首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Felsic magmatism in the southern part of Himachal Higher Himalaya is constituted by Neoproterozoic granite gneiss (GGn), Early Palaeozoic granitoids (EPG) and Tertiary tourmaline-bearing leucogranite (TLg). Magnetic susceptibility values (<3 ×10?3 SI), molar Al2 O 3/(CaO + Na2 O + K 2O) (≥1.1), mineral assemblage (bt–ms–pl–kf–qtz ± tur ± ap), and the presence of normative corundum relate these granitoids to peraluminous S-type, ilmenite series (reduced type) granites formed in a syncollisional tectonic setting. Plagioclase from GGn (An10–An31) and EPG (An15–An33) represents oligoclase to andesine and TLg (An2–An15) represents albite to oligoclase, whereas compositional ranges of K-feldspar are more-or-less similar (Or88 to Or95 in GGn, Or86 to Or97 in EPG and Or87 to Or94 in TLg). Biotites in GGn (Mg/Mg + Fet= 0.34–0.45), EPG (Mg/Mg + Fet= 0.27–0.47), and TLg (Mg/Mg + Fet= 0.25–0.30) are ferribiotites enriched in siderophyllite, which stabilised between FMQ and HM buffers and are characterised by dominant 3Fe\(\rightleftharpoons \)2Al, 3Mg\(\rightleftharpoons \)2Al substitutions typical of peraluminous (S-type), reducing felsic melts. Muscovite in GGn (Mg/Mg + Fet=0.58–0.66), EPG (Mg/Mg + Fet=0.31?0.59), and TLg (Mg/Mg + Fet=0.29–0.42) represent celadonite and paragonite solid solutions, and the tourmaline from EPG and TLg belongs to the schorl-elbaite series, which are characteristics of peraluminous, Li-poor, biotite-tourmaline granites. Geochemical features reveal that the GGn and EPG precursor melts were most likely derived from melting of biotite-rich metapelite and metagraywacke sources, whereas TLg melt appears to have formed from biotite-muscovite rich metapelite and metagraywacke sources. Major and trace elements modelling suggest that the GGn, EPG and TLg parental melts have experienced low degrees (~13, ~17 and ~13%, respectively) of kf–pl–bt fractionation, respectively, subsequent to partial melting. The GGn and EPG melts are the results of a pre-Himalayan, syn-collisional Pan-African felsic magmatic event, whereas the TLg is a magmatic product of Himalayan collision tectonics.  相似文献   

2.
Gebel Filat granites form one of Egyptian younger granite intrusions in Wadi Allaqi region, South Eastern Desert of Egypt. They are perthitic monzogranites composed mainly of K-feldspars, plagioclase, and quartz with minor biotite. Plagioclase feldspars are Na-rich and have low anorthite content (An2–3). Potash feldspars are mainly perthitic microcline and have chemical formula as (Or96–96.6 Ab3.4–4 An0). Biotite is Mg-rich and seems to be derived from calc-alkaline magma. Chlorite is pycnochlorite with high Mg content, revealing its secondary derivation from biotite. The estimated formation temperatures of biotite and chlorite are (689–711°C) and (602–622°C), respectively. Gebel Filat monzogranites are metaluminous, high-K calc-alkaline, I-type granites. They are late orogenic granites related to subduction-related volcanic arc magmatism. They are enriched in LILE and depleted in HSFE indicating highly differentiation character. The REE patterns display an enrichment in LREE due to presence of zircon and allanite as accessories and depletion in HREE with slight negative Eu anomaly $ \left( {{\text{Eu}}/{\text{Eu}} * = 0.51 - 0.97} \right) $ . The parent magma of Gebel Filat monzogranites were emplaced at moderate depths (20–30 km) under moderate conditions of water-vapor pressure (1–5 kbar) and crystallization temperature [700–750°C]. The source magma of these granites seems to be derived from partial melting of lower crust material rather than upper mantle. The geochemical characteristics of pegmatites revealed that they are related to post orogenic within plate magmatism and not genetically related to the parent magma of Gebel Filat monzogranites. Distribution of radioactive elements (U and Th) in the studied rocks indicates normal U–Th contents for Filat monzogranites and U–Th bearing pegmatites. The positive correlations of each of Zr and Y versus U and Th are attributed to presence of zircon and allanite as accessories which incorporate U and Th in their crystal lattice.  相似文献   

3.
Dykes predominate within the Neoproterozoic rocks, especially granites, of Wadi El Redi-Wadi Lahami area in the southern Eastern Desert of Egypt. The dyke swarms form three major suites: from the oldest to the youngest, they are basaltic andesite—Suite 1 (E-W and ENE-WSW), rhyolite—Suite 2 (NE-SW), and andesite—Suite 3 (NNE-SSW, NNW-SSE, and NW-SE). Despite the wide ranges of the dyke compositions, the feldspar and amphibole are usually the essential forming minerals. The plagioclase arrays between Ab0.9An99.10 in the basaltic andesite and Ab98.80An0.70 in the rhyolite, while sanidine ranges from Or44.60Ab49.70 to Or98.40Ab1.60. Amphibole in Suite 1 and 3 (Al2O3, TiO2, Na2O, and K2O are the lowest and those of SiO2 and CaO are the highest) samples are usually magnesio-hornblende, whereas it is edenite and tschermakite in Suite 2 dykes. Despite all parent magmas have calc-alkaline affinity, some elements such as Ni show an erratic behavior against the progressing differentiation from one magma chamber and implying for an assimilation of the country rocks. The high contents of amphibole, the depletion in Ti, and the enrichment in large-ion lithophile elements (such as K, Rb, Ba, Sr, and Ba) compared to the primitive mantle composition are consistent with parent hydrous melts generated due to extension above the subduction zone. The estimated compositions of liquids in equilibrium with amphiboles and the pressures at which they crystallized (4.61–7.8 kbar for the Suite 2 and 1.5–2 kbar for the Suites 1 and 3) are greatly varied. These are indications for a difference in the source regions of the parent magmas of the studied dykes. It is supposed that the Suite 1 and 2 dykes are a conjugate set emplaced due to the NW-SE crustal extension in the Arabian-Nubian shield, whereas the Suite 3 dykes generated due to the rifting along the Red Sea.  相似文献   

4.
Ikizdere Pluton consists of granite, granodiorite, tonalite, monzonite, quartz monzonite containing pinkish colored K-feldspar megacrysts (KFMs). The crystal sizes of the KFMs range from 1 to 4 cm. The lath-shaped megacrysts are uniformly (i.e., randomly) distributed in the host plutonic rocks and have mafic and felsic inclusions whose crystal sizes are smaller than 1 mm. The crystal inclusions are biotite, slightly annitic in composition with XMg[=Fetot/(Fetot+Mg)]=0.50-0.58, amphibole (magnesio-hornblende, XMg[=Mg/(Mg+Fetot)]=0.70-0.79), iron-titanium oxide (low titanium magnetit and ilmenite), plagioclase (Ab75−25An65−35) and as minor quartz. The compositions of the KFMs range from Or95Ab5An0 to Or82Ab17An1. BaO contents of the megacrysts increase from core to rim. The mafic and felsic inclusions are compositionally similar those of the host rocks.The chemical and textural features of K-feldspar are typical for megacrysts that grew as phenocrysts in dynamic granitoidic magma systems. The overgrowth of KFMs and mafic magma injections (magma mixing) may be related to temperature, pressure and compositional fluctuations in the magma chamber. Remnant of earlier formed K-feldspar crystals remain in the felsic magma system, while the mafic injection can decompose some earlier precipitated KFMs. The remnant of K-feldspar remaining after mafic injection are overgrown by rapid diffusion of Ba, K and Na elements in liquid phase, during the later stages of crystallization of the host magma.  相似文献   

5.
河北武安坦岭多斑斜长斑岩的成因:冻结岩浆房活化机制   总被引:5,自引:3,他引:2  
流变学实验表明,当岩浆中晶体体积分数达到约50vol%时,岩浆体实际上处于冻结状态,不再具有整体迁移的能力。但在自然界中仍存在含大量斑晶的浅成火成岩和火山岩。因此,富晶体岩浆的上升过程和侵位机制是近年来地球科学领域关注的热点之一。目前,冻结岩浆房的活化机制主要有二种:升温活化机制和流体活化机制。河北武安坦岭地区新发现的多斑斜长斑岩为揭示冻结岩浆房的活化提供了契机。野外观察和晶体粒度分布(CSD)分析表明,坦岭斜长斑岩中斜长石斑晶高达70vol%,基质为显微晶质结构。斜长石斑晶粒径分布均一,大小约为3.1×1.7mm;显微镜观察和背散射图像揭示,斜长石斑晶具环带结构,由宽广的斜长石核部+宽度可变的条纹长石边部组成,且无熔蚀现象;电子探针成分剖面分析表明,斑晶核部成分为更长石(An_(27)Ab_(71)Or_2),幔部为更长石(An_(13)Ab_(83)Or_4),边部为条纹长石。边部条纹长石的成分有一定变化,从内侧到外侧,主晶钠长石成分由Ab_(53)Or_(47)变为Ab_(99)Or_1,客晶钾长石成分由Ab_(48)Or_(51)变为Ab3Or97。斑晶斜长石核部存在细长条状或斑点状钾长石,且越靠近中心,钾长石斑点的数量越少。这些特点表明,边部条纹长石为交代成因。稀土和微量元素分析则显示,边部条纹长石具弱正Eu异常,相对富集LREE和K、Rb、Ba、Sr等大离子亲石元素,亏损Th、Zr、Nb的特点。CSD相关图解及以上特征表明,斜长石斑晶形成于稳定,封闭的结晶环境,并受到晚期碱交代作用的改造。基质主要由微粒钙质角闪石,条纹长石,石英,钾长石和钠长石组成,含少量自形-半自形磁铁矿和钛铁矿、磷灰石、榍石、金红石和锆石等11种矿物组成。11种矿物相和结构特征暗示基质形成于极端不稳定的结晶环境,与斜长石斑晶形成条件鲜明对照。根据基质的矿物组成,推测形成基质的岩浆具有富含K、Na、Fe、Si和挥发分的特征。这种特征与上述关于条纹长石环边形成条件的判断一致。据此,本文认为:产生斜长石斑晶的岩浆曾经在地壳深部作过长时间滞留,导致了斜长石的稳定结晶,增加了岩浆的粘度和密度,使岩浆处于冻结状态;富碱高铁熔体-流体流的注入大幅降低了岩浆的总粘度,并提高了岩浆的浮力,从而促使冻结岩浆房迅速活化和上升侵位;同时,富碱高铁熔体-流体流强烈交代了先存的斜长石斑晶,使其边部形成条纹长石;这种熔体-流体流则在快速排气,冷却过程中迅速结晶,形成了具有不平衡矿物组合的显微晶质基质。在岩浆侵入体较深部位,富碱高铁熔体-流体经历了很缓慢的固结过程,而相分离产生的流体有可能萃取携带岩浆中的铁质,形成富Fe流体流,后者可能对区内"铁矿浆"型铁矿的形成具有重要的贡献。  相似文献   

6.
《International Geology Review》2012,54(11):1370-1390
ABSTRACT

To better understand the Neoproterozoic tectonic evolution along the northern margin of Yangtze Block, we have determined the geochronological and geochemical compositions of newly recognized bimodal volcanic suite and coeval granites from the western Dabie terrain. LA-ICP-MS zircon U-Pb dating reveals that the felsic and mafic volcanics from the Hong’an unit have crystallization ages of 730 ± 4Ma and 735 ± 5Ma, respectively, indicating that the bimodal suite was erupted during the Neoproterozoic. The Xuantan, Xiaoluoshan, and Wuchenhe granites yield U-Pb ages of 742 ± 4 Ma, 738 ± 4 Ma, and 736 ± 4 Ma, respectively. The felsic volcanic rocks show peraluminous characteristics, and have a close affinity to S-type granite. The mafic volcanic rocks are basalt in compositions, and are likely generated from a depleted mantle source. The granites belong to high-K calc-alkaline and calc-alkaline series, display metaluminous to peraluminous, and are mainly highly fractionated I-type and A-type granite. The granites and felsic volcanics have zircon εHf(t) values of ?16.4 to + 5.6 and two-stage Hf model ages (TDM2) of 1.28 to 2.40 Ga, suggesting that they were partial melting of varying Mesoproterozoic–early-Neoproterozoic crust. The granites have εNd(t) of -14.7 to -1.5, and the two-stage Nd model ages (TDM2) values of 1.54 to 2.61 Ga, also implying the Yangtze crustal contribution. These Neoproterozoic bimodal suite and coeval granites were most likely generated in a rifting extensional setting, triggered by the mantle upwelling, associated with crust–mantle interaction. Intensive magmatic rocks are widespread throughout the South Qingling, Suizhao, western Dabie and eastern Dabie areas during 810–720 Ma, and show peak ages at ~ 740 Ma. Combining regional geology, we support a continental rifting extensional setting for the north margin of the Yangtze Block during the break-up of the supercontinent Rodinia.  相似文献   

7.
Eight feldspar phases have been distinguished within individual alkali feldspar primocrysts in laminated syenite members of the layered syenite series of the Klokken intrusion. The processes leading to the formation of the first four phases have been described previously. The feldspars crystallized as homogeneous sodian sanidine and exsolved by spinodal decomposition, between 750 and 600 °C, depending on bulk composition, to give fully coherent, strain-controlled braid cryptoperthites with sub-μm periodicities. Below ~500 °C, in the microcline field, these underwent a process of partial mutual replacement in a deuteric fluid, producing coarse (up to mm scale), turbid, incoherent patch perthites. We here describe exsolution and replacement processes that occurred after patch perthite formation. Both Or- and Ab-rich patches underwent a new phase of coherent exsolution by volume diffusion. Or-rich patches began to exsolve albite lamellae by coherent nucleation in the range 460–340 °C, depending on patch composition, leading to film perthite with ≤1 μm periodicities. Below ~300 °C, misfit dislocation loops formed, which were subsequently enlarged to nanotunnels. Ab-rich patches (bulk composition ~Ab91Or1An8), in one sample, exsolved giving peristerite, with one strong modulation with a periodicity of ~17 nm and a pervasive tweed microtexture. The Ab-rich patches formed with metastable disorder below the peristerite solvus and intersected the peristerite conditional spinodal at ~450 °C. This is the first time peristerite has been imaged using TEM within any perthite, and the first time peristerite has been found in a relatively rapidly cooled geological environment. The lamellar periodicities of film perthite and peristerite are consistent with experimentally determined diffusion coefficients and a calculated cooling history of the intrusion. All the preceding textures were in places affected by a phase of replacement correlating with regions of extreme optical turbidity. We term this material ultra porous late feldspar (UPLF). It is composed predominantly of regions of microporous very Or-rich feldspar (mean Ab2.5Or97.4An0.1) associated with very pure porous albite (Ab97.0Or1.6An1.4) implying replacement below 170–90 °C, depending on degree of order. In TEM, UPLF has complex, irregular diffraction contrast similar to that previously associated with low-temperature albitization and diagenetic overgrowths. Replacement by UPLF seems to have been piecemeal in character. Ghost-like textural pseudomorphs of both braid and film parents occur. Formation of patch perthite, film perthite and peristerite occurred 104–105 year after emplacement, but there are no microtextural constraints on the age of UPLF formation.  相似文献   

8.
The upper greenschist - lower amphibolite facies, argillaceous to chemical-exhalative metasedimentary sequence of the Mesoarchaean Ghattihosahalli Schist Belt (GHSB), southern India, has been examined with a special focus on the paragenesis and solid solution characteristics of barian feldspars and associated dioctahedral Ba-Cr-bearing micas. Barian feldspars occur as untwinned porphyroblasts in a recrystallized finely banded matrix of barite, quartz and minor white mica. Idioblastic celsian (Cls98-76Or2-20Ab1-8) and hyalophane (Cls55-39Or35-51Ab10) predate the greenschist-facies foliation, whereas xenoblastic hyalophane (Cls44-35Or45-59Ab8–17) and mantles on celsian (Cls45-35Or42-60Ab13-5) as well as xenoblastic barian K-feldspar (Cls6Or90Ab2) postdate the last fabric-defining event. The preservation of extremely complex zoning patterns down to the micron-scale shows that diffusional homogenization did not operate at fluid-present low to medium-grade conditions (350–550 °C, 3–5 kb). Microstructures indicate that at these conditions barian feldspars deform exclusively by brittle fracturing and do not undergo recrystallization. Barian feldspar compositions confirm the positive correlation of Na-content with temperature and the existence of a narrow asymmetric compositional gap (Cls90-85?Cls55, ~350 °C) which probably closes at lower amphibolite facies conditions (Xc ~Cls75; Tc ~550 °C). White micas are solid solutions of the end-members muscovite, ganterite (Ba0.5?K0.5)Al2(Al1.5Si2.5)O10(OH)2, paragonite, celadonite with a significant substitution of [VI]Al by Cr. Zoning is a common feature with cores being enriched in Ba. The data document extensive Ba substitution for K from muscovite to ganterite, exclusively controlled by the coupled substitution [XII]K + [IV]Si ? [XII]Ba + [IV]Al and strongly dependent on bulk composition. The extent of solid solution from (Ms+Gnt) towards paragonite and celadonite end-members is controlled by the miscibility gap in the (Ms+Gnt)–Pg–Cel pseudoternary, with the Pg-substitution depending on temperature and the Cel-substitution on pressure. [IV]Si values between 3.1 and 3.3 in Ba-poor micas indicate minimum pressures of chemical equilibration in the order of 3–5 kbar, while the most sodian compositions of low-celadonite micas provide an upper temperature estimate of ~550 °C, consistent with P-T estimates for assemblages of metapelites (500–550 °C, 4–5 kb).  相似文献   

9.
An unusual magmatic three-feldspar syenogabbro occurs 3 m inside the contact of the Klokken gabbro-syenite stock. It contains plagioclase, mesoperthite and cryptoperthite, together with a low temperature symplectite intergrowth. Textural relationships have been investigated by cathodoluminescence, bulk chemistry by microprobe, and exsolution microtextures and intracrystalline boundaries by TEM. The mesoperthite has a bulk composition around Or26Ab52An22, well outside accepted limits of ternary feldspar solid solution. It is a mainly coherent, lamellar intergrowth of sodic andesine and orthoclase with incipient Mtwinning. The cryptoperthite, bulk composition around Or61Ab33An6, is a coherent lamellar intergrowth of orthoclase and sodic low oligoclase. The compositions of the exsolved phases have been estimated. The meso- and cryptoperthite crystals have sharp boundaries with each other. Plagioclase (zoned An 55-35, with 2–3% Or) defines a solidus fractionation path. It behaved as an inert phase during crystallization of the perthites, which grew as homogeneous monoclinic phases in equilibrium on the strain-free ternary solvus, defining a solvus isotherm at ~ 950° C. Both of the monoclinic phases exsolved on reaching the coherent ternary spinodal at temperatures estimated to be close to 800–850° C and 700–830° C respectively. Lamellar periodicities (529±149 nm and 148±18 nm respectively) are considerably finer scale than predicted by coarsening experiments, suggesting that An and/or Al-Si order greatly inhibit coarsening. The symplectite is a coarse, incoherent intergrowth of sodic andesine and nearly pure K-feldspar, probably produced by simultaneous crystallization at <400° C. The new data and literature analyses are used to construct the geometry of the ternary feldspar system. Solvus isotherms implied by existing experimental data approach the Ab apex too closely at high temperature. The critical solution curve becomes slightly more albitic after leaving the binary Ab-Or join, and then turns sharply towards the An-Or join. It intersects the proposed new limit of feldspar solid solution near Or36Ab44An20 at 1,060° C. This probably approximates to the highest temperature on the ternary critical curve at 1 bar.  相似文献   

10.
《International Geology Review》2012,54(13):1522-1558
The Melrose Stock in the Dolly Varden Mountains of east-central Nevada is one of the many Mesozoic intrusion s in the Basin and Range Province. It consists of monzonites, quartz monzonites, granodiorites, and granites sharply intruding Mississippian to Triassic units. Phenocrysts of plagioclase (An38–An24) with oscillatory zoning and albitic rims, hornblende ± diopside, and biotite are common. Coexisting phases include orthoclase, quartz and accessory magnetite, apatite, titanite, ilmenite, and allanite. Mineral compositions suggest that the intrusion was emplaced at ~720 ± 40°C and 1.8–2.3 kbar.

All rocks are metaluminous to slightly peraluminous, defining a calcalkalic trend in which the monzonites and syenites are shoshonitic. Rare earth element patterns indicate that all studied rock types are comagmatic. Harker plots show curvilinear trends with some kinks consistent with fractionation, and mixing/assimilation. Major-element modelling and petrographic evidence suggest three stages of fractionation/mixing: Stage 1 marked by the fractionation of diopside and plagioclase; Stage 2 by fractionation of plagioclase, hornblende ± orthoclase ± biotite, accompanied by mixing through convection; and Stage 3 by fractionation of biotite, hornblende, plagioclase, and orthoclase.

Mineralogic, petrographic, and major- and trace-element data demonstrate that all rocks are I-type granitoids, suggesting a significant mantle contribution. Spider diagrams show troughs for Ti, P, and Nb, indicating magma genesis in a subduction-zone setting. Discrimination diagrams classify all rocks as late orogenic. Magma was therefore generated from mantle metasomatized by subduction, differentiated to a monzonitic magma, and emplaced in the thinned continental crust during a period of extension late in the cycle of Elko orogeny.  相似文献   

11.
The chemical variation observed in a suite of fifteen aphyric peralkaline phonolite dykes of mid-Gardar age from the vicinity of the Grønnedal-Íka alkaline complex in south-west Greenland is discussed. From relationships in the system Na2O-K2O-Al2O3-SiO2 it is argued that the members of the series are related by the fractionation of feldspar approximating to Ab55Or40An5 in composition, along with augite and lesser amounts of other ferromagnesian minerals. The bearing of these rocks on phase equilibria in the analogous natural system is discussed, and consideration is given to the possible origins of the initial peralkaline phonolite magma.  相似文献   

12.
Plagioclase feldspars with mean compositions Ab91,3Or4,7An4,0 and Ab88,7An10,1Or1,2 have been studied by transmission electron microscopy and electron diffraction. The substructure consists of thin lamellae of albite and oligoclase. Two types of orientations of the lamellar planes were observed. The orientation of the more common type was found to change from (08 \(\bar 1\) ) to about ( \(\bar 1\) , 21, \(\bar 2\) ) as a function of the mean potassium content. The plane of the other type was found to be near ( \(\bar 7\) 12). Only the first type of lamellae produces visible Schiller colours.  相似文献   

13.
The Mboutou complex is one of a line of early Tertiary ringcomplexes which runs from Lake Chad to the Gulf of Guinea, noneof which has hitherto been described in detail. The main rocktypes are layered gabbros and gabbronorites, with minor bodiesof quartz-syenodiorite, quartz-syenite and hypersolvus granite.Feldspars form a continuum with exceptional compositional range,from An85Ab13Or2 to around An1Ab46Or55, and form an entirelyhypersolvus sequence with very strong zoning in the syenodiorites.Ca-rich clinopyroxenes (salite and calcic augite) and olivines(Fo78–62) have restricted range. Orthopyroxene-bearingleucogabbros and syenodiorites contain minor orthopyroxene (En62Fs35Wo3)and quartz; olivine and orthopyroxene never coexist. In moreevolved rocks amphibole (magnesio-hornblende to ferroedenite)and minor biotite, showing progressive Fe-enrichment, are theonly mafic silicates.Major-element rock chemistry, minor elementsin clinopyroxenes and biotite chemistry show that, notwithstandingits thoroughly anorogenic setting, Mboutou was, at the outset,only very mildly alkaline. Its more evolved members embarkedon a line of evolution with some calc-alkaline characteristics,probably because of ingress of water into residual batches ofmagma, a possibility supported by stable isotope data. Thischange in behaviour corresponded with the sudden appearanceof quartz and orthopyroxene, which was not in equilibrium withclinopyroxene on the two-pyroxene surface. Amphibole then becamethe main mafic silicate with further increase in . The more evolved rocks are relatively highly altered,but Fe-Ti oxide pairs suggest that was maintained near to and above the QFM buffer and the rangeof biotite compositions further suggests crystallization undera regime of decreasing . Biotites maintain alkaline characteristics throughout the sequence. Zoningpatterns in the ternary feldspars in the syenodiorites, andthe hypersolvus character of the final granite, limit maximumvalues of to < 1 kb, and suggest minimum temperatures for the end of crystallizationin the syenodiorites of{small tilde} 850 ?C.  相似文献   

14.
《International Geology Review》2012,54(10):1222-1243
ABSTRACT

Neoproterozoic I-type granites could provide vital insights into the crust–mantle interaction and the crustal evolution along the western Yangtze Block, South China. This paper presents new zircon U–Pb ages, bulk-rock geochemistry, and in situ zircon Lu–Hf isotope on the Dalu I-type granites from the southwestern Yangtze Block. Zircon U–Pb dating show the crystallization ages of 781.1 ± 2.8 Ma for granodiorites and 779.8 ± 2.0 Ma for granites, respectively. The Dalu granodiorites are Na-rich, calc-alkaline, metaluminous to slightly peraluminous (A/CNK = 0.94–1.08). Zircons from granodiorite have positive εHf(t) values (+2.16 to +7.39) with crustal model ages of 1.21–1.54 Ga, indicating juvenile mafic lower crust source. The Dalu granites are high-K calc-alkaline, peraluminous rocks. They have variable zircon εHf(t) values (?4.65 to +5.80) with crustal model ages of 1.31–1.97 Ga, suggesting that they were derived from the mature metasediment-derived melts by the mixing of newly formed mafic lower crust-derived melts. The geochemical variations in Dalu pluton is dominated not only by the different source rocks but also by the different melting temperatures. Combining with the geochemistry and isotopic compositions of I-type granitoids and tectonic setting in the western Yangtze Block, we propose that the Dalu I-type granodiorites–granites associations are the magmatic response from different crustal levels, which were induced by the heat anomaly due to the asthenosphere upwelling in the subduction-related setting.  相似文献   

15.
The Precambrian basement rocks exposed along Qift–Quseir asphaltic road, central Eastern Desert of Egypt, exhibit two contrasted tectonic units, each of which has its own lithology structural style and grade of metamorphism. They are intruded by dolerite and diorite dykes. The alkali (Na2O+K2O) and TiO2 contents increase whereas Al2O3, FeO, MgO, CaO and MnO decrease with increasing SiO2 from dolerites to diorites. The trace elements Ti, Zr, Cr, Y and Ni indicate that the dolerites are tholeiitic with slight tendency toward calc-alkaline and formed from basaltic magma in an active continental margin, while diorites are calc-alkaline and were formed by fractional crystallisation of high-alumina basaltic magma in an island arc and active continental margin tectonic environment where they probably represent the forerunner of G1 granites. The molecular ratios Mg values (MgO×100/MgO+FeO) of dolerites range from 47 to 49 while those of diorite range from 51 to 59, indicating that the dolerite and diorite have suffered mild fractionation. Mineral chemistry for the diorites shows that the amphiboles are classified as magnesiohornblende and the plagioclase composition is An39–42 (i.e. the narrow range indicate that the pluton has not suffered extensive fractional crystallisation). The Al content of amphibole displays significant variation with pressure and temperature, also the change of the Ca/(Ca+Na) ratio of plagioclase is dependent on temperature. The amphibole–plagioclase geothermobarometer suggested the P-T formation conditions of studied dykes as 2 kbar and 600 °C.  相似文献   

16.
The western Kunlun orogen occupies a key position along the tectonic junction between the Pan-Asian and Tethyan domains, reflecting Proto- and Palaeo-Tethys subduction and terrane collision during early Palaeozoic to early Mesozoic time. We present the first detailed zircon U–Pb chronology, major and trace element, and Sr–Nd–O–Hf isotope geochemistry of the Qiukesu pluton and its microgranular enclaves from this multiple orogenic belt. SHRIMP zircon U–Pb dating shows that the Qiukesu pluton was emplaced in the early Silurian (ca. 435 Ma). It consists of weakly peraluminous high-K calc-alkaline monzogranite and syenogranite, with initial 87Sr/86Sr ratios of 0.7131–0.7229, ?Nd(T) of –4.1 to –5.7, δ18O of 8.0–10.8‰, and ?Hf(T) (in situ zircon) of –4.9. Elemental and isotopic data suggest that the granites formed by partial melting of lower-crustal granulitized metasedimentary-igneous Precambrian basement triggered by underplating of coeval mantle-derived enclave-forming intermediate magmas. Fractional crystallization of these purely crustal melts may explain the more felsic end-member granitic rocks, whereas such crustal melts plus additional input from coeval enclave-forming intermediate magma could account for the less felsic granites. The enclaves are intermediate (SiO2 57.6–62.2 wt.%) with high K2O (1.8–3.6 wt.%). They have initial 87Sr/86Sr ratios of 0.7132–0.7226, ?Nd(T) of –5.0 to –6.0, δ18O of 6.9–9.9‰, and ?Hf(T) (in situ zircon) of –8.1. We interpret the enclave magmas as having been derived by partial melting of subduction-modified mantle in the P–T transition zone between the spinel and spinel-garnet stability fields. Our new data suggest that subduction of the Proto-Tethyan oceanic crust was continuous to the early Silurian (ca. 435 Ma); the final closure of the Proto-Tethys occurred in the middle Silurian.  相似文献   

17.
ABSTRACT

This paper presents geochronological, geochemical, and zircon Hf–O isotope data for late Mesozoic intrusive rocks from the northeastern North China Craton (NCC), with the aim of constraining the late Mesozoic tectonic nature of the NE Asian continental margin. U–Pb zircon data indicate that the Late Mesozoic magmatism in the northeastern NCC can be subdivided into two stages: Late Jurassic (161 ? 156 Ma) and Early Cretaceous (125 ? 120 Ma). Late Jurassic magmatism consists mainly of monzogranites. These monzogranites display high Sr/Y ratios and the tetrad effect in their REE, respectively, and have negative εHf(t) values (?22.6 to ?15.8). The former indicates that the primary magma was generated by partial melting of thickened NCC lower crust, the latter suggests that the monzogranites were crystallized from highly fractionated magma, with the primary magma derived from partial melting of lower continental crust. Combined with the spatial distribution and rock associations of the Late Jurassic granitoids, we conclude that the Late Jurassic magmatism in the eastern NCC formed in a compressional environment related to oblique subduction of the Paleo-Pacific Plate beneath the Eurasia. The Early Cretaceous magmatism consists mainly of granitoids and quartz diorites. The quartz diorites formed by mixing of melts derived from the mantle and lower crust. The coeval granitoids are classified as high-K calc-alkaline and metaluminous to weakly peraluminous series. Some of the granitoids are similar to A-type granites. The granitoid εHf(t) values and TDM2 range from ?14.3 to ?1.4 and 2089 to 1274 Ma, respectively. These values indicate that their primary magma was derived from partial melting of lower crustal material of the NCC, but with a contribution of mantle-derived material. We therefore conclude that Early Cretaceous magmatism in the northeastern NCC occurred in an extensional environment related to westward subduction of the Paleo-Pacific Plate beneath Eurasia.  相似文献   

18.
Zircon U–Pb ages and geochemical and isotopic data for Late Ordovician granites in the Baoshan Block reveal the early Palaeozoic tectonic evolution of the margin of East Gondwana. The granites are high-K, calc-alkaline, metaluminous to strongly peraluminous rocks with A/CNK values of 0.93–1.18, are enriched in SiO2, K2O, and Rb, and depleted in Nb, P, Ti, Eu, and heavy rare earth elements, which indicates the crystallization fractionation of the granitic magma. Zircon U–Pb dating indicates that they formed at ca. 445 Ma. High initial 87Sr/86Sr ratios of 0.719761–0.726754, negative ?Nd(t) values of –6.6 to –8.3, and two-stage model ages of 1.52–1.64 Ga suggest a crustal origin, with the magmas derived from the partial melting of ancient metagreywacke at high temperature. A synthesis of data for the early Palaeozoic igneous rocks in the Baoshan Block and adjacent Tengchong Block indicates two stages of flare-up of granitic and mafic magmatism caused by different tectonic settings along the East Gondwana margin. Late Cambrian to Early Ordovician granitic rocks (ca. 490 Ma) were produced when underplated mafic magmas induced crustal melting along the margin of East Gondwana related to the break-off of subducted Proto-Tethyan oceanic slab. In addition, the cession of the mafic magmatism between late Cambrian-Early Ordovician and Late Ordovician could have been caused by the collision of the Baoshan Block and outward micro-continent along the margin of East Gondwana and crust and lithosphere thickening. The Late Ordovician granites in the Baoshan Block were produced in an extensional setting resulting from the delamination of an already thickened crust and lithospheric mantle followed by the injection of synchronous mafic magma.  相似文献   

19.
We studied the mineralogy, mineral chemistry, and compositions of 48 interior silicate inclusions and a large K-rich surface inclusion from the Colomera IIE iron meteorite. Common minerals in the interior silicate inclusions are Cr diopside and Na plagioclase (albite). They are often enclosed by or coexist with albitic glasses with excess silica and minor Fe-Mg components. This mineral assemblage is similar to the “andesitic” material found in the Caddo County IAB iron meteorite for which a partial melt origin has been proposed. The fairly uniform compositions of Cr diopside (Ca44Mg46Fe10) and Na plagioclase (Or2.5Ab90.0An7.5 to Or3.5Ab96.1An0.4) in Colomera interior inclusions and the angular boundaries between minerals and metal suggest that diopside and plagioclase partially crystallized under near-equilibrium conditions from a common melt before emplacement into molten metal. The melt-crystal assemblage has been called “crystal mush.” The bulk compositions of the individual composite inclusions form an array between the most diopside-rich inclusion and plagioclase. This is consistent only with a simple mechanical mixing relationship, not a magmatic evolution series. We propose a model in which partly molten metal and crystal mush were mixed together by impact on the IIE parent body. Other models involving impact melting of the chondritic source material followed by growth of diopside and plagioclase do not easily explain near equilibrium growth of diopside and Na plagioclase, followed by rapid cooling. In the K-rich surface inclusion, K feldspar, orthopyroxene, and olivine were found together with diopside for the first time. K feldspar (sanidine, Or92.7Ab7.2An0.1 to Or87.3Ab11.0An1.7) occurs in an irregular veinlike region in contact with large orthopyroxene crystals of nearly uniform composition (Ca1.3Mg80.5Fe17.8 to Ca3.1Mg78.1Fe18.9) and intruding into a relict olivine with deformed-oval shape. Silica and subrounded Cr diopside are present within such K-feldspar regions. Some enrichments of the albite component have been detected at the end of curved elongated nodules of K feldspar intruded into the mafic silicates. The textural relationships suggest that a K-rich melt was present. A K-rich melt is neither the first melt of a chondritic system nor a differentiation product of a Na-rich partial melt of chondritic material. The K-rich material may have originated as a fluid phase that leached K from surrounding materials and segregated by a mechanism similar to that proposed for the Na-rich inclusions.  相似文献   

20.
Triassic A-type granites in eastern South China Block (SCB) are abundant in the Wuyi–Yunkai tectonic domain and provide an important opportunity to explore the early Mesozoic evolution of continental crust of the SE part of the SCB. We carried out U–Pb zircon dating, Lu–Hf isotope analyses of zircon, and whole-rock geochemical analyses for two granitic plutons, the Guiyantou (GYT) and Luoguyan (LGY) granites, from northwestern Fujian Province. LA–ICP–MS U–Pb zircon analyses yielded ages of 232 ± 4 to 231 ± 7 Ma and 221 ± 5 Ma (Middle-Late Triassic) for the GYT and LGY granites. These two granites belong to metaluminous to weakly peraluminous high K calc-alkaline A-type granite that are enriched in K, Al, light rare earth element and Rb, Th, U, and Pb, and depleted in Nb, Ta, P, and Ti. Their rare earth element patterns are highly fractionated with (La/Yb)N ratios of 2–21 and strong negative Eu anomalies (Eu/Eu* = 0.02–0.31). In situ Hf isotopic analysis of zircon from the GYT and LGY granites yielded εHf(t) values ranging from –11.5 to –1.1, with corresponding two-stage Hf model ages from 1.98 to 1.33 Ga, from which it is inferred that the GYT and LGY magmas formed by partial melting of Proterozoic metasedimentary rock in the Cathaysia block. The two granites were emplaced at 232 and 221 Ma and together with Triassic A-type granites in coastal region of the SCB, which is in agreement with an extensional tectonic setting in the Middle-Late Triassic. We suggest that the Middle-Late Triassic A-type granites in eastern SCB were probably formed in an intracontinental, post-orogenic extensional regime that collision was between the SCB and an ‘unknown block’ or the eastern extension of Indochina block.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号