at ~ 10,600 cal yr BP. The marine fauna was species-poor, indicating harsh conditions with a high sedimentation rate and lowered salinity due to glacial meltwater supply. The pioneer vegetation around the lake was dominated by mosses and herbs. Deposition of relatively coarse sediments during the early Holocene indicates erosion of the newly deglaciated terrain. Remains of the first woody plant (Salix herbacea) appear at 7600 cal yr BP and remains of other woody plants (Salix arctica, Dryas octopetala, Cassiope tetragona and Empetrum nigrum) appear around one millennium later. Declining concentrations of D. octopetala and the caddis fly Apatania zonella in the late Holocene probably imply falling summer temperatures. Only moderate changes in the granulometric and geochemical record during the Holocene indicate relatively stable environmental settings in the lake, which can probably be explained by its location at the outer coast and the buffering effect of the neighboring ocean.  相似文献   

5.
《Quaternary Science Reviews》1999,18(8-9):1021-1038
Time-series O isotope profiles for three U–Th dated stalagmites have revealed that for much of the Holocene, a site on the Atlantic seaboard (SW Ireland) exhibits first-order δ18O trends that are almost exactly out of phase with coupled δ18O curves from two southern European sites (SE France and NW Italy). In the Irish stalagmite (CC3 from Crag Cave, SW Ireland), low δ18O at 10,000 cal yr BP reflects cool conditions. By the early to mid-Holocene (9000–6000 cal yr BP) δ18O had increased, reflecting the onset of warmer conditions on the Atlantic seaboard. This shift to higher δ18O was accompanied by a marked increase in the stalagmite extension rate, reinforcing our interpretation that this was a period of relative warmth. Except for an episode of increased extension rate about 5500 yr ago, δ18O in the Crag stalagmite exhibits a gradual decrease, accompanied by declining extension rates between 7800 and 3500 cal yr BP, interpreted as a cooling trend. There is evidence for increases in both δ18O and stalagmite extension rate in the period from 3500 cal yr BP to the present day suggesting a return to warmer conditions on the Atlantic seaboard. In the stalagmite from NW Italy (ER76, Grotta di Ernesto, Trentino province) the early-Holocene (c. 9200-7800 cal yr BP) is characterised by high δ18O, probably indicative of warm and/or dry conditions. Exceptionally low δ18O from 7800 to 6900 cal yr BP at this site reflects a well-defined wet phase (Cerin wet phase). In the last three millennia, this stalagmite exhibits a shift to lower δ18O, interpreted as some combination of cooler and/or wetter conditions. Unlike the Irish stalagmite, the Italian sample does not show a correlation between δ18O and extension rate. Instead, its extension rate correlates roughly with δ13C, presumably reflecting a climate-driven vegetation change. In the early Holocene, δ18O in the French stalagmite (CL26, Grotte de Clamouse, Herault province, SE France) was low relative to its Holocene average. For much of the period since c. 3500 cal yr BP this stalagmite exhibits higher δ18O than in the early Holocene, suggesting warmer conditions. Like the Irish stalagmite, the French sample exhibits a well-defined correlation between δ18O and extension rate. Had drip-water availability been the dominant control on δ18O at this semi-arid site then higher δ18O would have been accompanied by lower, not higher extension rates. This suggests strongly that temperature rather than rainfall amount was the dominant control at this site. While conclusions regarding the patterns of climate variability on a continent scale must remain tentative because of the limited number of stalagmites studied we argue that early Holocene warm conditions on the Atlantic seaboard (Irish site) coincided with relatively cool conditions at the Clamouse site. By c. 3500 yr ago the pattern appears to have been reversed.  相似文献   

6.
This paper contributes to the emerging picture of late Pleistocene and Holocene environmental change in the Bonneville basin, western North America, through analysis of pollen and sediments from the Blue Lake marsh system, a major wetland area located on the western margin of the Great Salt Lake desert. Analyses of data obtained from the upper 4 m of the Blue Lake core suggest that during the latest Pleistocene, when Lake Bonneville covered the Blue Lake site, pine and sagebrush dominated terrestrial plant communities. These steppe-woodland taxa declined in abundance after ~12 cal ka BP. Wetland plant communities developed at or nearby Blue Lake by ~11.9 cal ka BP and bulrush-dominated marshes were established no later than 10.8 cal ka BP. The Blue Lake wetlands largely desiccated during a dry and warm early middle Holocene ~8.3–6.5 cal ka BP. Climatic amelioration starting ~6.5 cal ka BP is marked principally by a local return of marshes at the expense of playa and grass meadow communities, and a regional increase in sagebrush relative to other dryland shrubs. Singleleaf pinyon pine migrated into the nearby Goshute Mountains after ~8 cal ka BP. Late Holocene fluctuations include cool intervals from ~4.4 to 3.4 and ~2.7 to 1.5 cal ka BP and warmer conditions from 3.4 to 2.7 cal BP and after 1.5 cal ka BP.  相似文献   

7.
We present chironomid and pollen records from the Huelmo site (~41°30′S), NW Patagonia, to examine in detail the timing and structure of climate changes during the Last Glacial Termination in the southern mid-latitudes. The chironomid record has the highest temporal and taxonomic resolution for this critical interval, and constitutes the first account of midge faunas at the culmination of the Last Glacial Maximum (LGM) for the region. The chironomid record suggests cold and wet conditions during the LGM, followed by deglacial warming between 17.6 and 16.8 cal kyr BP. Relatively warm conditions prevailed between ~15–14 cal kyr BP, followed by a reversal in trend with cooling pulses at ~14 and 13.5 cal kyr BP, and warming at the beginning of the Holocene. Cool-temperate conditions prevailed during the Huelmo Mascardi Cold Reversal (HMCR) which, according to chironomid data, exhibits a wet phase (13.5–12.8 cal kyr BP) followed by a conspicuous drier phase (12.8–11.5 cal kyr BP). The chironomid and pollen records from the Huelmo site indicate step-wise deglacial warming beginning at 17.6 cal kyr BP, in agreement with other paleoclimate records from NW Patagonia and isotopic signals from Antarctic ice cores. Peak warmth during the Last Glacial Termination was achieved by ~14.5 cal kyr BP, followed by a cooling trend that commenced during the Antarctic Cold Reversal, which later intensified and persisted during the HMCR (13.5–11.5 cal kyr BP). We observe a shift toward drier conditions at ~12.8 cal kyr BP superimposed upon the HMCR, coeval with intense fire activity and vegetation disturbance during Younger Dryas time.  相似文献   

8.
《Quaternary Science Reviews》2007,26(5-6):705-731
Sediment cores from two mountain lakes (Lake Grusha at 2413 m a.s.l. and Ak-Khol at 2204 m a.s.l.) situated in the Tuva Republic (southern Siberia, Russia), just north of Mongolia, were studied for chironomid fossils in order to infer post-glacial climatic changes and to investigate responses of the lake ecosystems to these changes. The results show that chironomids are responding both to temperature and to changing lake depth, which is regarded as a sensitive proxy of regional effective moisture. The post-glacial history of this mountain region in Central Asia can be divided into seven successive climatic phases: the progressive warming during the last glacial–interglacial transition (ca 15.8–14.6 cal kyr BP), the warm and moist Bølling-Allerød-like interval (ca 14.6–13.1 cal kyr BP), the cool and dry Younger Dryas-like event (ca 13.1–12.1 cal kyr BP), warmer and wetter conditions during ca 12.1–8.5 cal kyr BP, a warm and dry phase ca 8.5–5.9 cal kyr BP, cold and wet conditions during ca 5.9–1.8 cal kyr BP, as well as cold and dry climate within the last 1800 years. The chironomid records reveal patterns of climatic variability during the Late-glacial and Holocene, which can be correlated with abrupt climatic events in the North Atlantic and the Asian monsoon-dominated regimes. Apparently, the water balance of the studied lakes is controlled by the interrelation between the dominant westerly system and the changing influence of the summer monsoon, as well as the influence of alpine glacier meltwater supply. It is possible that monsoon tracks could have reached the southwest Tuva, resulting in an increase in precipitation at ca 14.6–13.1 and ca 12.1–8.5 cal kyr BP, whereas cyclonic westerlies from the North Atlantic were likely responsible for considerable moisture transport accompanying the global Neoglacial cooling at ca 5.9–1.8 cal kyr BP. These events suggest the changes of the regional pattern of atmospheric circulation, which could be in turn induced by the global climatic shifts. Some discrepancies compared with other reconstructions from Central Asia may be associated with regional (spatial) differences between the changing predominant circulation mechanisms and with local differences in uplift and descent of air masses within the complicated mountain landscape. In this paper, we also discuss the possibilities and perspectives for using chironomids in reconstructions of past temperatures and climate-induced changes in water depth of lakes in Central Asia.  相似文献   

9.
《Quaternary Science Reviews》2003,22(5-7):541-554
The ecotone between the boreo-nemoral (hemiboreal) and the southern boreal vegetation zones constitutes the northern distributional limit of a number of thermophilous tree species in northern Europe and is, to a large extent, controlled by climatic conditions. We present a quantitative annual mean temperature reconstruction from a high-resolution pollen stratigraphy in southern boreal Finland, using a pollen-climate calibration model with a cross-validated prediction error of 0.9°C. Our model reconstructs low but steadily rising annual mean temperature from 10,700 to 9000 cal yr BP. At 8000–4500 cal yr BP reconstructed annual mean temperature reaches a period of highest values (Holocene thermal maximum) with particularly high temperatures (2.0–1.5°C higher than at present) at 8000–5800 cal yr BP. From 4500 cal yr BP to the present-day, reconstructed annual mean temperature gradually decreases by ca 1.5°C. Comparison of present results with palaeotemperature records from the Greenland ice cores, notably with the NorthGRIP δ18O record, shows marked similarities, suggesting parallel large-scale Holocene temperature trends between the North Atlantic and North European regions. The verification of the occurrence, timing, and nature of the short-term temperature fluctuations during the Holocene in the southern boreal zone in Europe requires replicate, high-resolution climate reconstructions from the region.  相似文献   

10.
High-resolution pollen and magnetic susceptibility (MS) analyses have been carried out on a sediment core taken from a high-elevation alpine bog area located in Sierra Nevada, southern Spain. The earliest part of the record, from 8200 to about 7000 cal yr BP, is characterized by the highest abundance of arboreal pollen and Pediastrum, indicating the warmest and wettest conditions in the area at that time. The pollen record shows a progressive aridification since 7000 cal yr BP that occurred in two steps, first shown by a decrease in Pinus, replaced by Poaceae from 7000 to 4600 cal yr BP and then by Cyperaceae, Artemisia and Amaranthaceae from 4600 to 1200 cal yr BP. Pediastrum also decreased progressively and totally disappeared at ca. 3000 yr ago. The progressive aridification is punctuated by periodically enhanced drought at ca. 6500, 5200 and 4000 cal yr BP that coincide in timing and duration with well-known dry events in the Mediterranean and other areas. Since 1200 cal yr BP, several changes are observed in the vegetation that probably indicate the high-impact of humans in the Sierra Nevada, with pasturing leading to nutrient enrichment and eutrophication of the bog, Pinus reforestation and Olea cultivation at lower elevations.  相似文献   

11.
《Quaternary Science Reviews》2007,26(3-4):463-478
The changes in flow and character of the warm Atlantic Water through the last 17,500 cal yr are reconstructed from the distribution of benthic foraminifera species, planktonic and benthic foraminifera abundances, stable oxygen isotopes and lithology in two cores from the western and northern shelf of Svalbard. The results show almost continuous presence of Atlantic Water at the shelf areas since >14,500 cal yr BP. The Bølling and Allerød intervals stand out as periods of highest bottom waters temperatures. The strong inflow of saline, but chilled Atlantic Water during the early Holocene was followed by cooling and freshening of the bottom waters during the mid- and late Holocene. The two records reveal synchronous oceanographic changes that are closely tied to changes in the flow of Atlantic Water recorded further south in the Nordic seas. The early Holocene warming was not just an effect of higher solar insolation, but was also due to increased heat flux from the stronger Atlantic Water inflow driven by wind force and/or thermohaline circulation.  相似文献   

12.
《Quaternary Science Reviews》2005,24(12-13):1463-1478
The aragonite mineralogy and geochemistry of the mollusc faunas preserved at Navan and Bearbrook, Ontario, serve as proxies of original seawater chemistry. The composite section spanning 12,980–10,980 cal yr BP includes the Younger Dryas (YD) paleoclimatic oscillation. Oxygen isotopes demonstrate the onset of cooling with the YD event, in addition to the lowering of marine values by the influx of isotopically light glacial meltwater from Lake Agassiz. Impact of cooling and dilution is reduced or eliminated with the start of the Holocene, when water temperatures and salinities for Champlain Sea (CS) seawater were 8–16 °C and 27–34 ppt, respectively. Overall, oxygen isotope values deceased to −3.5% during the YD mainly due to freshening by glacial meltwater. Carbon isotopes confirm the rise in atmospheric CO2 concentration at the YD–Holocene transition. Marine strontium isotope values for the Allerød–YD–earliest Holocene range from 0.709151 (16,210 cal yr BP) to 0.709145 (12,980 cal yr BP) and 0.709142 (10,950 cal yr BP). The oceanographic changes recorded for the CS are in agreement with the evolutionary phases of Lake Agassiz and deglaciation dynamics of the Laurentide Ice Sheet. The volume and direction of meltwater discharge from Lake Agassiz alternated between the Gulf of Mexico during the Allerød, via the Great Lakes through the CS to the North Atlantic during the YD, and back to the Gulf of Mexico during the early Holocene, but with diminished impact.  相似文献   

13.
The Pantanal is the world's largest tropical wetland and a biodiversity hotspot, yet its response to Quaternary environmental change is unclear. To address this problem, sediment cores from shallow lakes connected to the Upper Paraguay River (PR) were analyzed and radiocarbon dated to track changes in sedimentary environments. Stratal relations, detrital particle size, multiple biogeochemical indicators, and sponge spicules suggest fluctuating lake-level lowstand conditions between ~ 11,000 and 5300 cal yr BP, punctuated by sporadic and in some cases erosive flood flows. A hiatus has been recorded from ~ 5300 to 2600 cal yr BP, spurred by confinement of the PR within its channel during an episode of profound regional drought. Sustained PR flooding caused a transgression after ~ 2600 cal yr BP, with lake-level highstand conditions appearing during the Little Ice Age. Holocene PR flood pulse dynamics are best explained by variability in effective precipitation, likely driven by insolation and tropical sea-surface temperature gradients. Our results provide novel support for hypotheses on: (1) stratigraphic discontinuity of floodplain sedimentary archives; (2) late Holocene methane flux from Southern Hemisphere wetlands; and (3) pre-colonial indigenous ceramics traditions in western Brazil.  相似文献   

14.
We explore the possibility of building a continuous glacier reconstruction by analyzing the integrated sedimentary response of a large (440 km2) glacierized catchment in western Norway, as recorded in the downstream lake Nerfloen (N61°56’, E6°52’). A multi-proxy numerical analysis demonstrates that it is possible to distinguish a glacier component in the ~ 8000-yr-long record, based on distinct changes in grain size, geochemistry, and magnetic composition. Principal Component Analysis (PCA) reveals a strong common signal in the 15 investigated sedimentary parameters, with the first principal component explaining 77% of the total variability. This signal is interpreted to reflect glacier activity in the upstream catchment, an interpretation that is independently tested through a mineral magnetic provenance analysis of catchment samples. Minimum glacier input is indicated between 6700–5700 cal yr BP, probably reflecting a situation when most glaciers in the catchment had melted away, whereas the highest glacier activity is observed around 600 and 200 cal yr BP. During the local Neoglacial interval (~ 4200 cal yr BP until present), five individual periods of significantly reduced glacier extent are identified at ~ 3400, 3000–2700, 2100–2000, 1700–1500, and ~ 900 cal yr BP.  相似文献   

15.
A lake-level record of Lake Ledro (northern Italy) spans the entire Holocene with a chronology derived from 51 radiocarbon dates. It is based on a specific sedimentological approach that combines data from five sediment profiles sampled in distinct locations in the littoral zone. On a millennial scale, the lake-level record shows two successive periods from 11,700 to 4500 cal yr BP and from 4500 cal yr BP to the present, characterized by lower and higher average lake levels, respectively. In addition to key seasonal and inter-hemispherical changes in insolation, the major hydrological change around 4500 cal yr BP may be related to a non-linear response of the climate system to orbitally-driven gradual decrease in insolation. The Ledro record questions the notion of an accentuated summer rain regime in the northern Mediterranean borderlands during the boreal insolation maximum. Moreover, the Ledro record highlights that the Holocene was punctuated by successive centennial-scale highstands. Correlations with the Preboreal oscillation and the 8.2 ka event, and comparison with the atmospheric 14C residual record, suggest that short-lived lake-level fluctuations developed at Ledro in response to (1) final steps of the deglaciation in the North Atlantic area and (2) variations in solar activity.  相似文献   

16.
Here we present geomorphologic, palaeoenvironmental and archaeo-botanical data which elucidate the Late Pleistocene and Holocene glacial history of the high, mountain-locked Himalayan valleys in northwest Bhutan and provide one of the earliest proofs of human activity yet known for the High Himalaya range. In this area, difficult to access, close linkage between climatic change, glacier fluctuations and human migration patterns has been discovered. Glacier systems in the studied area are characterized by avalanching and debris mantled glacier snouts, with the significant local influence of the Indian summer monsoon causing decoupling of glacier responses from temperature changes but supporting the idea of monsoonal forcing. Geomorphologic mapping, together with Optically Stimulated Luminescence (OSL) and radiocarbon dating of ice-proximal sediments, has been used to construct a local glacial chronology. Local ice-stream networks developed during the Early Holocene (ca 10,000–9000 a ago) and during the early part of the Mid Holocene (6710 ± 90–4680 ± 155 cal a BP) at which times there were ice advances of about 5 km from the modern glacier termini. At such times, the intensity of pro- and periglacial processes would have intensified and ice-dammed lakes were probably common as well, rendering human colonization of the high valleys in northwest Bhutan impossible. An abrupt shift to dry climatic conditions on the Tibetan Plateau between 5000 and 4500 a BP coincided with glacial decay and the onset of morphodynamically stable conditions on the broad valley floors of the high valleys in this part of the Himalaya. Palynological data suggest that the sudden disappearance of juniper and rhododendron pollen, the immediate onset of pollen input from cereals (confirmed by detailed SEM analysis) and a clear pattern of over-grazing, trampling and peat deterioration can be linked to human arrival in the valleys at ca 4280 ± 130 cal a BP. Extensive charcoal horizons dating to 4745 ± 250 and 4680 ± 155 cal a BP are interpreted as evidence for human use of fire and forest clearances and agree spatially and temporally with the pollen-based picture. Charcoal occurrences as old as 6710 ± 90 cal a BP might be linked to yet earlier exploration of these Himalayan valleys during phases of low glacial activity. We provide an account of the colonization of these high valleys in response to glacial and monsoonal change and argue that the most likely founder societies come from the Tibetan Plateau, where yak and barley based pastoralism and Neolithic settlements are known to have existed since the Mid Holocene.  相似文献   

17.
Botanical macrofossil analysis of a more than 9000 years old, radiocarbon dated peat sequence of a moss peat bank from South Georgia, shows a clear evolution in the vegetation. Seven ecological phases could be distinguished and they can be interpreted in terms of climate development during the Holocene. Until 2200 years ago, Warnstorfia fontinaliopsis was the dominant moss species pointing to a wet environment. Lower numbers of this species in association with the presence of drier species are assumed to indicate drier periods, such as occurring between ca 6000–5200 and 4400–3400 cal yr BP. The most prominent and definitive vegetation change took place around 2200 cal yr BP. A Polytrichum–Chorisodontium moss peat bank was formed, which is still growing there today. The forcing mechanism for this vegetation change is thought to be a temperature decrease, rather than a precipitation decrease. This conclusion is mainly based on the fact that, today, moss peat banks have their optimal occurrence range in the maritime Antarctic, a region were the mean annual temperature is ca 4 °C lower than on South Georgia. The remarkable change in the moss bank vegetation at 2200 cal yr BP raises the question whether this moment was only a short climatic deterioration, or a definitive change to a cooler and wetter climate after a Holocene climatic optimum period.  相似文献   

18.
The environmental conditions of the Szczecin Bay, which existed prior to Szczecin Lagoon, have been reconstructed on the basis of the stable carbon and oxygen isotope (18O and 13C) analysis and radiocarbon dates obtained for subfossil shells of Cerastoderma (Cardium) glaucum. The shells in the collected core were well preserved in their life positions, representing a geochemical record of past temperature variation over the middle Holocene. Three major periods with different thermal conditions have been distinguished in the interval ~ 6000–4300 cal yr BP, when the important Littorina regional transgression took place. During the first period, 6000–5250 cal yr BP, water temperature decreased by 1.4°C, and then remained constant over the second period (5250–4750 cal yr BP). In contrast, during the third period (4750–4300 cal yr BP) both δ-values were highly variable and the mean summer temperature (March–November) increased by about 3.5°C. During first two periods, δ18O and δ13C were significantly correlated, indicating stability of the environmental conditions.  相似文献   

19.
Shells of the helicid Cepaea nemoralis were studied using taphonomic, isotopic and morphometric measurements to estimate late glacial–Holocene (~ 12.1–6.3 cal ka BP) environmental conditions in northern Spain. Higher taphonomic alteration among Holocene shells suggests lower sedimentation rates or higher shell-destruction rates than during glacial conditions. Shells preserved the aragonitic composition despite differing degree of skeleton damage. Shell δ13C values were ? 10.3 ± 1.1‰, ? 8.2 ± 2.3‰, and ? 7.3 ± 1.6‰ for modern, Holocene and late-glacial individuals, respectively. Higher δ13C values during the late-glacial and some Holocene periods imply higher water stress of C3 plants and/or higher limestone contribution than today. Intrashell δ13C values were higher during juvenile stages suggesting higher limestone ingestion to promote shell growth. Shell δ18O values were ? 1.1 ± 0.7‰, ? 0.9 ± 0.8‰ and ? 0.1 ± 0.7‰ for modern, Holocene and late-glacial specimens, respectively. A snail flux-balance model suggests that during ~ 12.1 ? 10.9 cal ka BP conditions were drier and became wetter at ~ 8.4 ? 6.3 cal ka BP and today. Intrashell δ18O profiles reveal that glacial individuals experienced more extreme seasonality than interglacial shells, despite possible larger hibernation periods. Shell size correlated positively with δ18O values, suggesting that growth rates and ultimate adult size of C. nemoralis may respond to climate fluctuation in northern Spain.  相似文献   

20.
Palynology, texture, mineralogy, geochemistry, and magnetic susceptibility analysis of a 2 m deep sediment core from Padauna Swamp, southeastern Madhya Pradesh infers that between 8600 and 7500 cal yr BP a warm and relatively less-humid climate prevailed with open tree-savannahs dominated by grasses followed by sedges, Artemisia and members of Chenopodiaceae/Amaranthaceae with scanty trees viz., Schrebera, Aegle marmelos and Sterculia urens. This is well supported by lower organic to carbonate carbon ratio, coarser texture having relatively low CIA and magnetic susceptibility values and presence of some primary minerals. Between 7500 and 6250 cal yr BP the tree-savannahs were succeeded by open mixed deciduous forests with the invasion of a few more trees viz., Madhuca indica, Holoptelea, Emblica officinalis, Mitragyna parvifolia and members of Anacardiaceae in response to onset of a warm and humid climate. A considerable rise in organic carbon generated from the degradation of plentiful biomass along with increase in clay content with signs of kaolinite and increase in immobile over mobile elements with slightly higher CIA and magnetic susceptibility values also suggest climatic amelioration. The presence of ruderal plants such as Artemisia, Cannabis sativa and Cheno/Am further infers initiation of human activities in the region. Between 6250 and 2800 cal yr BP, the mixed deciduous forests became more diverse and dense, subduing grasses and other herbaceous elements. Sporadic incursion of Shorea robusta (Sal) in forest floristic was recorded around 5000 cal yr BP. The overall change in the vegetation mosaic reflects that a warm and more-humid climate prevailed in the region, probably on account of invigoration of southwest monsoon. This observation is further corroborated by other proxy data showing a spurt in organic/inorganic carbon ratio, increase in clay content with matured mineralogy, significantly higher CIA and magnetic susceptibility values. Since 2800 cal yr BP onwards, the modern Sal dominated deciduous forests were established indicating continuation of warm and more-humid climate including timely arrival of SW monsoon coinciding with the shedding of Sal seeds as they are viable for a very short period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号