首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Groundwater modelers have embraced the use of automated calibration tools based on classical nonlinear regression techniques. While clearly an improvement over trial-and-error calibration, it is not clear to what extent these popular inverse modeling tools yield accurate parameter sets for groundwater flow models. The impact of model configuration and precision upon automated parameter estimation is also unclear. An extensive set of numerical experiments was performed to explore the influence of model configuration on the calibration of a regional groundwater flow model developed using the analytic element method. The results provided insight into the manner in which the specified level of model precision and the location of observation points influence the results of inverse modeling based on nonlinear regression. While the importance of these issues is application-specific, obtaining an accurate model calibration for the case study required both a careful placement of test observations and a greater-than-anticipated level of model precision. The required level of model precision for calibration was more than necessary to produce an acceptable flow solution.  相似文献   

2.
This paper illustrates the main characteristics of the newly developed landslide model r.massmov, which is based on the shallow water equations, and is capable of simulating the landslide propagation over complex topographies. The model is the result of the reimplementation of the MassMov2D into the free and open-source GRASS GIS with a series of enhancements aiming at allowing its possible integration into innovative early warning monitoring systems and specifically into Web processing services. These improvements, finalized at significantly reducing computational times, include the introduction of a new automatic stopping criterion, fluidization process algorithm, and the parallel computing. Moreover, the results of multi-spatial resolution analysis conducted on a real case study located in the southern Switzerland are presented. In particular, this analysis, composed by a sensitivity analysis and calibration process, allowed to evaluate the model capabilities in simulating the phenomenon at different input data resolution. The results illustrate that the introduced modifications lead to important reductions in the computational time (more than 90 % faster) and that, using the lower dataset resolution capable of guaranteeing reliable results, the model can be run in about 1 s instead of the 3.5 h required by previous model with not optimized dataset resolution. Aside, the results of the research are a series of new GRASS GIS modules for conducting sensitivity analysis and for calibration. The latter integrates the automated calibration program “UCODE” with any GRASS raster module. Finally, the research workflow presented in this paper illustrates a best practice in applying r.massmov in real case applications.  相似文献   

3.
An analytical model to simulate the penetration of the piezocone penetrometer in cohesive soils is presented here. The elasto-plastic coupled field equations of the saturated cohesive soils (given by Voyiadjis and Abu-Farsakh) is used in this analysis. The numerical simulation of the piezocone penetration is implemented into a finite element program. The analytical model is used to analyze the miniature piezocone penetration tests (PCPT) conducted at LSU calibration chambers. Simulation of the piezocone penetration is done for two cases. In the first case, the soil–penetrometer interface friction is neglected, while in the second case, the soil–penetrometer interface friction is taken into consideration. The constraint approach is used to model the soil–piezocone interface friction in which the Mohr–Coulomb frictional model is used to define the sliding potential. Analysis is done for three different soil specimens with different stress histories. The results of the numerical simulations are compared with the experimental measurements of the miniature piezocone penetration tests (PCPT) in cohesive soil specimens conducted in LSU calibration chambers. The resulting excess pore pressure distribution and its dissipation using the numerical model are compared with some available prediction methods. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
The problem of assimilating biased and inaccurate observations into inadequate models of the physical systems from which the observations were taken is common in the petroleum and groundwater fields. When large amounts of data are assimilated without accounting for model error and observation bias, predictions tend to be both overconfident and incorrect. In this paper, we propose a workflow for calibration of imperfect models to biased observations that involves model construction, model calibration, model criticism and model improvement. Model criticism is based on computation of model diagnostics which provide an indication of the validity of assumptions. During the model improvement step, we advocate identification of additional physically motivated parameters based on examination of data mismatch after calibration and addition of bias correction terms. If model diagnostics indicates the presence of residual model error after parameters have been added, then we advocate estimation of a “total” observation error covariance matrix, whose purpose is to reduce weighting of observations that cannot be matched because of deficiency of the model. Although the target applications of this methodology are in the subsurface, we illustrate the approach with two simplified examples involving prediction of the future velocity of fall of a sphere from models calibrated to a short-time series of biased measurements with independent additive random noise. The models into which the data are assimilated contain model errors due to neglect of physical processes and neglect of uncertainty in parameters. In every case, the estimated total error covariance is larger than the true observation covariance implying that the observations need not be matched to the accuracy of the measuring instrument. Predictions are much improved when all model improvement steps were taken.  相似文献   

5.
Science-based management of shallow-water habitats is limited by information on the spatial distribution of properties of sediments. This limitation in part stems from the lack of an adequate model or system to classify and delineate subaqueous soil types (sediments). Present classification systems are inadequate because the existing paradigm does not actually consider them as “soils” but merely as “sediments”. Field observations suggest that these sediments could be better understood as “soils”, and the present paradigm could be modified to incorporate a new one—a pedological paradigm. We propose the application of a pedological paradigm for subqueous soils of subtidal habitats to develop ecological interpretations of subaqueous soil types and apply an inventory of subaqueous soil resources for management of estuarine shallow-water habitats. *** DIRECT SUPPORT *** A01BY074 00009  相似文献   

6.
The propagation of stress waves in a pipe pile subjected to a transient point load cannot be expressed using traditional one-dimensional (1D) wave theory. This paper presents an analytical solution used to investigate the wave propagation in a pipe pile under an axial point load. The soil resistance is simulated using the Winkler model, and the excitation force is simulated with a semi-sinusoidal impulse. A time-domain analytical solution for the three-dimensional wave equation is derived using the separation of variables and variation of constants methods. The solution is verified with a frequency domain analytical solution in which the time-domain response is calculated by numerical Fourier inverse transformation. Furthermore, the solution proposed in this paper is compared with the results of model testing and 3D FEM analysis. The comparisons show that the analytical solution proposed in this study agrees well with the results of previous studies. The proposed solution is subsequently applied in case studies. The vertical velocity responses in the circumferential and axial directions are analyzed to reveal the propagation characteristics of transient waves in the pipe pile. Moreover, the effects of the location and period of the excitation force, the side and tip resistances and high-order modes are studied in detail.  相似文献   

7.
The capability of a bounding surface plasticity model with a vanishing elastic region to capture the multiaxial dynamic hysteretic responses of soil deposits under broadband (eg, earthquake) excitations is explored by using data from centrifuge tests. The said model was proposed by Borja and Amies in 1994 (J. Geotech. Eng., 120, 6, 1051‐1070), which is theoretically capable of representing nonlinear soil behavior in a multiaxial setting. This is an important capability that is required for exploring and quantifying site topography, soil stratigraphy, and kinematic effects in ground motion and soil‐structure interaction analyses. Results obtained herein indicate that the model can accurately predict key response data recorded during centrifuge tests on embedded specimens—including soil pressures and bending strains for structural walls, structures' racking displacements, and surface settlements—under both low‐ and high‐amplitude seismic input motions, which was achieved after performing only a basic material parameter calibration procedure. Comparisons are also made with results obtained using equivalent linear models and a well‐known pressure‐dependent multisurface plasticity model, which suggested that the present model is generally more accurate. The numerical convergence behavior of the model in nonlinear equilibrium iterations is also explored for a variety of numerical implementation and model parameter options. To facilitate broader use by researchers and practicing engineers alike, the model is implemented as a “user material” in ABAQUS Standard for implicit time stepping.  相似文献   

8.
《Computers and Geotechnics》2001,28(6-7):397-423
The case history of the deep excavation for the National Gallery extension in London is presented in this paper. Comparisons with data from other sites show that it is typical for that of similar projects in Central London. Class 1 predictions of the retaining wall behaviour (prior to construction) using the Model London Clay constitutive relationship considerably over-estimated wall and ground movements. Retaining wall and ground movements are also considerably over-predicted by analyses using a simple linear elastic/perfectly plastic soil model, despite optimistic parameters being assumed for the soils. Predictions made using the constitutive model BRICK are closer to the measured deflected shape, but are also higher than measured values. Parametric studies of the effect of various parameters suggest that a “best estimate” of the wall movements are still well in excess of those measured. It is concluded that these differences are due to three-dimensional effects and deficiencies in the model. The “beam-spring” computer software for retaining walls FREW gives similar results to the analyses using the simple model. Analyses of the same problem carried out by a different operator using another finite element code, but with the same constitutive model, yielded somewhat different results and highlight the need for careful interpretation of finite element analyses.  相似文献   

9.
Self-similar solutions describing the homogeneous, free, isothermal collapse of protostellar clouds are considered. One such solution correponds to the critical case of the propagation of a rarefaction wave near the time when it is focused in the central region of the cloud. The speed of the rarefaction front is finite and equal to three times the isothermal sound speed. The asymptotic distributions of gas-dynamical quantities in the central part of the collapsing cloud and the surrounding envelopes are considered at both early and late stages of compression, after the formation of an opaque core (protostar). These solutions are used in a magneto-kinematic approximation to study the geometry and evolution of the large-scale magnetic fields of collapsing protostellar clouds. All the solutions are verified using direct numerical simulations. It is shown that an initially uniform magnetic field acquires an “hourglass” geometry with time. The characteristic opening angles in the self-similar solutions are in satisfactory agreement with observations.  相似文献   

10.
Parameter calibration is one of the most problematic phases of numerical modeling since the choice of parameters affects the model’s reliability as far as the physical problems being studied are concerned. In some cases, laboratory tests or physical models evaluating model parameters cannot be completed and other strategies must be adopted; numerical models reproducing debris flow propagation are one of these. Since scale problems affect the reproduction of real debris flows in the laboratory or specific tests used to determine rheological parameters, calibration is usually carried out by comparing in a subjective way only a few parameters, such as the heights of soil deposits calculated for some sections of the debris flows or the distance traveled by the debris flows using the values detected in situ after an event has occurred. Since no automatic or objective procedure has as yet been produced, this paper presents a numerical procedure based on the application of a statistical algorithm, which makes it possible to define, without ambiguities, the best parameter set. The procedure has been applied to a study case for which digital elevation models of both before and after an important event exist, implicating that a good database for applying the method was available. Its application has uncovered insights to better understand debris flows and related phenomena.  相似文献   

11.
A 3D elasto-plastic rate-dependent model for rock mechanics is formulated and implemented into a Finite Element (FE) numerical code. The model is based on the approach proposed by Vermeer and Neher (A soft soil model that accounts for creep. In: Proceedings of the International Symposium “Beyond 2000 in Computational Geotechnics,” pages 249-261, 1999). An original strain-driven algorithm with an Inexact Newton iterative scheme is used to compute the state variables for a given strain increment.The model is validated against laboratory measurements, checked on a simplified test case, and used to simulate land subsidence due to groundwater and hydrocarbon production. The numerical results prove computationally effective and robust, thus allowing for the use of the model on real complex geological settings.  相似文献   

12.
In the present paper the results of experimental and numerical investigations of hygro-thermo-mechanical properties of “Schilfsandstein” from Baden-Württemberg are presented and discussed. The aim of the study was to investigate the influence of extreme environmental conditions causing severe damage that can often be observed on various monuments during restoration and reconstruction process. In the experimental investigations the stone specimen was exposed to extreme hygro-thermal conditions, which caused significant damage (cracking). During the experiment the ultrasonic and acoustic emission analyses were performed. Subsequently, a 3D finite element analysis was carried out using a coupled hygro-thermo-mechanical model for stone. The experimental and numerical results indicate that wetting in combination with either decrease or increase of temperature lead to severe damage. The most critical locations for initialization of cracks are sharp spikes (notches), or acute angles that are inward or outward oriented (corners). Stiff but brittle layers, like late diagenetic iron cementations, might be a weak point for the initialization of crack. Furthermore, the bedding direction (anisotropy) seems to be a preferred direction for crack propagation. The results of the numerical analysis are in relatively good agreement with experimental observations.  相似文献   

13.
Large sets of soil experimental data (field and laboratory) are becoming increasingly available for calibration of soil constitutive models. A challenging task is to calibrate a potentially large number of model parameters to satisfactorily match many data sets simultaneously. This calibration effort can be facilitated by optimization techniques. The current study aims to explore systematic approaches for exercising optimization and sensitivity analysis in the area of soil constitutive modelling. Analytical, semi‐analytical and numerical optimization techniques are employed to calibrate a multi‐surface‐plasticity sand model. Calibration is based on results from a number of drained triaxial sample tests and a dynamic centrifuge liquefaction test. The analytical and semi‐analytical approaches and associated sensitivity analysis are applied to calibrate the model non‐linear shear stress–strain response. Thereafter, model parameters controlling shear–volume coupling effects (dilatancy) are calibrated using a solid–fluid fully coupled finite element program in conjunction with an advanced numerical optimization code. A related sensitivity study reveals the challenges often encountered in optimizing highly non‐linear functions. Overall, this study demonstrates applicability and limitations of optimization techniques for constitutive model calibration. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
Current analytical methodologies for the evaluation of soil pressures on laterally displaced pipelines, as in the case of differential (e.g. fault-induced) permanent ground movements, allow the use of sand fill material properties under the condition that the size of the trench is adequate so that the failure surface develops fully within the sand fill (i.e. “free field” response). The accuracy of this assumption is investigated in this paper by means of numerical analyses, which employ a number of advanced features, such as pipe-backfill interface elements, large strain formulation and mesh rezoning. Following verification against well-documented experimental data, the analyses investigate: (a) the shape and size of the failure mechanism, as well as, (b) the potential trench effects on soil pressures and pipeline strains in the case of a strike-slip fault rupture. It is shown that for small embedment depths soil failure extends to the ground surface, in the form of a general shear failure mechanism, while for larger depths it becomes progressively localized and surrounds the pipeline. It is also shown that, for most cases of pipeline diameter and embedment depth, common trench dimensions cannot contain the “free field” failure surface dimensions. Finally, analyses for limited trench dimensions, reveal that the ultimate soil pressure increases exponentially with decreasing trench width, leading to high bending strains in pipelines subjected to differential lateral ground displacements.  相似文献   

15.
Most structures are subjected to more cyclic loads during their life time than static loads. These cyclic action could be a result of either natural or man-made activities and may lead to soil failure. In order to understand the response of the foundation and its interaction with these complex cyclic loadings, various researchers have over the years developed different constitutive models. Although a lot of research is being carried out on these relatively new models, little or no details exist in literature about the model-based identification of the cyclic constitutive parameters which to a large extent govern the quality of the model output. This could be attributed to the difficulties and complexities of the inverse modeling of such complex phenomena. A variety of optimisation strategies are available for the solution of the sum of least-squares problems as usually done in the field of model calibration. However, for the back analysis (calibration) of the soil response to oscillatory load functions, this article gives insight into the model calibration challenges and also puts forward a method for the inverse modeling of cyclic loaded foundation response such that high-quality solutions are obtained with minimum computational effort.  相似文献   

16.
An inverse analysis method that combines the back propagation neural network (BPNN) and vector evaluated genetic algorithm (VEGA) was proposed to identify mechanical geomaterial parameters for a more accurate prediction of deformation. The BPNN is used to replace the time‐consuming numerical calculations, thus enhancing the efficiency of the inverse analysis. The VEGA is used to find the Pareto‐optimal solutions to multiobjective functions. Unlike traditional back‐analysis methods which are based on only 1 type of field measurement and a single objective function, this proposed method can consider multiple field observations simultaneously. The proposed method was applied to the Shapingba foundation pit excavation located in Chongqing city, China. Two types of measurements are considered in the method simultaneously: the displacements in the x‐direction (north orientation) and those in the y‐direction (east orientation). Five deformation modulus parameters for artificial backfill soil, silty clay, siltstone, sandstone, and mudstone were selected as the inversion parameters. Compared with the weighted sum approach, the proposed method was demonstrated as an efficient multi‐objective optimization tool for back calculating undetermined parameters. After performing a forward‐calculation using the optimized parameters obtained by the inverse analysis, the predicted results were well consistent with the practical deformation in magnitude and trend.  相似文献   

17.
This paper deals with the inverse problem of using time-displacement monitoring data to determine the material parameters of a numerical model of a large-scale mass movement. A finite element model for simulating the mechanical behavior is presented for the Gradenbach landslide in Carinthia, Austria. Particular attention is paid to the calibration of the constitutive relationships, which represent a prerequisite for a realistic quantitative analysis. After a short introduction to the concept of model-parameter identification, this paper demonstrates how to apply the proposed model identification strategy to determine model parameters for the Gradenbach example. The impact of the amount of reference data available for the inverse model-parameter analysis is evaluated by means of artificial reference data. Subsequently, the numerical model is calibrated using field measurement data. The results obtained are presented, and the benefits and drawbacks of the proposed concept are evaluated.  相似文献   

18.
Using the results of the first paper in this series, which dealt with an inverse procedure for hydrocarbon generation, this paper focuses on case histories and numerical implementation of the model. Experimental data on residual kerogen analysis have been used with the inverse procedure to examine the applicability of the model to hydrocarbon generation directly from the degradation of kerogen, and to derive the kinetic parameters for the construction of a prediction equation. Energy-dependent channeling probability distributions are used to exhibit the stability of the model in describing the processes of kerogen degradation. The numerical methods for the solution of the inverse procedure and a sensitivity analysis are also discussed.  相似文献   

19.
Changes of total moisture mass above an aquifer such as snow accumulation, soil moisture, and storage at the water table, represent changes of mechanical load acting on the aquifer. The resulting moisture-loading effects occur in all observation well records for confined aquifers. Deep observation wells therefore act as large-scale geological weighing lysimeters, referred to as “geolysimeters”. Barometric pressure effects on groundwater levels are a similar response to surface loading and are familiar to every hydrogeologist dealing with the “barometric efficiency” of observation wells. Moisture-loading effects are small and generally not recognized because they are obscured by hydraulic head fluctuations due to other causes, primarily barometric pressure changes. For semiconfined aquifers, long-term moisture-loading effects may be dissipated and obscured by transient flow through overlying aquitards. Removal of barometric and earth tide effects from observation well records allows identification of moisture loading and comparison with hydrological observations, and also comparison with the results of numerical models that can account for transient groundwater flow.  相似文献   

20.
The evaluation of the accuracy or reasonableness of numerical models of groundwater flow is a complex task, due to the uncertainties in hydrodynamic properties and boundary conditions and the scarcity of good-quality field data. To assess model reliability, different calibration techniques are joined to evaluate the effects of different kinds of boundary conditions on the groundwater flow in a coastal multi-layered aquifer in southern Italy. In particular, both direct and indirect approaches for inverse modeling were joined through the calibration of one of the most uncertain parameters, namely the hydraulic conductivity of the karst deep hydrostratigraphic unit. The methodology proposed here, and applied to a real case study, confirmed that the selection of boundary conditions is among the most critical and difficult aspects of the characterization of a groundwater system for conceptual analysis or numerical simulation. The practical tests conducted in this study show that incorrect specification of boundary conditions prevents an acceptable match between the model response to the hydraulic stresses and the behavior of the natural system. Such effects have a negative impact on the applicability of numerical modeling to simulate groundwater dynamics in complex hydrogeological situations. This is particularly important for management of the aquifer system investigated in this work, which represents the only available freshwater resource of the study area, and is threatened by overexploitation and saltwater intrusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号