首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments in the systems diopside-albite (Di-Ab) and diopside-albite-dolomite (Di-Ab-Dmt), doped with a wide range of trace elements, have been used to characterise the difference between clinopyroxene-silicate melt and clinopyroxene-carbonate melt partitioning. Experiments in Di-Ab-Dmt yielded clinopyroxene and olivine in equilibrium with CO2-saturated dolomitic carbonate melt at 3 GPa, 1375 °C. The experiments in Di-Ab were designed to bracket those conditions (3 GPa, 1640 °C and 0.8 GPa, 1375 °C), and so minimise the contribution of differential temperature and pressure to partitioning. Partition coefficients, determined by SIMS analysis of run products, differ markedly for some elements between Di-Ab and Di-Ab-Dmt systems. Notably, in the carbonate system clinopyroxene-melt partition coefficients for Si, Al, Ga, heavy REE, Ti and Zr are higher by factors of 5 to 200 than in the silicate system. Conversely, partition coefficients for Nb, light REE, alkali metals and alkaline earths show much less fractionation (<3). The observed differences compare quantitatively with experimental data on partitioning between immiscible carbonate and silicate melts, indicating that changes in melt chemistry provide the dominant control on variation in partition coefficients in this case. The importance of melt chemistry in controlling several aspects of element partitioning is discussed in light of the energetics of the partitioning process. The compositions of clinopyroxene and carbonate melt in our experiments closely match those of near-solidus melts and crystals in CMAS-CO2 at 3 GPa, suggesting that our partition coefficients have direct relevance to melting of carbonated mantle lherzolite. Melts so produced will be characterised by elevated incompatible trace element concentrations, due to the low degrees of melting involved, but marked depletions of Ti and Zr, and fractionated REE patterns. These are common features of natural carbonatites. The different behaviour of trace elements in carbonate and silicate systems will lead to contrasted styles of trace element metasomatism in the mantle. Received: 15 July 1999 / Accepted: 18 February 2000  相似文献   

2.
We present the variation in trace element partition coefficients measured at the interface between rapidly cooled clinopyroxene crystals and co-existing melts. Results indicate that, as the cooling rate is increased, clinopyroxene crystals are progressively depleted in Si, Ca and Mg counterbalanced by enrichments in Al (mainly tetrahedral Aliv), Na and Ti. Partition coefficients (Ds) for rare earth elements (REE), high field strength elements (HFSE) and transition elements (TE) increase with increasing cooling rate, in response to clinopyroxene compositional variations. The entry of REE into the M2 site is facilitated by a coupled substitution where either Na substitutes for Ca on the M2 site or Aliv substitutes for Si in the tetrahedral site. The latter substitution reflects an increased ease of locally balancing the excess charge at M2 as the number of surrounding Aliv atoms increases. Due to the lower concentration of Ca in rapidly cooled clinopyroxenes, divalent large ion lithophile elements (LILE) on M2 decrease at the expense of monovalent cations. Conversely, higher concentrations of HFSE and TE on the M1 site are facilitated as the average charge on this site increases with the replacement of divalent-charged cations by Alvi. Although crystallization kinetics modify clinopyroxene composition, deviations from equilibrium partitioning are insufficient to change the tendency of a trace element to be compatible or incompatible. Consequently, there are regular relationships between ionic radius, valence of the trace element and D. At both equilibrium and cooling rate conditions, Ds for isovalent cations define parabola-like curves when plotted against ionic radius, consistent with the lattice strain model, demonstrating that the partitioning of trace elements is driven by charge balance mechanisms; cation substitution reactions can be treated in terms of the energetics of the various charge-imbalanced configurations.  相似文献   

3.
准噶尔北缘中泥盆统北塔山组富辉橄玄岩是一种富含单斜辉石斑晶的岛弧玄武岩,被认为是洋脊俯冲作用的产物,但具体成因机制并不清楚。本文对老山口地区富辉橄玄岩进行了岩石地球化学研究,同时系统测定了其单斜辉石斑晶的成分及其环带变化规律。结果表明,富辉橄玄岩的相容元素和不相容元素的变化规律具有岩浆混合作用的特征,而透辉石斑晶的反环带则将岩浆混合作用限定于高Mg~#熔浆的上涌过程。富辉橄玄岩极高的相容元素含量将上涌的高Mg~#熔浆限定为苦橄质熔浆,而富辉橄玄岩中顽透辉石是被苦橄质熔体携带而来的斑晶物质。主导老山口富辉橄玄岩形成的岩浆过程是苦橄质熔浆的连续补给过程,而苦橄质熔浆被认为是板片窗处软流圈高程度部分熔融的产物。老山口富辉橄玄岩形成的岩浆过程与洋脊俯冲的板片窗模型吻合,因此老山口富辉橄玄岩可能是洋脊俯冲的产物。  相似文献   

4.
刘鑫  汤艳杰 《岩石学报》2018,34(11):3315-3326
冀西北姚家庄存在一套晚三叠世的超镁铁岩-正长岩杂岩体,岩体内发育具有环带特征的单斜辉石。辉石的环带有两种:简单环带和复杂环带。简单环带一般为正环带,辉石核部的MgO和Cr2O3含量高,Si O2、Fe O和Na2O含量低;边部的主要氧化物含量与核部刚好相反。简单正环带可以分为两类,其中核边接触带平滑、由核到边化学成分具有渐变特征的正环带辉石可能是岩浆在分离结晶或地壳混染过程中形成。而核边接触带有熔蚀结构、由核到边化学成分突变的正环带辉石可能是早期结晶的辉石颗粒受到晚期低镁岩浆的溶蚀改造而成的。复杂环带具有核-幔-边结构,其中,核部低镁高铁、幔部高镁低铁、边部与核部相似,但其Mg#更低,这些特征暗示了岩浆混合作用的存在,形成辉石核部的母岩浆可能来自富集的岩石圈地幔,幔部高Mg#的特征指示了软流圈地幔物质的贡献,其边部低Mg#的特征则指示了地壳物质的加入。具有韵律环带的复杂辉石是在岩浆多期侵入的过程中形成的。辉石环带的组成特征表明,姚家庄杂岩体是由岩浆多期侵位形成的,后期侵入的岩浆与前期就位的岩浆不断反应,形成了具有多种不同环带特征的辉石,并最终形成了空间上由外到内依次为辉石岩、辉石正长岩和正长岩的环状杂岩体。结合前人的研究成果,推测形成姚家庄岩体的岩浆主要来源于富集的岩石圈地幔,并由少量地壳组分和软流圈物质的贡献。  相似文献   

5.
 A variety of cognate basalt to basaltic andesite inclusions and dacite pumices occur in the 7-Ma Rattlesnake Tuff of eastern Oregon. The tuff represents ∼280 km3 of high-silica rhyolite magma zoned from highly differentiated rhyolite near the roof to less evolved rhyolite at deeper levels. The mafic inclusions provide a window into the processes acting beneath a large silicic chamber. Quenched basaltic andesite inclusions are substantially enriched in incompatible trace elements compared to regional primitive high-alumina olivine tholeiite (HAOT) lavas, but continuous chemical and mineralogical trends indicate a genetic relationship between them. Basaltic andesite evolved from primitive basalt mainly through protracted crystal fractionation and multiple cycles (≥10) of mafic recharge, which enriched incompatible elements while maintaining a mafic bulk composition. The crystal fractionation history is partially preserved in the mineralogy of crystal-rich inclusions (olivine, plagioclase ± clinopyroxene) and the recharge history is supported by the presence of mafic inclusions containing olivines of Fo80. Small amounts of assimilation (∼2%) of high-silica rhyolite magma improves the calculated fit between observed and modeled enrichments in basaltic andesite and reduces the number of fractionation and recharge cycles needed. The composition of dacite pumices is consistent with mixing of equal proportions of basaltic andesite and least-evolved, high-silica rhyolite. In support of the mixing model, most dacite pumices have a bimodal mineral assemblage with crystals of rhyolitic and basaltic parentage. Equilibrium dacite phenocrysts are rare. Dacites are mainly the product of mingling of basaltic andesite and rhyolite before or during eruption and to a lesser extent of equilibration between the two. The Rattlesnake magma column illustrates the feedback between mafic and silicic magmas that drives differentiation in both. Low-density rhyolite traps basalts and induces extensive fractionation and recharge that causes incompatible element enrichment relative to the primitive input. The basaltic root zone, in turn, thermally maintains the rhyolitic magma chamber and promotes compositional zonation. Received: 1 June 1998 / Accepted: 5 February 1999  相似文献   

6.
Mineralogical, major and trace element, and isotopic data are presented for leucite basanite and leucite tephrite eruptives and dykes from the Batu Tara volcano, eastern Sunda arc. In general, the eruptives are markedly porphyritic with phenocrysts of clinopyroxene, olivine, leucite ±plagioclase±biotite set in similar groundmass assemblages. These K-rich alkaline volcanics have high concentrations of large-ion-lithophile (LIL), light rare earth (LRE) and most incompatible trace elements, and are characterized by high 87Sr/86Sr (0.70571–0.70706) and low 143Nd/ 144Nd (0.512609–0.512450) compared with less alkaline volcanics from the Sunda arc. They also display the relative depletion of Ti and Nb in chondrite-normalized plots which is a feature of subalkaline volcanics from the eastern Sunda arc and arc volcanics in general. Chemical and mineralogical data for the Batu Tara K-rich rocks indicate that they were formed by the accumulation of variable amounts of phenocrysts in several melts with different major and trace element compositions. The compositions of one of these melts estimated from glass inclusions in phenocrysts is relatively Fe-rich (100 Mg/(Mg + Fe2+)=48–51) and is inferred to have been derived from a more primitive magma by low-pressure crystal fractionation involving olivine, clinopyroxene and spinel. Mg-rich (mg 90) and Cr-rich (up to 1.7 wt. % Cr2O3) zones in complex oscillatory-zoned clinopyroxene phenocrysts probably also crystallized from such a magma. The marked oscillatory zoning in the clinopyroxene phenocrysts is considered to be the result of limited mixing of relatively evolved with more primitive magmas, together with their phenocrysts, along interfaces between discrete convecting magma bodies.  相似文献   

7.
REE abundances in minerals from spinel peridotite xenoliths from West Germany, the south-western U.S. and Mongolia decrease in the order clinopyroxene > orthopyroxene > olivine > spinel. While clinopyroxenes are similar in absolute chondrite-normalized concentrations to those known from other studies, orthopyroxenes and olivines are significantly lower in LREE although comparable in HREE. Spinels are much lower in all REE than any previously reported values and are completely negligible for the REE budget of peridotites.Partition coefficients for most orthopyroxene/clinopyroxene pairs increase systematically from La to Lu. Olivine/clinopyroxene and spinel/clinopyroxene partition coefficients increase from the intermediate rare earth elements to Lu and normally are higher for La compared to Sm.The application of Nagasawa's (1966) elastic lattice model suggests that all heavy but only minor amounts of the light REE substitute into structural positions of orthopyroxene and olivine.Significant differences between orthopyroxene/clinopyroxene partition coefficients for various xenoliths may be assigned to dependences upon equilibration temperature and bulk chemistry.Apart from grain surface contaminations, fluid inclusions which are practically always present in mantle minerals, can highly concentrate light rare earth elements and thus may be responsible for unexpectedly high concentrations of incompatible elements frequently reported for mantle olivines or orthopyroxenes.  相似文献   

8.
The distribution of rare earth elements (REE) between clinopyroxene (cpx) and basaltic melt is important in deciphering the processes of mantle melting. REE and Y partition coefficients from a given cpx-melt partitioning experiment can be quantitatively described by the lattice strain model. We analyzed published REE and Y partitioning data between cpx and basaltic melts using the nonlinear regression method and parameterized key partitioning parameters in the lattice strain model (D 0, r 0 and E) as functions of pressure, temperature, and compositions of cpx and melt. D 0 is found to positively correlate with Al in tetrahedral site (Al T ) and Mg in the M2 site (MgM2) of cpx and negatively correlate with temperature and water content in the melt. r 0 is negatively correlated with Al in M1 site (AlM1) and MgM2 in cpx. And E is positively correlated with r 0. During adiabatic melting of spinel lherzolite, temperature, Al T , and MgM2 in cpx all decrease systematically as a function of pressure or degree of melting. The competing effects between temperature and cpx composition result in very small variations in REE partition coefficients along a mantle adiabat. A higher potential temperature (1,400°C) gives rise to REE partition coefficients slightly lower than those at a lower potential temperature (1,300°C) because the temperature effect overwhelms the compositional effect. A set of constant REE partition coefficients therefore may be used to accurately model REE fractionation during partial melting of spinel lherzolite along a mantle adiabat. As cpx has low Al and Mg abundances at high temperature during melting in the garnet stability field, REE are more incompatible in cpx. Heavy REE depletion in the melt may imply deep melting of a hydrous garnet lherzolite. Water-dependent cpx partition coefficients need to be considered for modeling low-degree hydrous melting.  相似文献   

9.
The diffusive relaxation of trace element profiles in plagioclase phenocrysts may provide important constraints on magma residence times in crustal magma chambers. Initial trace element profiles in plagioclase phenocrysts are governed by variations in the concentration of a trace element in the melt and by the plagioclase-melt partition coefficient. Trace element diffusion will subsequently act to modify this initial profile and – given enough time – produce a profile that is in equilibrium with the anorthite variations within the crystal. We argue that the trace element partition coefficient Da/b between two parts a and b of a plagioclase crystal of variable anorthite content is equal to the ratio of their crystal-liquid partition coefficients, and that the equilibrium profile of the crystal can be calculated. The time required to establish diffusive equilibrium is dependent on the wavelength and amplitude of the initial trace element concentration range and on the diffusivity of the trace element in plagioclase. Strontium plagioclase-melt partition coefficients and diffusivities are calculated for a range of magmatic temperatures and plagioclase compositions. A one-dimensional diffusion model is developed that describes the diffusive destruction of oscillatory trace element zoning with time and allows the calculation of upper limits for plagioclase crystal residence times in a magma reservoir. The model is tested using major and trace element concentrations measured along crystal traverses of plagioclase phenocrysts from the Kameni Island dacites, Santorini, and from the 1979 Soufriere andesite, St. Vincent. Three out of eight plagioclase phenocrysts have Sr concentration profiles that are not in diffusive equilibrium. For these, the diffusion model is employed to calculate maximum crystal residence times from incomplete diffusive equilibration of trace element zoning in plagioclase. Maximum crystal residence times range from 100 to 450 years. This is in good agreement with estimates from crystal size distribution and from Ra-Th disequilibrium studies for the Kameni Islands. For Soufriere, however, such short residence times are incompatible with U-Th mineral errorchron data that suggest residence times of >40 ka in a thermally buffered magma reservoir. To reconcile these apparently different ages, we invoke a more complicated magmatic history for Soufriere where an initially buffered magma reservoir is disturbed by magma mixing and suffers limited additional crystal fractionation prior to eruption. Received: 20 October 1998 / Accepted: 22 March 1999  相似文献   

10.
Rare earth elements are commonly assumed to substitute only for Ca in clinopyroxene because of the similarity of ionic radii for REE3+ and Ca2+ in eightfold coordination. The assumption is valid for Mg-rich clinopyroxenes for which observed mineral/melt partition coefficients are readily predicted by the lattice strain model for substitution onto a single site (e.g., Wood and Blundy 1997). We show that natural Fe-rich pyroxenes in both silica-undersaturated and silica-oversaturated magmatic systems deviate from this behavior. Salites (Mg# 48–59) in phonolites from Tenerife, ferrohedenbergites (Mg# 14.2–16.2) from the rhyolitic Bandelier Tuff, and ferroaugites (Mg# 9.6–32) from the rhyolitic Rattlesnake Tuff have higher heavy REE contents than predicted by single-site substitution. The ionic radius of Fe2+ in sixfold coordination is substantially greater than that of Mg2+; hence, we propose that, in Fe-rich clinopyroxenes, heavy REE are significantly partitioned between eightfold Ca sites and sixfold Fe and Mg sites such that Yb and Lu exist dominantly in sixfold coordination. We also outline a REE-based method of identifying pyroxene/melt pairs in systems with multiple liquid and crystal populations, based upon the assumption that LREE and MREE reside exclusively in eightfold coordination in pyroxene. Contrary to expectations, interpolation of mineral/melt partition coefficient data for heavy REE does not predict the behavior of Y. We speculate that mass fractionation effects play a role in mineral/melt lithophile trace element partitioning that is detectable among pairs of isovalent elements with near-identical radii, such as Y and Ho, Zr and Hf, and Nb and Ta.  相似文献   

11.
Low-Ca pyroxenes play an important role in mantle melting, melt-rock reaction, and magma differentiation processes. In order to better understand REE fractionation during adiabatic mantle melting and pyroxenite-derived melt and peridotite interaction, we developed a parameterized model for REE partitioning between low-Ca pyroxene and basaltic melts. Our parameterization is based on the lattice strain model and a compilation of published experimental data, supplemented by a new set of trace element partitioning experiments for low-Ca pyroxenes produced by pyroxenite-derived melt and peridotite interaction. To test the validity of the assumptions and simplifications used in the model development, we compared model-derived partition coefficients with measured partition coefficients for REE between orthopyroxene and clinopyroxene in well-equilibrated peridotite xenoliths. REE partition coefficients in low-Ca pyroxene correlate negatively with temperature and positively with both calcium content on the M2 site and aluminum content on the tetrahedral site of pyroxene. The strong competing effect between temperature and major element compositions of low-Ca pyroxene results in very small variations in REE partition coefficients in orthopyroxene during adiabatic mantle melting when diopside is in the residue. REE partition coefficients in orthopyroxene can be treated as constants at a given mantle potential temperature during decompression melting of lherzolite and diopside-bearing harzburgite. In the absence of diopside, partition coefficients of light REE in orthopyroxene vary significantly, and such variations should be taken into consideration in geochemical modeling of REE fractionation in clinopyroxene-free harzburgite. Application of the parameterized model to low-Ca pyroxenes produced by reaction between pyroxenite-derived melt and peridotite revealed large variations in the calculated REE partition coefficients in the low-Ca pyroxenes. Temperature and composition of starting pyroxenite must be considered when selecting REE partition coefficients for pyroxenite-derived melt and peridotite interaction.  相似文献   

12.
Major, trace element, and REE analyses, as well as Sr isotopic ratios, have been obtained on twelve clinopyene megacrysts and phenocrysts and their alkali-basalt hosts from the French Massif Central. Equilibrium between crystals and host was examined based on petrographic and geochemical data.Two types of pyroxenes are recognized: the acmite-bearing clinopyroxenes, rich in incompatible elements and the salitic clinopyroxenes, poor in incompatible elements. 87Sr/ 86Sr isotopic data reveal no significant difference between clinopyroxenes and host lavas: they are in apparent isotopic equilibrium. The Sr isotopic ratios of the two types of pyroxenes are also quite similar. However pyroxene crystals from the first group are not in equilibrium with their host; they have crystallized at high-pressure from differentiated alkali-lavas and have been incorporated in a more primitive magma. Pyroxene crystals from the second group are in apparent equilibrium with their host lava; they have crystallized at various pressures. For the latter, distribution coefficients are proposed for compatible elements, trace elements and REE.  相似文献   

13.
Boninite series volcanic rocks have been recovered from three dredge hauls on the inner slope of the Mariana Trench. These hauls included olivine boninites, boninites, boninitic andesites and boninitic dacites, as well as island arc tholeiitic basalts and andesites. The boninite series volcanics range from 52 to 68% SiO2, and are characterized by very low abundances of high-field-strength cations and heavy-rare-earth elements. Boninites and olivine boninites have phenocrysts of olivine and orthopyroxene, the andesites phenocrysts of orthopyroxene and clinopyroxene, and the dacites orthopyroxene, clinopyroxene, and plagioclase. Most of the major and trace element variation in the series from boninite to boninitic dacite can be modelled by fractionation of olivine, orthopyroxene, clinopyroxene, and plagioclase in the proportions 2.5412, leaving 47% residual liquid. The fractionation must be in part open-system: reverse zoned phenocrysts, resorbed olivine and plagioclase xenocrysts, and bulk rock compositions which cannot be fit by simple closed system crystallization indicate some magma mixing and phenocryst accumulation. Two boninitic magma stems can be identified, with similar high-field-strength element abundances, but different amounts of Ca, Na, Al and light-rare-earth elements. There is also evidence for a magma stem transitional in chemistry from the boninites to arc tholeiites. The compositions of these boninites are consistent with hypotheses for boninite formation by partial melting of a depleted mantle mixed with an incompatible element enriched fluid. The Mariana forearc boninite series lacks a strong iron enrichment, but produces andesites with lower Ti, Al and Y/Zr, and higher Mg, Ni and Cr than typical calcalkaline arc andesites and dacites. Boninites in the Mariana system were erupted only in the earliest phases of subduction zone activity.  相似文献   

14.
Twenty six whole rocks, seven matrix and fifty three mineral separates from the compositionally zoned late Quaternary Laacher See tephra sequence (East Eifel, W Germany) were analyzed by instrumental neutron activation. These data document the chemical variation within the Laacher See magma chamber prior to eruption with a highly fractionated phonolite at the top and a more mafic phonolite at its base as derived from other data. Incompatible elements such as Zn, Zr, Nb, Hf, U, light and heavy rare earths are extremely enriched towards the top whereas compatible elements (e.g. Sr, Sc, Co, Eu) are strongly depleted. Semicompatible elements (Ta and some middle REE) are depleted at intermediate levels. This chemical variation is shown by whole rock and matrix data indicating the phonolite liquid was compositionally zoned regardless of phenocryst content. Hybrid rocks (phonolite-basanite) show the largest concentrations for compatible elements. All elements (except Rb) display continuous compositional variations with regard to the stratigraphic position of pumice samples. From these data we are able to distinguish three main units: An early erupted highly fractionated magma, the main volume of evolved phonolite and a mafic phonolite as the final products. The extreme variation of trace element distribution coef ficients (K) for 9 mineral phases with respect to stratigraphic position (resp. matrix composition) cannot be explained by conventional mechanisms. We postulate a significant modification of the trace element content of the phonolite melt by liquid-liquid controlled differentiation processes subsequent to and/or contemporaneous with (fractional) crystallization which caused disequilibrium between phenocrysts and host matrix. Therefore, our “distribution coefficients” deviate from equilibrium partition coefficients equivalent to the amount of this post crystallization modification of the matrix composition. The relationship between varying K and matrix composition is demonstrated by a ΔK-ΔM-diagram (variation of K versus variation of matrix, M). Different parts of this diagram relate to different parameters (T, P, polymerization, complex-building, equilibrium crystallization in a zoned magma column and post crystallization disequilibrium effects) which are responsible for the variation of distribution coefficients in general. The ΔK-ΔM-diagram may allow to distinguish between different processes affecting the distribution coefficients measured in natural volcanic rocks from a differentiating magma system.  相似文献   

15.
Most Hawaiian basaltic shield volcanoes are capped by moderately to strongly evolved alkalic lavas (MgO<4.5 wt.%). On Mauna Kea Volcano the cap is dominantly composed of hawaiite with minor mugearite. Although these lavas contain dunite and gabbroic xenoliths, they are nearly aphyric with rare olivine and plagioclase phenocrysts and xenocrysts. The hawaiites are nearly homogeneous in radiogenic isotope ratios (Sr, Nd, Pb) and they define coherent major and trace element abundance trends. These compositional trends are consistent with segregation of a plagioclase-rich cumulate containing significant clinopyroxene and Fe-Ti oxides plus minor olivine. Elements which are usually highly incompatible, e.g., Rb, Ba, Nb, are only moderately incompatible within the hawaiite suite because these elements are incorporated into feldspar (Rb, Ba) and oxides (Nb). However, in the most evolved lavas abundances of the most incompatible elements (P, La, Ce, Th) exceed (by 5–10%) the maximum enrichments expected from models based on major elements. Apparently, the crystal fractionation process was more complex than simple, closed system fractionation. The large amounts of clinopyroxene in the fractionating assemblage and the presence of dense dunite xenoliths with CO2 inclusions formed at minimum pressures of 2 kb are consistent with fractionation occurring at moderate depths. Crystal segregation along conduit or magma chamber walls is a possible mechanism for explaining compositional variations within these alkalic cap lavas.  相似文献   

16.
We performed an ion-microprobe study of eleven high-MgO (6.7–14.8 wt%) tholeiite glasses from the Hawaiian volcanoes Kilauea, Mauna Loa and Haleakala. We determined the rare earth (RE), high field strength, and other selected trace element abundances of these glasses, and used the data to establish their relationship to typical Hawaiian shield tholeiite and to infer characteristics of their source. The glasses have trace element abundance characteristics generally similar to those of typical shield tholeiites, e.g. L(light)REE/H(heavy)REEC1 < 1. The Kilauea and Mauna Loa glasses, however, display trace and major element characteristics that cross geochemical discriminants observed between Kilauea and Mauna Loa shield lavas. The glasses contain a blend of these discriminating chemical characteristics, and are not exactly like the typical shield lavas from either volcano. The production of these hybrid magmas likely requires a complexly zoned source, rather than two unique sources. When corrected for olivine fractionation, the glass data show correlations between CaO concentration and incompatible trace element abundances, indicating that CaO may behave incompatibly during melting of the tholeiite source. Furthermore, the tholeiite source must contain residual garnet and clinopyroxene to account for the variation in trace element abundances of the Kilauea glasses. Inversion modeling indicates that the Kilauea source is flat relative to C1 chondrites, and has a higher bulk distribution coefficient for the HREE than the LREE. Received: 4 February 1997 / Accepted: 27 August 1997  相似文献   

17.
The Cindery Tuff is an unusual tephra fall deposit that contains evidence for the mixing of basaltic and rhyolitic liquids prior to eruption. It contains clear rhyolitic glass shards together with brown basaltic glass spheres and a broadly bimodal phenocryst assemblage. Brown glasses are ferrobasaltic in composition and are similar to the voluminous Pliocene tholeiites of the surrounding west-central Afar volcanic field; both are enriched in the light rare earth and incompatible elements and possess higher 87Sr/86Sr and lower 143Nd/144Nd than MORB. Rhyolitic glasses are subalkaline and, compared to the basaltic glasses, are strongly depleted in the compatible elements and enriched in the incompatible elements. Both glass types have similar incompatible element and isotopic ratios, and with the rhyolite glass showing a 2-fold parallel enrichment in rare earth element abundances over the basaltic glass. These observations suggest that the two glasses are genetically related.Rare glasses with intermediate compositions occur as phenocryst melt inclusions, as mantles on phenocrysts and as free pumice clasts. Their major element contents do not point to an origin by simple hybrid mixing of the basaltic and rhyolitic melts. Rather, major element mixing calculations indicate formation of the intermediate and rhyolite melts by fractionation of the observed phenocryst assemblage, using a starting composition of the observed basaltic glass. Model calculations from trace element data, though lacking from the intermediate glasses, support fractional crystallization. The bimodal mineral assemblage argues against an immiscible liquid origin for the contrasting glass compositions.  相似文献   

18.
Seventeen granitoid samples from batholiths in central Chile (33 °–34 ° S) have been analyzed for trace element content. The samples range in age from Paleozoic to Tertiary, and in rock type from quartz diorite to granite. In general, compared to andesites from central-south Chile these rocks are more siliceous with lower abundances of compatible trace elements and higher abundances of incompatible trace elements. However, Upper Tertiary granodiorites have important geochemical similarities, such as highly fractionated rare-earth element (REE) distributions relative to chondrites, to some modern andesites in this region; e.g., Marmolejo. Similar highly fractionated REE distributions are also common in the cores of zoned intrusive sequences in the Sierra Nevada of the western U.S. Based on limited sampling of central Chile Cretaceous and Tertiary plutonics, there may be a west to east increase in light REE/heavy REE ratio and in Sr content. Compared to the Upper Tertiary granodiorites, the Paleozoic granodiorites have similar REE abundances but lower Sr, Sc, Cr, Co, and Ni contents.  相似文献   

19.
Mineral/melt trace element partition coefficients were determined for rutile (TiO2) for a large number of trace elements (Zr, Hf, Nb, Ta, V, Co, Cu, Zn, Sr, REE, Cr, Sb, W, U, Th). Whilst the high field strength elements (Zr, Hf, Nb, Ta) are compatible in rutile, other studied trace elements are incompatible (Sr, Th, REE). In all experiments we found DTa > DNb, DHf > DZr and DU > DTh. Partition coefficients for some polyvalent elements (Sb, W, and Co) were sensitive to oxygen fugacity. Melt composition exerts a strong influence on HFSE partition coefficients. With increasing polymerization of the melt, rutile/melt partition coefficients for the high field strength elements Zr, Hf, Nb and Ta increase about an order of magnitude. However, DNb/DTa and DHf/DZr are not significantly affected by melt composition. Because DU ? DTh, partial melting of rutile-bearing eclogite in subducted lithosphere may cause excesses of 230Th over 238U in some island arc lavas, whereas dehydration of subducted lithosphere may cause excesses of 238U over 230Th. From our partitioning results we infer partition coefficients for protactinium (Pa) which we predict to be much lower than previously anticipated. Contrary to previous studies, our data imply that rutile should not significantly influence observed 231Pa-235U disequilibria in certain volcanic rocks.  相似文献   

20.
凉城、四子王旗、三义堂和大同的地幔包体的岩石学和矿物的主、微量元素成分显示华北克拉通中、西部北缘总体为过渡型岩石圈地幔,为原始地幔经过不同程度的熔体抽取和后期交代富集作用的残留.凉城岩石圈地幔经历的熔体抽取程度最低,后期交代富集作用比较强烈,这与其橄榄岩中尖晶石的Cr#较低,并且共存的单斜辉石的Mg#较低一致.三义堂岩石圈地幔经历的熔体抽取程度最高,后期交代富集作用最强烈,不同样品甚至同一样品中不同单斜辉石颗粒的La/Yb和LREE配分模式变化范围非常大,且矿物边部比核部更富集微量元素.大同、四子王旗岩石圈地幔经历的熔体抽取程度介于凉城和三义堂之间,但后期的交代富集作用明显不如凉城和三义堂强烈.研究区的岩石圈地幔主要受硅酸盐熔体交代作用的影响,只有三义堂岩石圈地幔还可能也受到了碳酸盐交代作用的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号