首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Travertine is present at 20% of the ca 60 hot springs that discharge on Loburu delta plain on the western margin of saline, alkaline Lake Bogoria in the Kenya Rift. Much of the travertine, which forms mounds, low terraces and pool‐rim dams, is sub‐fossil (relict) and undergoing erosion, but calcite‐encrusted artefacts show that carbonate is actively precipitating at several springs. Most of the springs discharge alkaline (pH: 8·3 to 8·9), Na‐HCO3 waters containing little Ca (<2 mg l?1) at temperatures of 94 to 97·5°C. These travertines are unusual because most probably precipitated at temperatures of >80°C. The travertines are composed mainly of dendritic and platy calcite, with minor Mg‐silicates, aragonite, fluorite and opaline silica. Calcite precipitation is attributed mainly to rapid CO2 degassing, which led to high‐disequilibrium crystal morphologies. Stratigraphic evidence shows that the travertine formed during several stages separated by intervals of non‐deposition. Radiometric ages imply that the main phase of travertine formation occurred during the late Pleistocene (ca 32 to 35 ka). Periods of precipitation were influenced strongly by fluctuations in lake level, mostly under climate control, and by related changes in the depth of boiling. During relatively arid phases, meteoric recharge of ground water declines, the lake is low and becomes hypersaline, and the reduced hydrostatic pressure lowers the level of boiling in the plumbing system of the hot springs. Any carbonate precipitation then occurs below the land surface. During humid phases, the dilute meteoric recharge increases, enhancing geothermal circulation, but the rising lake waters, which become relatively dilute, flood most spring vents. Much of the aqueous Ca2+ then precipitates as lacustrine stromatolites on shallow firm substrates, including submerged older travertines. Optimal conditions for subaerial travertine precipitation at Loburu occur when the lake is at intermediate levels, and may be favoured during transitions from humid to drier conditions.  相似文献   

2.
塔里木盆地寒武系盐下白云岩作为重要的战略接替区已成为近年来的研究热点。前人主要集中对寒武系白云岩的形成机制和膏盐岩的封盖作用进行了研究,而关于膏盐岩对白云岩储层的影响则少有涉及。本文总结了塔里木盆地寒武系白云岩储层特征,同时探讨了膏盐岩对白云岩储层的影响机制,以期为寒武系盐下白云岩勘探提供指导。塔里木盆地寒武系白云岩主要分为结晶白云岩和微生物白云岩两大类,其中结晶白云岩又可分为泥微晶白云岩、晶粒白云岩和颗粒白云岩,微生物白云岩又可分为凝块石白云岩、叠层石白云岩和泡沫绵石白云岩。受膏盐岩影响的白云岩储层类型可划分为膏溶孔型白云岩储层、晶间孔型白云岩储层和溶蚀孔型白云岩储层。蒸发潮坪环境中,膏盐岩的沉淀有利于克服白云石化的Mg2+的动力学障碍而形成白云岩,同时,微生物作用下SO24-的还原会促进白云石的沉淀。膏盐岩对白云岩储层孔隙的影响主要体现在:含硬石膏结核泥粉晶白云岩易于形成膏溶孔型白云岩储层;膏盐层较高的热导率有利于倒退溶蚀作用的发生;近地表低温条件下硫酸盐的溶解有利于白云石的沉淀;热化学硫酸盐还原作用形成酸性气体有利于深埋溶蚀作用,形成溶蚀孔型白云岩储层。  相似文献   

3.
Early diagenetic dolomite beds were sampled during the Ocean Drilling Programme (ODP) Leg 201 at four reoccupied ODP Leg 112 sites on the Peru continental margin (Sites 1227/684, 1228/680, 1229/681 and 1230/685) and analysed for petrography, mineralogy, δ13C, δ18O and 87Sr/86Sr values. The results are compared with the chemistry, and δ13C and 87Sr/86Sr values of the associated porewater. Petrographic relationships indicate that dolomite forms as a primary precipitate in porous diatom ooze and siliciclastic sediment and is not replacing the small amounts of precursor carbonate. Dolomite precipitation often pre‐dates the formation of framboidal pyrite. Most dolomite layers show 87Sr/86Sr‐ratios similar to the composition of Quaternary seawater and do not indicate a contribution from the hypersaline brine, which is present at a greater burial depth. Also, the δ13C values of the dolomite are not in equilibrium with the δ13C values of the dissolved inorganic carbon in the associated modern porewater. Both petrography and 87Sr/86Sr ratios suggest a shallow depth of dolomite formation in the uppermost sediment (<30 m below the seafloor). A significant depletion in the dissolved Mg and Ca in the porewater constrains the present site of dolomite precipitation, which co‐occurs with a sharp increase in alkalinity and microbial cell concentration at the sulphate–methane interface. It has been hypothesized that microbial ‘hot‐spots’, such as the sulphate–methane interface, may act as focused sites of dolomite precipitation. Varying δ13C values from −15‰ to +15‰ for the dolomite are consistent with precipitation at a dynamic sulphate–methane interface, where δ13C of the dissolved inorganic carbon would likewise be variable. A dynamic deep biosphere with upward and downward migration of the sulphate–methane interface can be simulated using a simple numerical diffusion model for sulphate concentration in a sedimentary sequence with variable input of organic matter. Thus, the study of dolomite layers in ancient organic carbon‐rich sedimentary sequences can provide a useful window into the palaeo‐dynamics of the deep biosphere.  相似文献   

4.
Reactive-transport models are developed here that produce dolomite via two scenarios: primary dolomite (no CaCO3 dissolution involved) versus secondary dolomite (dolomitization, involving CaCO3 dissolution). Using the available dolomite precipitation rate kinetics, calculations suggest that tens of meters of thick dolomite deposits cannot form at near room temperature (25-35°C) by inorganic precipitation mechanism, though this mechanism will provide dolomite aggregates that can act as the nuclei for dolomite crystallization during later dolomitization stage. Increase in supersaturation, Mg+2/Ca+2 ratio and CO3-2 on the formation of dolomite at near room temperature are subtle except for temperature.This study suggests that microbial mediation is needed for appreciable amount of primary dolomite formation. On the other hand, reactive-transport models depicting dolomitization (temperature range of 40 to 200°C) predicts the formation of two adjacent moving coupled reaction zones (calcite dissolution and dolomite precipitation) with sharp dolomitization front, and generation of >20% of secondary porosity. Due to elevated temperature of formation, dolomitization mechanism is efficient in converting existing calcite into dolomite at a much faster rate compared to primary dolomite formation.  相似文献   

5.
Authigenic calcite and dolomite and biogenic aragonite occur in Holocene pan sediments in a Mediterranean‐type climate on the western coastal plain of South Africa. Sediment was analysed from a Late Pleistocene coastal pan at Yzerfontein and four Holocene inland pans ranging from brackish to hypersaline. The pans are between 0·08 and 0·14 km2 in size. The δ18OPDB values of carbonate minerals in the pan sediments range from ?2·41 to 5·56‰ and indicate precipitation from evaporative waters. Covariance of total organic content and percentage carbonate minerals, and the δ13CPDB values of pan carbonate minerals (?8·85 to ?1·54‰) suggest that organic matter degradation is a significant source of carbonate ions. The precipitation of the carbonate minerals, especially dolomite, appears to be mediated by sulphate‐reducing bacteria in the black sulphidic mud zone found in the brine‐type hypersaline pans. The knobbly, sub‐spherical texture of the carbonate minerals suggests that the precipitation of the carbonate minerals, particularly dolomite, is related to microbial processes. The 87Sr/86Sr ratios of pan carbonate minerals (0·7108 to 0·7116) are slightly higher than modern sea water and indicate a predominantly sea water (marine aerosol) source for calcium (Ca2+) ions with relatively minor amounts of Ca2+ derived from the chemical weathering of bedrock.  相似文献   

6.
The relative influences of biotic and abiotic processes on travertine fabrics are still not well understood, despite increasing interest in the last decade to better understand the record of ancient microbial life and sedimentary fabrics in microbial hydrocarbon reservoirs. This study examines travertines at Satono‐yu hot spring in Japan (the temperature of water flowing over the travertine was ca 35°C), to better understand the interaction between depositional, hydrochemical and microbial parameters at different flow settings. Characteristics of the bulk hydrochemistry, mineralogy (exclusively aragonite) and the driving force for precipitation (primarily abiotic CO2 degassing with some photosynthetic microbial contribution) were similar among all of the flow settings. Conversely, the increase in flow velocity suppressed the influence of photosynthesis and enhanced the abiotic precipitation due to the thinner diffusive boundary layer at the travertine surface–water interface. Additionally, the increase in flow velocity changed the microbial composition and decreased the bacterial diversity by reflecting their adhesion efficiency on the travertine substrate. The acidity of the cyanobacterial sheaths controls the aragonite nucleation rate and the resulting calcification, even at significantly high equilibrium CO2 partial pressure (ca 22 to 28 matm), high dissolved inorganic carbon concentration (ca 35 to 38 mmol l?1), and elevated aragonite saturation state (ca 20‐fold to 34‐fold). Therefore, the increase in flow velocity suppresses the microbial influence with respect to the increase in the saturation state, the nucleation site supply and pore space generation. Overall, this results in the predominance of abiotic precipitation under high flow velocities. Consequently, a sparse‐micritic fabric with abundant interlamina porosity forms under lower flow velocity where the microbial influence is effective, while a dense‐sparitic fabric with little inter‐crystalline porosity forms under higher flow velocity where abiotic precipitation prevails. These findings provide an essential base for assessing the formation processes of ancient travertines and comparable deposits from petrological fabrics.  相似文献   

7.
Microbialites (benthic microbial carbonate deposits) were discovered in a hypersaline alkaline lake on Eleuthera Island (Bahamas). From the edge towards the centre of the lake, four main zones of precipitation could be distinguished: (1) millimetre‐sized clumps of Mg‐calcite on a thin microbial mat; (2) thicker and continuous carbonate crusts with columnar morphologies; (3) isolated patches of carbonate crust separated by a dark non‐calcified gelatinous mat; and (4) a dark microbial mat without precipitation. In thin section, the precipitate displayed a micropeloidal structure characterized by micritic micropeloids (strong autofluorescence) surrounded by microspar and spar cement (no fluorescence). Observations using scanning electron microscopy (SEM) equipped with a cryotransfer system indicate that micrite nucleation is initiated within a polymer biofilm that embeds microbial communities. These extracellular polymeric substances (EPS) are progressively replaced with high‐Mg calcite. Discontinuous EPS calcification generates a micropeloidal structure of the micrite, possibly resulting from the presence of clusters of coccoid or remnants of filamentous bacteria. At high magnification, the microstructure of the initial precipitate consists of 200–500 nm spheres. No precipitation is observed in or on the sheaths of cyanobacteria, and only a negligible amount of precipitation is directly associated with the well‐organized and active filamentous cyanobacteria (in deeper layers of the mat), indicating that carbonate precipitation is not associated with CO2 uptake during photosynthesis. Instead, the precipitation occurs at the uppermost layer of the mat, which is composed of EPS, empty filamentous bacteria and coccoids (Gloeocapsa spp.). Two‐dimensional mapping of sulphate reduction shows high activity in close association with the carbonate precipitate at the top of the microbial mat. In combination, these findings suggest that net precipitation of calcium carbonate results from a temporal and spatial decoupling of the various microbial metabolic processes responsible for CaCO3 precipitation and dissolution. Theoretically, partial degradation of EPS by aerobic heterotrophs or UV fuels sulphate‐reducing activity, which increases alkalinity in microdomains, inducing CaCO3 precipitation. This degradation could also be responsible for EPS decarboxylation, which eliminates Ca2+‐binding capacity of the EPS and releases Ca2+ ions that were originally bound by carboxyl groups. At the end of these processes, the EPS biofilm is calcified and exhibits a micritic micropeloidal structure. The EPS‐free precipitate subsequently serves as a substrate for physico‐chemical precipitation of spar cement from the alkaline water of the lake. The micropeloidal structure has an intimate mixture of micrite and microspar comparable to microstructures of some fossil microbialites.  相似文献   

8.
Using the clumped isotope method, the temperature of dolomite and calcite formation and the oxygen isotopic composition (δ18Ow) of the diagenetic fluids have been determined in a core taken from the Arab‐D of the Ghawar field, the largest oil reservoir in the world. These analyses show that while the dolomites and limestones throughout the major zones of the reservoir recrystallized at temperatures between ca 80°C and 100°C, the carbonates near the top of the reservoir formed at significantly lower temperatures (20 to 30°C). Although the δ18O values of the diagenetic fluids show large variations ranging from ca <0‰ to ca +8‰, the variations exhibit consistent downhole changes, with the highest values being associated with the portion of the reservoir with the highest permeability and porosity. Within the limestones, dolomites and dolomites associated with the zone of high permeability, there are statistically significant different trends between the δ18Ow values and recrystallization temperature. These relationships have different intercepts suggesting that fluids with varying δ18Ow values were involved in the formation of dolomite and limestone compared to the formation of dolomite associated with the zone of high permeability. These new data obtained using the clumped isotope technique show how dolomitization and recrystallization by deep‐seated brines with elevated δ18Ow values influence the δ18O values of carbonates, possibly leading to erroneous interpretations unless temperatures can be adequately constrained.  相似文献   

9.
Anomalously saline waters in Ocean Drilling Program Holes 1127, 1129, 1130, 1131 and 1132, which penetrate southern Australian slope sediments, and isotopic analyses of large benthic foraminifera from southern Australian continental shelf sediments, indicate that Pleistocene–Holocene meso‐haline salinity reflux is occurring along the southern Australian margin. Ongoing dolomite formation is observed in slope sediments associated with marine waters commonly exceeding 50‰ salinity. A well‐flushed zone at the top of all holes contains pore waters with normal marine trace element contents, alkalinities and pH values. Dolomite precipitation occurs directly below the well‐flushed zone in two phases. Phase 1 is a nucleation stage associated with waters of relatively low pH (ca 7) caused by oxidation of H2S diffusing upward from below. This dolomite precipitates in sediments < 80 m below the sea floor and has δ13C values consistent with having formed from normal sea water (? 1‰ to + 1‰ Vienna Pee Dee Belemnite). The Sr content of Phase 1 dolomite indicates that precipitation can occur prior to substantial metastable carbonate dissolution (< 300 ppm in Holes 1129 and 1127). Dolomite nucleation is interpreted to occur because the system is undersaturated with respect to the less stable minerals aragonite and Mg‐calcite, which form more readily in normal ocean water. Phase 2 is a growth stage associated with the dissolution of metastable carbonate in the acidified sea water. Analysis of large dolomite rhombs demonstrates that at depths > 80 m below the sea floor, Phase 2 dolomite grows on dolomite cores precipitated during Phase 1. Phase 2 dolomite has δ13C values similar to those of the surrounding bulk carbonate and high Sr values relative to Phase 1 dolomite, consistent with having formed in waters affected by aragonite and calcite dissolution. The nucleation stage in this model (Phase 1) challenges the more commonly accepted paradigm that inhibition of dolomitization by sea water is overcome by effectively increasing the saturation state of dolomite in sea water.  相似文献   

10.
The study focuses on the formation of lacustrine dolomite in late Miocene lakes, located at the East Mediterranean margins (Northern Israel). These lakes deposited the sediments of the Bira (Tortonian) and Gesher (Messinian) formations that comprise sequences of dolostone and limestone. Dolostones are bedded, consist of small‐sized (<7 μm), Ca‐rich (52 to 56 mol %) crystals with relatively low ordering degrees, and present evidence for replacement of CaCO3 components. Limestones are comprised of a wackestone to mudstone matrix, freshwater macrofossils and intraclasts (mainly in the Bira Formation). Sodium concentrations and isotope compositions differ between limestones and dolostones: Na = ~100 to 150 ppm; ~1000 to 2000 ppm; δ18O = ?3·8 to ?1·6‰; ?2·0 to +4·3‰; δ13C = ?9·0 to ?3·4‰; ?7·8 to 0‰ (VPDB), respectively. These results indicate a climate‐related sedimentation during the Tortonian and early Messinian. Wet conditions and positive freshwater inflow into the carbonate lake led to calcite precipitation due to intense phytoplankton blooms (limestone formation). Dry conditions and enhanced evaporation led to precipitation of evaporitic CaCO3 in a terminal lake, which caused an increased Mg/Ca ratio in the residual waters and penecontemporaneous dolomitization (dolostone formation). The alternating lithofacies pattern reveals eleven short‐term wet–dry climate‐cycles during the Tortonian and early Messinian. A shift in the environmental conditions under which dolomite formed is indicated by a temporal decrease in δ18O of dolostones and Na content of dolomite crystals. These variations point to decreasing evaporation degrees and/or an increased mixing with meteoric waters towards the late Messinian. A temporal decrease in δ13C of dolostones and limestones and appearance of microbial structures in close association with dolomite suggest that microbial activity had an important role in allowing dolomite formation during the Messinian. Microbial mediation was apparently the main process that enabled local growth of dolomite under wet conditions during the latest Messinian.  相似文献   

11.
12.
The Bonneville Basin is a continental lacustrine system accommodating extensive microbial carbonate deposits corresponding to two distinct phases: the deep Lake Bonneville (30 000 to 11 500 14C bp ) and the shallow Great Salt Lake (since 11 500 14C bp ). A characterization of these microbial deposits and their associated sediments provides insights into their spatio‐temporal distribution patterns. The Bonneville phase preferentially displays vertical distribution of the microbial deposits resulting from high‐amplitude lake level variations. Due to the basin physiography, the microbial deposits were restricted to a narrow shoreline belt following Bonneville lake level variations. Carbonate production was more efficient during intervals of relative lake level stability as recorded by the formation of successive terraces. In contrast, the Great Salt Lake microbial deposits showed a great lateral distribution, linked to the modern flat bottom configuration. A low vertical distribution of the microbial deposits was the result of the shallow water depth combined with a low amplitude of lake level fluctuations. These younger microbial deposits display a higher diversity of fabrics and sizes. They are distributed along an extensive ‘shore to lake’ transect on a flat platform in relation to local and progressive accommodation space changes. Microbial deposits are temporally discontinuous throughout the lake history showing longer hiatuses during the Bonneville phase. The main parameters controlling the rate of carbonate production are related to the interaction between physical (kinetics of the mineral precipitation, lake water temperature and runoff), chemical (Ca2+, Mg2+ and HCO3? concentrations, Mg/Ca ratio, dilution and depletion) and/or biological (trophic) factors. The contrast in evolution of Lake Bonneville and Great Salt Lake microbial deposits during their lacustrine history leads to discussions on major chemical and climatic changes during this interval as well as the role of physiography. Furthermore, it provides novel insights into the composition, structure and formation of microbialite‐rich carbonate deposits under freshwater and hypersaline conditions.  相似文献   

13.
Dolomite [CaMg(CO3)2] forms in numerous geological settings, usually as a diagenetic replacement of limestone, and is an important component of petroleum reservoir rocks, rocks hosting base metal deposits and fresh water aquifers. Dolomite is a rhombohedral carbonate with a structure consisting of an ordered arrangement of alternating layers of Ca2+ and Mg2+ cations interspersed with anion layers normal to the c‐axis. Dolomite has symmetry, lower than the (CaCO3) symmetry of calcite primarily due to Ca–Mg ordering. High‐magnesium calcite also has symmetry and differs from dolomite in that Ca2+ and Mg2+ ions are not ordered. High‐magnesium calcite with near‐dolomite stoichiometry (≈50 mol% MgCO3) has been observed both in nature and in laboratory products and is referred to in the literature as protodolomite or very high‐magnesium calcite. Many dolomites display some degree of cation disorder (Ca2+ on Mg2+ sites and vice versa), which is detectable using transmission electron microscopy and X‐ray diffractometry. Laboratory syntheses at high temperature and pressure, as well as studies of natural dolomites show that factors affecting dolomite ordering, stoichiometry, nucleation and growth include temperature, alkalinity, pH, concentration of Mg and Ca, Mg to Ca ratio, fluid to rock ratio, mineralogy of the carbonate being replaced, and surface area available for nucleation. In spite of numerous attempts, dolomite has not been synthesized in the laboratory under near‐surface conditions. Examination of published X‐ray diffraction data demonstrates that assertions of dolomite synthesis in the laboratory under near‐ambient conditions by microbial mediation are unsubstantiated. These laboratory products show no evidence of cation ordering and appear to be very high‐magnesium calcite. Elevated‐temperature and elevated‐pressure experiments demonstrate that dolomite nucleation and growth always are preceded by very high‐magnesium calcite formation. It remains to be demonstrated whether microbial‐mediated growth of very high‐magnesium calcite in nature provides a precursor to dolomite nucleation and growth analogous to reaction paths in high‐temperature experiments.  相似文献   

14.
ABSTRACT Recent dolomitic sediment samples from Lagoa Vermelha, Brazil, were examined microscopically to study the process of bacterial fossilization in carbonate sediments. Bacteria‐like bodies were intimately associated with carbonate mineral surfaces, and coatings on the former demonstrate the calcification of single bacterial cells. The bacterial fossilization process in Lagoa Vermelha sediments was simulated in the laboratory by cultivation of mixed and pure cultures of sulphate‐reducing bacteria, which were isolated from the Lagoa Vermelha sediments. These cultures produced carbonate minerals that were studied to provide insight into the initiation of the fossilization process. In mixed culture experiments, bacterial colonies became calcified, whereas in pure culture experiments, single bacterial cells were associated with dolomite surfaces. Dolomite nucleated exclusively in bacterial colonies, intimately associated with extracellular organic matter and bacterial cells. Electrophoretic mobility measurements of the bacterial cells in electrolyte solutions demonstrated the specific adsorption of Ca2+ and Mg2+ onto the cell surfaces, indicating the role of the bacterial surface in carbonate nucleation and bacterial fossilization. The affinity of the cells for Mg2+ was related to the capability of the strains to mediate dolomite formation. Combined with sulphate uptake, which dissociates the [MgSO4]0 ion pair and increases the Mg2+ availability, the concentration of Mg2+ ions in the microenvironment around the cells, where the conditions are favourable for dolomite precipitation, may be the key to overcome the kinetic barrier to dolomite formation. These results demonstrate that bacterial fossilization is a consequence of the cell surface involvement in carbonate precipitation, implying that fossilized bacterial bodies can be used as a tool to recognize microbially mediated carbonates.  相似文献   

15.
To evaluate the palaeo-environmental parameters of a portion of the Sardinia–Corsica microplate during the Messinian drop in sea level, we examined the chemistry and mineralogy of upper Tortonian–lower Messinian (late Miocene) clayey continental deposits from NW Sardinia. Differences exist between the uppermost part of the succession, which is devoid of carbonate phases, and the lower part, reflecting changes in provenance and climate. The carbonate-free samples were probably derived from quartzite of the metamorphic basement and were deposited under a climate characterized by alternating dry and relatively wet periods. The other samples were derived from basement phyllite and were deposited under a warm, dry climate that promoted the capillary rise of Ca2+ and bicarbonate from a shallow water table, and therefore, the precipitation of carbonate. This part of the succession contains both calcite and dolomite. The presence of barite indicates an important concentration of SO4 2? in the solution from which the CaMg(CO3)2 precipitated. The formation of dolomite under hypersaline conditions may be explained by bacterial degradation of organic matter, which produced CO2 and ammonia, thereby increasing the solution alkalinity. The succession formed in an oxic environment, except for a calcite-rich level that formed under relatively reducing conditions. For this level, the large amount of calcite and the lack of dolomite indicate an alkaline environment and a very low Mg2+/Ca2+ ratio in the soil solution. These observations, coupled with the reducing conditions, indicate the availability of large amounts of degraded organic matter, probably related to a period typified by a wetter climate.  相似文献   

16.
Dolomite [CaMg(CO3)2] is abundant in sedimentary rocks throughout the geological record, but it is rarely found in modern sediments. Also, it cannot be precipitated under low‐temperature conditions in the laboratory without microbial mediation and, as a result, its origin remains a long‐standing enigma. This study reports biologically mediated dolomite precipitation in ancient microbial mats and biofilms from the Cambrian Tarim Basin. The ambient temperature at the time of dolomite precipitation was estimated from δ18O values from early diagenetic dolomite, and the presence of structures associated with extracellular polymeric substances (EPS), is composed of fibres arranged in a reticular pattern, would favour epitaxial crystallization of dolomite on an organic substrate. In addition, poorly crystallized dolomite formed nanocrystal aggregates that strongly resemble the morphology and size distribution observed in microbial culture experiments. These lines of evidence confirm that microbial structures can be preserved in ancient dolomite and validate their use as biosignatures.  相似文献   

17.
Lower Messinian stromatolites of the Calcare di Base Formation at Sutera in Sicily record periods of low sea‐level, strong evaporation and elevated salinity, thought to be associated with the onset of the Messinian Salinity Crisis. Overlying aragonitic limestones were precipitated in normal to slightly evaporative conditions, occasionally influenced by an influx of meteoric water. Evidence of bacterial involvement in carbonate formation is recorded in three dolomite‐rich stromatolite beds in the lower portion of the section that contain low domes with irregular crinkly millimetre‐scale lamination and small fenestrae. The dominant microfabrics are: (i) peloidal and clotted dolomicrite with calcite‐filled fenestrae; (ii) dolomicrite with bacterium‐like filaments and pores partially filled by calcite or black amorphous matter; and (iii) micrite in which fenestrae alternate with dark thin wispy micrite. The filaments resemble Beggiatoa‐like sulphur bacteria. Under scanning electron microscopy, the filaments consist of spherical aggregates of dolomite, interpreted to result from calcification of bacterial microcolonies. The dolomite crystals are commonly arranged as rounded grains that appear to be incorporated or absorbed into developing crystal faces. Biofilm‐like remains occur in voids between the filaments. The dolomite consistently shows negative δ13C values (down to ?11·3‰) and very positive δ18O (mean value 7·9‰) that suggest formation as primary precipitate with a substantial contribution of organic CO2. Very negative δ13C values (down to ?31·6‰) of early diagenetic calcite associated with the dolomite suggest contribution of CO2 originating by anaerobic methane oxidation. The shale‐normalized rare earth element patterns of Sutera stromatolites show features similar to those in present‐day microbial mats with enrichment in light rare earth elements, and M‐type tetrad effects (enrichment around Pr coupled to a decline around Nd and a peak around Sm and Eu). Taken together, the petrography and geochemistry of the Sutera stromatolites provide diverse and compelling evidence for microbial influence on carbonate precipitation.  相似文献   

18.
Pseudohexagonal aragonite crystals are common components in some hot-spring travertines at Chemurkeu on the western shore of Lake Bogoria, Kenya. Beds, lenses and pods of aragonite crystals are intercalated with beds of white non-crystallographic calcite dendrites. The pseudohexagonal aragonite crystals, which are up to 4 cm long and 4 mm wide, are formed of nested skeletal crystals. Each skeletal crystal is formed of cyclical twinned crystals that are constructed of stacked subcrystals. The latter are inclined at a consistent angle of 40° to the long axis of the pseudohexagonal aragonite crystal. Intense competition for space during growth modified the crystal morphology with the result that many of the pseudohexagonal crystals are distorted. Intercrystalline and intracrystalline pores are filled or partly filled by epitaxial aragonite overgrowths and/or reticulate microbial coatings that have a high concentration of Si and Mg. In places, this extracellular mucus induced etching of the underlying aragonite crystal. Today the hot (T>95 °C) Na-HCO3-Cl spring waters at Chemurkeu have a salinity of 5–6 g L?1 TDS, a pH of 8·1–9·1, Ca2+ concentrations of <2 mg L?1 and Mg2+ concentrations of <0·7 mg L?1, The springs of the Lake Bogoria Geothermal Field are fed by a shallow aquifer (T~100 °C) and a deeper aquifer (T~170 °C). Springs at Chemurkeu derive from meteoric groundwater, lake water and condensed steam, and are fed mainly from the shallow thermal aquifer. Much of the aragonite may have formed when the spring waters contained more dissolved Ca2+ than today, possibly under more humid conditions during the Holocene.  相似文献   

19.
Conventional hydrochemical techniques and statistical analyses were applied to better understand the solute geochemistry and the hydrochemical process of shallow groundwater in the Qinghai Lake catchment. Shallow groundwater in the Qinghai Lake catchment is slightly alkaline, and is characterized by a high ion concentrations and low water temperature. The total dissolved solids (TDS) in most of the samples are <1,000?mg/L, i.e. fresh water and depend mainly on the concentration of SO4 2?, Cl? and Na+. Groundwater table is influenced directly by the residents?? groundwater consumption. Most of the groundwaters in the Qinghai Lake catchment belong to the Ca2+(Na+) ?CHCO3 ? type, while the Qinghai Lake, part of the Buha (BHR) and the Lake Side (LS) samples belong to the Na+?CCl? type. The groundwater is oversaturated with respect to aragonite, calcite and dolomite, but not to magnesite and gypsum. Solutes are mainly derived from strong evaporite dissolution in Daotang, BHR and LS samples and from strong carbonate weathering in Hargai and Shaliu samples. Carbonate weathering is stronger than evaporite dissolution with weak silicate weathering in the Qinghai Lake catchment. Carbonate weathering, ion exchange reaction and precipitation are the major hydrogeochemical processes responsible for the solutes in the groundwater in the Qinghai Lake catchment. Most of the shallow groundwaters are suitable for drinking. More attention should be paid to the potential pollution of nitrate, chloride and sulfide in shallow groundwater in the future.  相似文献   

20.
Geomorphic features such as drifts, sediment waves and channels have been documented in the Upper Cretaceous of north‐west Europe. These features are interpreted to result from bottom currents and have been used to refine chalk depositional models and quantify palaeocirculation patterns. Chalk was first deposited as calcareous nannofossil ooze and geomorphic features are the result of sediment reworking after deposition. There is limited knowledge on the processes that govern nannofossil ooze mobility, thus forcing uncertainty onto numerical models based on sedimentological observations. This article provides an extensive view of the erosional and depositional behaviour of calcareous nannofossil ooze based on experimental work using annular flumes. A fundamental observation of this study is the significant decrease of nannofossil ooze mobility with decreasing bed porosity. Erosion characteristics, labelled as erosion types, vary with total bed porosity (φ) and applied shear stress (τ0). High‐porosity ooze (φ >80%) is characterized by constant erosion rates (Em). At φ <77%, however, erosion characteristics showed greater variance. Surface erosion was typically followed by transitional erosion (with asymptotically decreasing Em), and stages of erosion with constant, and exponential erosion rates. The estimated erosion thresholds (τc) vary from ca 0·05 to 0·08 Pa for the onset of surface erosion and up to ca 0·19 Pa for the onset of constant erosion (φ of 60 to 85%). Variability of deposition thresholds (τcd) from ca 0·04 to 0·13 Pa reflects the influence of variable suspended sediment concentration and τ0 on settling particle size due to the identified potential for chalk ooze aggregation and flocculation. Additionally, deposition thresholds seem to be affected by the size of eroded aggregates whose size correlates with bed porosity. Lastly, slow sediment transport without resuspension occurred in high‐porosity ooze as surface creep, forming low‐relief sedimentary features resembling ripples. This process represents a previously undescribed mode of fine‐grained nannofossil ooze transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号