首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Early Caledonian Central Asian Orogenic Belt hosts fragments of continental blocks with Early and Late Precambrian crystalline basement. One of the structures with an Early Precambrian basement was thought to be the Dzabkhan microcontinent, which was viewed as an Early Precambrian “cratonal terrane”. The first geochronologic data suggest that the basement of the Dzabkhan microcontinent includes a zone of crystalline rocks related to Late Riphean tectonism. Geological, geochronological (U-Pb zircon dates), and Nd isotopic-geochemical data were later obtained on the northwestern part of the Dzabkhan microcontinent. The territory hosts the most diverse metamorphic complexes thought to be typical of the Early Precambrian basement. The complexes were determined to comprise the Dzabkhan-Mandal and Urgamal zones of high-grade metamorphic rocks. Gabbrodiorites related to the early metamorphic episode and dated at 860 ± 3 Ma were found in the Dzabkhan-Mandal zone, and the gneiss-granites marking the termination of this episode were dated at 856 ± 2 Ma. The granitoids of the Dzabkhan batholith, whose emplacement was coeval with the termination of the late high-grade metamorphic episode in rocks of both zones, have an age of 786 ± 6 Ma. Similar age values were determined for the granitoids cutting across the Late Precambrian rocks of the Songino and Tarbagatai blocks, which mark the stage when the mature Late Riphean continental crust was formed. The Late Riphean magmatic and metamorphic rocks of the Dzabkhan microcontinent were found out to have Nd model ages mostly within the range of 1.1–1.4 Ga at ?Nd(T) from +1.9 to +5.5. The Nd model age of the metaterrigenous rocks is 2.2?1.3 Ga at ?Nd(T) from ?7.2 to +3.1. The results of our studies provide evidence of convergence processes, which resulted in the Late Riphean (880?780 Ma) continental crust in Central Asia. Simultaneously with these processes, divergence processes that were responsible for the breakup of Rodinia occurred in the structures of the ancient cratons. It is reasonable to suggest that divergence processes within ancient continental blocks and Rodinia shelf were counterbalanced by the development of the Late Riphean continental crust in the convergence zones of its surrounding within established interval.  相似文献   

2.
The Early Caledonian folded area in Central Asia (Early Caledonian superterrane) hosts micro-continent fragments with an Early and Late Precambrian crystalline basement, the largest of them being the Dzabkhan and Tuva-Mongolian fragments. Their junction zone hosts exposures of crystalline rocks that were previously thought to be part of the Early Precambrian Dzabkhan microcontinent. The Bayannur zone in the southern part of the Songino block hosts the Baynnur gneiss-migmatite and Kholbonur metavolcanic-terrigenous metamorphic complexes. The former is believed to be the Early Proterozoic crystalline basement, and the latter is thought to unconformably overly the Late Riphean cover complex of the Songino block. Various rocks of the tectono-stratigraphic complexes in the Bayannur zone were studied geologically and geochronologically (by the U-Pb technique of zircon). Regional metamorphism and folding in the Bayannur Complex were dated at 802 ± 6 Ma. The Nd model ages lie within the range of 1.5–2.0 Ga and thus preclude the correlation of these rocks with those in the Archean and Early Proterozoic basement of the Dzabkhan microcontinent. The upper age limit for folding and metamorphism in the Bayannur zone is marked by postkinematic granites dated at 790 ± 3 Ma, and the lower limit of the volcano-sedimentary complex is determined by the Nd model age of the sandstone (1.3 Ga). The upper age limit of the volcano-plutonic rocks in this zone is set by the gabbroids and anorthosites: 783 ± 2 and 784 ± 3 Ma, respectively. The complex of island-arc granitoids in the Bayannur zone is dated at 859 ± 3 Ma. The age constraints make it possible to correlate crystalline rocks in the Bayannur Complex of the Sangino block and the Dzhargalant Complex in the Tarbagatai block. Currently available data testify that the Precambrian Khangai group of blocks in the Early Caledonian Central Asian superterrane includes continental crustal blocks related to the processes of Early Precambrian, Late Riphean, and Vendian tectonism.  相似文献   

3.
塔里木克拉通基底古隆起构造-热事件及其结构与演化   总被引:10,自引:4,他引:6  
通过盆地内部锆石U-Pb测年分析表明,塔里木克拉通基底存在2950~ 3100Ma、2100 ~ 2400Ma、1900~2000Ma、1300~1600Ma、900 ~ 950Ma、700~800Ma、540 ~ 560Ma、400~ 500Ma和270~290Ma等9期构造-热事件.中央航磁异常带井下花岗岩锆石SHRIMP U-Pb年龄测定发现1908.2±8.6Ma前寒武纪基底,表明盆地内部可能存在古元古代构造-热事件形成的古老花岗岩基底.结合新的地质与地球物理资料综合分析,塔里木盆地前寒武纪具有不同年代、不同类型的基底结构,北部为中-新元古代中浅变质岩基底、中部为古元古代花岗岩基底、南部为新元古代早-中期岩浆岩与变质岩基底、东南部为遭受早志留纪区域变质改造的变质岩基底.井震结合发现塔里木盆地寒武系/前寒武系发育广泛分布的大型不整合,形成塔北与塔南两大前寒武纪基底古隆起,可能与550Ma“泛非运动”相关.塔里木盆地基底古隆起主要经历5期演化,古元古代中期形成克拉通化基底,新元古代早期形成统一的变质结晶基底,寒武纪沉积前两大基底古隆起形成,加里东晚期五大基底古隆起基本定型,海西期以来发生局部调整改造.  相似文献   

4.
The U-Pb SHRIMP age determinations of zircons from the Habach terrane (Tauern Window, Austria) reveal a complex evolution of this basement unit, which is exposed in the Penninic domain of the Alpine orogen. The oldest components are found in zircons of a metamorphosed granitoid clast, of a migmatitic leucosome, and of a meta-rhyolitic (Variscan) tuff which bear cores of Archean age. The U-Pb ages of discordant zircon cores of the same rocks range between 540 and 520 Ma. It is assumed that the latter zircons were originally also of Archean origin and suffered severe lead loss, whilst being incorporated into Early-Cambrian volcanic arc magmas. The provenance region of the Archean (2.64-2.06 Ga) zircons is assumed to be a terrane of Gondwana affinity: i.e., the West African craton (Hoggar Shield, Reguibat Shield). The Caledonian metamorphism left a pervasive structural imprint in amphibolite facies on rocks of the Habach terrane; it is postdated by discordant zircons of a migmatitic leucosome at <440 Ma (presumably ca. 420 Ma). Alpine and Variscan upper greenschist- to amphibolite-facies conditions caused partial lead loss in zircons of a muscovite gneiss ('white schist') only, where extensive fluid flow and brittle deformation due to its position near a nappe-sole thrust enhanced the grains' susceptibility to isotopic disturbance. The Habach terrane - an active continental margin with ensialic back-arc development - showed subduction-induced magmatic activity approx. between 550 and 507 Ma. Back-arc diorites and arc basalts were intruded by ultramafic sills and subsequently by small patches of mantle-dominated unaltered and (in the vicinity of a major tungsten deposit) altered granitoids. Fore-arc (shales) and back-arc (greywackes, cherts) basin sediments as well as arc and back-arc magmatites were not only nappe-stacked by the Caledonian compressional regime closing the presumably narrow oceanic back-arc basin and squeezing mafic to ultramafic cumulates out of high-level magma chambers (496-482 Ma). It also induced uplift and erosion of deeply rooted crystalline complexes and triggered the development of a successor basin filled with predominantly clastic greywacke-arkosic sediments. The study demonstrates that the basement rocks exposed in the Habach terrane might be the 'missing link' between similar units of the more westerly positioned External domain (i.e., Aar, Aiguilles Rouges, Mont Blanc) and the Austroalpine domain to the east (Oetztal, Silvretta).  相似文献   

5.
北苏鲁超高压变质带前寒武纪基底研究新进展   总被引:1,自引:0,他引:1  
北苏鲁超高压变质带位于胶东牟平-即墨断裂以东的地区,其前寒武纪基底以出露新元古代的双峰式火成岩为主要特征,其主要岩石组合包括大量花岗片麻岩以及少量变(超)基性岩(榴辉岩)、变沉积岩。对花岗片麻岩、变质(超)基性岩的岩石组合、地球化学、锆石U-Pb和Lu-Hf同位素的研究表明,北苏鲁存在新太古代-古元古代的残留地壳,经历了1.8~2.2 Ga期间的岩浆-火山-变质事件;新元古代中期(0.72~0.80 Ga)与Rodinia超大陆的裂解相关的岩浆活动促使地壳的生长和再造,形成了北苏鲁的前寒武纪基底的主体;北苏鲁和苏鲁-大别造山带一样,其前寒武纪基底是扬子板块北缘的一部分,苏鲁造山带的西北边界是五莲-烟台断裂带。  相似文献   

6.
澜沧江构造带南段变质岩系锆石U-Pb年代学及构造涵义   总被引:4,自引:3,他引:1  
澜沧江构造带南段的古老变质岩系因临沧花岗岩基的大面积出露而呈零星分散状出露,该地区是否存在前寒武纪结晶基底和变质岩系的精确时代以及澜沧江构造带变质岩系的变质时限等问题还不是很清楚。本文以变质岩系为研究对象,挑选出锆石颗粒进行U-Pb SHRIMP定年,获得锆石核部U-Pb年龄是1802Ma、1404Ma、1092Ma、906~961Ma、812Ma和727~623Ma,时代为古元古代、中元古代和新元古代,揭示研究区存在前寒武纪的结晶基底,三叠纪(~230Ma)发育区域性岩浆作用事件,破坏改造了其结晶基底;昌宁-耈街剖面近澜沧江岸边花岗质片麻岩的锆石U-Pb谐和年龄为73.9±1.8Ma(MSWD=1.3,N=6),记录澜沧江构造带变质岩经历了晚白垩世变质事件。综合研究认为澜沧江构造带南段存在区域性前寒武纪结晶基底,构造带中昌宁段之变质岩系的变质时间为晚白垩世(85~74Ma),并一直持续到36Ma,约32Ma之后构造带发生走滑运动,变质事件明显早于走滑运动事件。  相似文献   

7.
Fragments of continental blocks or microcontinents are represented in the Early Caledonian orogenic area of Central Asia (or Early Caledonian superterrane); the largest of these are the Dzabkhan and Tuva-Mongolian microcontinents, with Early and Late Precambrian crystalline basements, respectively. In the linkage zone of these microcontinents, crystalline rocks of the Tarbagatai and Songino blocks that are considered as units of the Early Precambrian ensialic basement of the superterrane are also known. They are composed of strongly metamorphosed rocks formed during the Early Baikalian orogeny about 790 to 820 Ma. U-Pb zircon dating and Nd isotope studies revealed, within the northwestern Dzabkhan microcontinent, the Dzabkhan-Mandal zone of crystalline rocks associated with the Riphean crust-forming process. The age of the gneiss substrate of this zone is estimated as 1.3 to 0.86 Ga. An early episode of metamorphism is dated at about 856 ± 2 Ma. The data available so far indicate a heterogeneous structure of the Dzabkhan microcontinent basement represented by Early Precambrian and Early and Late Baikalian crystalline formations.  相似文献   

8.
The crystalline sheet of the Higher Himalaya, referred to as the Central Crystallines, is a continuous lithotectonic unit which can be traced from the River Kali of eastern Kumaun in the east to Sankoo in the Suru River valley of Kashmir in the west. The principal lithostratigraphic units of this zone are pelites, psammites, gneisses, amphibolites, migmatites and leucocratic granites. The rocks of this zone show progressive regional metamorphism of normal as well as reverse types, the metamorphic grade ranging from chlorite to sillimanite zone. The Main Central Thrust, which demarcates the southern boundary of the Central Crystallines, has brought the crystalline rocks to rest over the sediments of Deoban Group in Kumaun and Garhwal and over the Outer Crystallines (=Chail-Jutogh Nappe) in Himachal Pradesh. The evidence obtained from metamorphism, deformation and radiometric dating indicate that the Central Crystallines is an old Precambrian basement which has been reactivated during Caledonian and Alpine orogenic movements.  相似文献   

9.
青藏高原拉萨地体北部的前寒武纪变质作用及构造意义   总被引:12,自引:0,他引:12  
张泽明  董昕  耿官升  王伟  于飞  刘峰 《地质学报》2010,84(4):449-456
青藏高原南部拉萨地体中分布的角闪岩相至麻粒岩相变质岩一直被认为是前寒武纪变质基底,但并没有获得可靠的年代学证据。本文运用原位锆石U-Pb定年方法,在拉萨地体北部那果地区的变质岩中获得了约720Ma的变质年龄,从而证明拉萨地体北部在新古元代经历了角闪岩相变质作用和近同期的岩浆作用。基于这一成果和在拉萨地体中、南部高级变质岩中陆续获得的中、新生代变质年龄,对拉萨地体变质作用的时、空变化及其成因进行了初步探讨。  相似文献   

10.
黑龙江东部中-新生代盆地演化   总被引:9,自引:2,他引:7  
黑龙江省东部中-新生代盆地基底由佳木斯地块和完达山地体复合而成.佳木斯地块以加里东期变质岩及花岗岩为主,东缘发育晚古生代和早中生代大陆边缘沉积.完达山地体在中-晚侏罗世就位在佳木斯地块东缘,并在早白垩世早期逆冲到佳木斯地块之上,形成具有前陆盆地性质的大三江盆地.大三江盆地在早白垩世晚期遭受逆冲、走滑构造改造.敦密断裂以北的诸多盆地均属大三江盆地改造后的残余盆地.这些残余盆地和完达山地体之下可能存在隐伏的晚古生代和早中生代大陆边缘沉积.三江盆地东部是古近纪断陷的主要发育区,可能存在一与佳依地堑平行的深断陷.隐伏的大陆边缘沉积和断陷是值得重视的油气勘探领域.  相似文献   

11.
Provenance and tectonic history of the Jurassic accretionary complex, Mino terrane, located in the Inner Zone of south‐west Japan, were studied using sandstone framework composition and mudrock geochemistry. Modal analysis of sandstones shows that the tectonic setting of the source area for the studied Mino terrane clastic rocks was uplifted basement, largely dominated by high‐grade metamorphic terrain composed of quartz and feldspar, especially plagioclase. The textural and mineralogical immaturity, extent of alkali and alkaline earth element leaching, low chemical index of alteration values and depleted rare earth element (REE) contents suggest rapid uplift and erosion within the source terrain and a relatively weak weathering intensity. Factor analysis revealed that grain‐size effects governed compositional heterogeneity in the studied sediments. Provenance of the sediments is interpreted as being plagioclase‐enriched felsic basement rock, such as granodiorite, within a continental margin and evolved arc tectonic setting rather than active volcanic arc. Lack of a contribution from active volcanic arcs may have resulted from the cessation of volcanism during the reorganization of the subducting plate system and/or erosion of arc volcanics and exposure of basement. Considering the previous studies on palaeogeography and palaeocurrent reconstruction, the north‐eastern part of the Yeongnam massif in the Korean Peninsula is interpreted as the most probable source area for the studied turbidites. The results of mixing calculation for Mino terrane sediments suggest that Precambrian leucocratic granite and the basement rock of the Cretaceous Gyeongsang Basin shed large amounts of sediments to the Mino trench, whilst Precambrian granitic gneiss and the Triassic pluton supplied lesser amounts. The results of this study reveal that, although active subduction–accretion processes were occurring, the Mino trench was bordered by continental basement rocks. This knowledge contributes to enhanced understanding of the Jurassic palaeogeography of the east Asia continental margin.  相似文献   

12.
相山地区变质基底新认识及其原岩归属的对比研究   总被引:5,自引:0,他引:5  
在相山北部首次发现十字石片岩及堇青石片岩。根据随变质作用增强而出现的新变质矿物,将相山变质岩基底划分为绢云母千枚岩带、黑云母片岩带、铁铝榴石片岩带和十字石片岩带。获得相山地区黑云母片岩-十字石片岩的Rb-Sr等时线年龄值为719Ma,斜长角闪片岩的Rb-Sr等时线年龄值为726.6Ma,表明相山基底变质岩属新元古期变质岩而不是加里东期变质岩。提出并采用微量元素地球化学比值聚类分析方法,确认相山地区变质岩原岩不属震旦系,而与华夏地块(古陆)的陈蔡群相当。  相似文献   

13.
High‐P/low‐T metamorphic rocks of the Hammondvale metamorphic suite (HMS) are exposed in an area of 10 km2 on the NW margin of the Caledonian (Avalon) terrane in southern New Brunswick, Canada. The HMS is in faulted contact on the SE with c. 560–550 Ma volcanic and sedimentary rocks and co‐magmatic plutonic units of the Caledonian terrane. The HMS consists of albite‐ and garnet‐porphyroblastic mica schist, with minor marble, calc‐silicate rocks and quartzite. Pressure and temperature estimates from metamorphic assemblages in the mica schist and calc‐silicate rocks using TWQ indicate that peak pressure conditions were 12.4 kbar at 430 °C. Peak temperature conditions were 580 °C at 9.0 kbar. 40Ar/39Ar muscovite ages from three samples range up to 618–615 Ma, a minimum age for high‐P/low‐T metamorphism in this unit. These ages indicate that the HMS is related to the c. 625–600 Ma subduction‐generated volcanic and plutonic units exposed to the SE in the Caledonian terrane. The ages are also similar to those obtained from detrital muscovite in a Neoproterozoic‐Cambrian sedimentary sequence in the Caledonian terrane, suggesting that the HMS was exposed by latest Neoproterozoic time and supplied detritus to the sedimentary units. The HMS is interpreted to represent a fragment of an accretionary complex, similar to the Sanbagawa Belt in Japan. It confirms the presence of a major cryptic suture between the Avalon terrane sensu stricto and the now‐adjacent Brookville terrane.  相似文献   

14.
华夏地块: 一个由古老物质组成的年轻陆块   总被引:26,自引:3,他引:26  
对华夏地块三个主要前寒武纪地质体出露区变质岩的详细锆石年代学的综合分析显示,华夏地块大致可以被分成武夷山区和南岭-云开区。武夷山区由古元古代核和新元古代(形成于730-820 Ma)的盖层组成,构成华夏地块最老的古陆,在其深部很可能还存在一个新太古代基底。新元古代的沉积物主要来自武夷微古陆本身。南岭与云开具有相似的前寒武纪地壳组成,它们主要是由新元古代形成的沉积物夹少量火山岩组成。这些沉积物质中包含了非常古老的中太古代和新太古代组分,甚至古太古代组成。Grenville期和中元古代组分是其中最丰富的。这些组分在华夏没有对应出露的岩石,说明它们主要来自另外一个曾经与华夏相邻的陆块。该陆块很可能是东印度-东南极大陆。南岭-云开区最初可能是Rodinia超大陆裂解时形成的一个裂谷盆地,加里东的造山运动使盆地中的沉积物挤压、褶皱和隆起,与武夷陆块共同构成了一个新的年轻的大陆  相似文献   

15.
Precambrian basement lithology, as exposed in four tectonic windows of the northcentral Scandinavian Caledonides, comprises uniform sequences of metasedimentary mica schists and gneisses (Børgefjell) as well as mica schists dominated by acid metavolcanics (Bångonåive) with minor basic rocks. The major part, however, is made up of intrusive rocks. Older granites are distributed in the Børgefjell area and to the east of it, obviously related to the Svecofennian Revsund granites. Younger granodiorites/quartzsyenites, subordinate in the Børgefjellet, dominate the Bångonåive window. The Bångonåive area may be tentatively correlated with the Skellefte field, the Børgefjellet with the marine basin of Central Norrland. The younger intrusives may represent marginal parts of a post-Svecofennian orogen farther west. Caledonian deformation considerably affected the Precambrian basement in the tectonic windows, where pre-Caledonian features are only preserved in the innermost parts. A (pre-Caledonian) polyphase structural and metamorphic evolution is evident in both the Børgefjell and Bångonåive windows. Penetrative deformation and medium (?) grade metamorphism prior to acid intrusions were overprinted during succeeding lower grade phases.  相似文献   

16.
The middle Qilian orogenic belt and Lajishan orogenic belt, both of which were formed in the Caledonian, strike NW-SE direction across southeast Qilian Mountains and their basement consists of pre-Caledonian metamorphic rocks with lozenge-shaped ductile shear zones in the crystalline base- ment. The blunt angle between the conjugated ductile shear zones ranges from 104° to 114°, indicating approximate 210° of the maximum principal stress. The plateau ages of muscovite 40Ar/39Ar obtained from the mylonitized rocks in the ductile shear zones of Jinshaxia-Hualong-Keque massif within the middle Qilian massif are (405.1±2.4) Ma and (418.3±2.8) Ma, respectively. The chronology data confirm the formation of ductile shear zones in the Caledonian basement metamorphic rocks during the Cale- donian orogeny. Furthermore, on the basis of basement rock study, precise timing for the closing of the Late Paleozoic volcanic basin (or island-arc basin) and Lajishan ocean basin is determined. This pro- vides us a new insight into the closing of ocean basin in the structural evolution of orogenic belt.  相似文献   

17.
李海龙  张长厚  邹云  邓洪菱  马君 《地质通报》2008,27(10):1698-1708
燕山中部冀东遵化、迁西、青龙一带以太古宇深变质结晶岩系为核部的东西向构造形迹长期以来被认为是一个复式背斜构造,近年来又有学者提出它是一个中生代变质核杂岩。这2种不同认识涉及到华北克拉通北部中生代区域大地构造演化和稳定克拉通内部大型基底结晶岩系的剥露机制问题。对马兰峪背斜南翼和西部倾伏端盖层岩系开展的详细构造研究表明,变形总体表现为连续的褶皱变形及伴生的逆冲构造;构造样式表现为基底卷入式的厚皮构造与盖层内部软弱岩系控制的薄皮构造共存的特征;变形机制表现为顺层挤压导致的纵弯弯曲和相关的断裂构造;近南北向的缩短率介于16%~27%之间。盖层岩系中未发现变质核杂岩构造模型所预期的系列高角度正断层。基底与盖层不整合面接触带尽管在后期构造变形过程中曾经发生过局部的差异性滑动,但并不是造成大规模构造剥蚀和地壳柱切失的剥离断层。因此,冀东马兰峪背斜不是中生代的变质核杂岩,而是水平挤压背景下基底结晶岩系与盖层共同卷入纵弯褶皱变形的厚皮式褶皱构造。  相似文献   

18.
The recent completion of a high-resolution aeromagnetic survey over the Pie de Palo uplift of the western Sierras Pampeanas has revealed an area of large magnetic anomalies associated with the Pie de Palo Complex. The Las Pirquitas thrust, which has transported and uplifted the Pie de Palo Complex, is recognized for at least 30 km in a roughly NE direction along the western boundary of the Pie de Palo Complex, beyond its limited outcrop. The type of sediments of the Caucete Group in the footwall of the Las Pirquitas thrust, which are regarded as the leading edge of the Precordillera terrane, are associated with much less pronounced magnetic anomalies.In addition, a conspicuous, NNE trending, broad magnetic high stands out in the survey, several kilometers to the east of the main outcrops of the Pie de Palo Complex; this broad magnetic anomaly bisects the Pie de Palo basement block, and continues further south at least as far as 32°S, the southern boundary of the latest aeromagnetic survey. This magnetic anomaly is interpreted to represent a structure corresponding to the Grenvillian Precordillera–Pie de Palo tectonic boundary zone, and would comprise the buried largest part of the mafic–ultramafic belt.The geophysical model of the magnetic data indicates that the boundary zone dips to the east, possibly suggesting the existence of a set of synthetic east dipping, west-verging thrusts, of which only one major structure (Las Pirquitas thrust) is exposed; the possibility of other slivers of upthrust boundary zone material cannot be excluded. It is considered that the Pie de Palo Complex represents a small sliver upthrust from the unexposed boundary zone material (containing highly magnetic mafic–ultramafic rocks).The east-dipping, west verging structures associated with the Pie de Palo Complex are suggested to represent an Ordovician reactivation of a Grenvillian suture zone developed when the Precordillera basement and Pie de Palo terrane docked; this reactivation probably resulted from the collision of the Cuyania terrane onto the western margin of Gondwana.  相似文献   

19.
林寺山组是胶莱盆地莱阳群底部重要的地层单元之一.准确限定其沉积时代与物源性质对于客观重建华北陆块东部晚中生代大地构造格局以及周缘造山带/前寒武纪变质基底晚中生代的折返过程具有重要的制约作用.以莱阳盆地蛇窝泊地区莱阳群林寺山组细砾岩为研究对象,对其开展了野外地质调查、岩相学观察、锆石U-Pb测年与锆石稀土元素分析等综合研究,并获得了如下初步认识.(1)林寺山组细砾岩中最小一组碎屑锆石加权平均年龄分别为129±1 Ma与127±5 Ma,结合区域上不整合于莱阳群之上青山群火山岩锆石谐和年龄为119±1 Ma,推测蛇窝泊地区林寺山组沉积时代介于127~119 Ma.(2)蛇窝泊地区林寺山组细砾岩的碎屑锆石年龄变化于2 858~126 Ma之间,并以新太古代晚期与白垩纪早期碎屑锆石为主.前古元古代的碎屑锆石主要来源于胶北前寒武纪变质岩,表明胶北太古宙-古元古代变质岩至少在白垩纪早期已折返至近地表.(3)160~120 Ma岩浆型碎屑锆石主要来源于胶东同时代的中酸性侵入体,暗示在白垩纪早期至少部分160~120 Ma中酸性侵入体已抬升至地表.(4)林寺山组发育少量的二叠纪(280 Ma)和印支期(213 Ma)变质锆石,表明胶东地区可能存在二叠纪约280 Ma区域变质-变形事件,同时暗示早白垩世苏鲁超高压变质岩已经折返到地表.   相似文献   

20.
Mantle fragments of ultramafic composition are widespread in the Scandinavian Caledonides (SC). Lenses and boudins of Alpine-type peridotites in the Scandinavian Caledonides represent parts of dismembered ophiolite sequences and fragments of sub-continental upper mantle. Metaperidotites of nappes in internal positions are generally isofacial with the metamorphic envelope, usually Caledonian metasediments but in places also Precambrian metagranitoids forming the basement cores of the nappes. Caledonian metamorphism strongly modified the texture and mineralogy of the peridotites and resulted in a systematic metamorphic pattern which is consistent with the pattern observed in the envelope.

Metaperidotites of the external massifs display at least a two-stage metamorphic history: an early Caledonian high-pressure high-temperature phase related to early crustal stacking and a late Caledonian regional metamorphic overprint which produced a regular Barrovian-type metamorphic pattern of in-situ metamorphism.

Metaperidotites from nappes in intermediate positions (Iapetus Ocean ophiolites and ultramafic rocks from island arc environments) show strongly diverging histories. Metaperidotites from internal ophiolites (oceanic ophiolites, Köli) lack any evidence of subduction metamorphism, are serpentinized to various degrees, show abundant primary mantle relic mineralogies and the Caledonian metamorphic overprint is low. Metaperidotites from external (island arc) ophiolites and other associations (Seve) often show relic high-pressure metamorphism related to the Finnmarkian phase of the Caledonian orogeny. The Seve metaperidotites are occasionally associated with eclogites and show a weak overprint of late Caledonian regional metamorphism. Alpine-type peridotites are absent in the foreland of the Baltic Shield and in the innermost nappes (Lofoten).

The metamorphic characteristics and evolution recorded by the metaperidotites in the Scandinavian Caledonides allow a general reconstruction of the dynamics of collision belt formation.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号