首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The change in the tropical forests could be clearly linked to the expansion of the human population and economies. An understanding of the anthropogenic forcing plays an important role in analyzing the impacts of climate change and the fate of tropical forests in the present and future scenario. In the present study, we analyze the impact of natural and anthropogenic factors in forest dynamics in Katerniaghat wildlife sanctuary situated along the Indo-Nepal border in Uttar Pradesh state, India. The study site is under tremendous pressure due to anthropogenic factors from surrounding areas since last three decades. The vegetation cover of the sanctuary primarily comprised of Shorea robusta forests, Tectona grandis plantation, and mixed deciduous forest; while the land cover comprised of agriculture, barren land, and water bodies. The classification accuracy was 83.5%, 91.5%, and 95.2% with MSS, IKONOS, and Quickbird datasets, respectively. Shorea robusta forests showed an increase of 16 km2; while Tectona grandis increased by 63.01 km2 during 1975–2010. The spatial heterogeneity in these tropical vegetation classes surrounded by the human dominated agricultural lands could not be addressed using Landsat MSS data due to coarse spatial resolution; whereas the IKONOS and Quickbird satellite datasets proved to advantageous, thus being able to precisely address the variations within the vegetation classes as well as in the land cover classes and along the edge areas. Massive deforestation during 1970s along the adjoining international boundary with Nepal has led to destruction of the wildlife corridor and has exposed the wildlife sanctuary to human interference like grazing and poaching. Higher rates of forest dynamics during the 25-year period indicate the vulnerability of the ecosystem to the natural and anthropogenic disturbances in the proximity of the sanctuary.  相似文献   

2.
从树轮纤维素δ13C序列看树木生长对大气CO2浓度变化的响应   总被引:10,自引:7,他引:10  
在新疆昭苏树轮碳同位素组成研究的基础上,初步分析了近280a以来云杉内外CO2浓度比(Ci/Ca),云杉内部CO2浓度(Ci)和水分利用效率(A/g)的变化,结果表明,在整个分析时段内Ci/Ca相对恒定在0.52左右,暗示树木生长对大气CO2浓度升高的基本响应策略;Ci和A/g都有较明显的升高趋势,说明可能有更多的碳被固定在树木之中,进一步分析表明,它们的这种趋势与大气CO2浓度变化有关,从另一个侧面证明了人类活动释放的碳有一部分被树木吸收。  相似文献   

3.
In recent decades, humans have become a very important force in the Earth system, demonstrating that emissions (gaseous, liquid, and solid) are the cause of many of our environmental issues. These emissions are responsible for major global reorganizations of the biogeochemical cycles. The oceans are now a net sink of atmospheric CO2, whereas in their preindustrial state they were a source; the trophic state of the coastal oceans is progressively moving toward increased heterotrophy; and the terrestrial realm is now vacillating between trophic states, whereas in preindustrial times it was autotrophic. In this paper, we present model calculations that underscore the role of human-induced perturbations in changing Earth's climate, specifically the role of anthropogenic nitrogen and phosphorus in controlling processes in the global carbon cycle since the year 1850 with projections to the year 2035. Our studies show that since the late 1940's emissions of nitrogen and phosphorus have been sequestered in the terrestrial living phytomass and groundwater. This nutrient-enhanced fertilization of terrestrial biota, coupled with rising atmospheric CO2 and global temperature, has induced a sink of anthropogenic CO2 that roughly balances the emission of CO2 owing to land use change. In the year 2000, for example, the model-calculated terrestrial biotic sink was 1730 Mtons C/year, while the emission of CO2 from changes in land use was 1820 Mtons C/year, a net flux of 90 Mtons C/year emitted to the atmosphere. In the global aquatic environment, enhanced terrestrial inputs of biotically reactive phosphorus (about 8.5 Mtons P/year) and inorganic nitrogen (about 54 Mtons N/year), have induced increased new production and burial of organic carbon in marine sediments, which is a small sink of anthropogenic CO2. It is predicted that the response of the global land reservoirs of C, N, and P to sustained anthropogenic perturbations will be maintained in the same direction of change over the range of projected scenarios of global population increase and temperature change for the next 35 years. The magnitude of change is significantly larger when the global temperature increase is maximum, especially with respect to the processes of remobilization of the biotically important nutrients nitrogen and phosphorus.  相似文献   

4.
Over the past thirty years, geoarchaeology has moved from the fringe to mainstream status within Mesoamerican archaeological investigations. This review focuses on works published since the year 2000. Five themes are identified as central to recent studies: (1) the correlation of environmental change and cultural history; (2) anthropogenic environmental impacts; (3) ancient land cover, land use, and diet; (4) archaeological prospection; and (5) provenance studies. These themes are often interwoven in the application of complex systems approaches that allow scientists to more accurately model the intricacies of ancient human–environment interactions.  相似文献   

5.
The Ural Mountains are an important climatic and biogeographical barrier between European and Siberian forests. In order to shed light on the postglacial formation and evolution of the boreal forests in the European pre-Urals, we obtained a peat sediment core, Chernaya, from the Paltinskoe bog located between the southern taiga and hemiboreal forest zone in the mid-Kama region. We carried out pollen analysis, non-pollen palynomorph analysis, loss-on-ignition tests and radiocarbon dating. Radiocarbon dated records provide centennial to decennial resolution of the vegetation and environmental history of the European pre-Urals for the last 8.8 ka. The postglacial formation of the pre-Uralian hemiboreal forests reveals four important phases: (i) the dominance of Siberian taiga and forest-steppe in the Early Holocene and beginning of the Middle Holocene (8.8–6.9 ka), indicating a dry climate; (ii) the spread of spruce and European broadleaved trees in the Middle Holocene (6.9–4 ka) under wetter climate conditions; (iii) the maximum extent of broadleaved trees coinciding with the arrival and spread of Siberian fir in the Late Holocene (4–2.3 ka); and (iv) the decline of broadleaved trees since the Early Iron Age (2.3 ka – present) possibly due to general climate cooling and logging. While temperate broadleaved trees possibly spread from local refugia in the Urals, fir arrived from Siberia and spread further west. The carbon accumulation rate of Paltinskoe bog (18.9±10.16 g C m−2 a−1) is close to the average value of carbon accumulation of northern peatlands. Local development of peat is characterized by non-gradual growth with a phase of intensive carbon accumulation between 3.5 and 2.3 ka. The vegetation was strongly influenced by fire in the Early Holocene and by humans since the Early Iron Age practicing deforestation, agriculture and pasture. Phases of increased anthropogenic activity correlate well with the local archaeological data.  相似文献   

6.
Vast tracts of forests are lost globally every year especially in the developing countries of the tropics due to various human activities such as lumbering, farming, bush fires, surface mining and urbanization. The rainforest in Ghana has experienced rapid depletion since the 1980s. The impact of deforestation is widespread, affecting the livelihoods of local people and disrupting the tropical ecosystem. There is a serious concern in the study area about climatic change, soil erosion, siltation of rivers and loss in biodiversity which have an adverse impact on traditional medicinal plants of the local people. The study examined the extent of land cover change through image differencing of Landsat TM 1986 and 2002. The image classification indicated that, vegetative cover from 1986 to 2002 has been reducing whiles land use activities have been increasing. Closed canopy, open canopy and plantation have significantly diminished and land use activities especially built ups, farms, mining and openfields are more than doubled. The driving forces for the change in land cover are population growth, lumbering, socio-economic and cultural practices of the people. Lumbering and mining have been some of the major causes of the changing landscape in primary forest. Also the reliance on wood for domestic energy and the need to increase food productivity to feed growing population have also contributed greatly to the rapid depletion of the vegetative cover.  相似文献   

7.
Mangrove forest stores large organic carbon stocks in a setting that is highly vulnerable to climate change and direct anthropogenic influences. As such there is a need to elucidate the causes and consequences of land use change on these ecosystems that have high value in terms of ecosystem services. We examine the areal pattern of land types in a coastal region located in southern Iran over a period of 14 years to predict future loss and gain in land types to the year 2025. We applied a CA–Markov model to simulate and predict mangrove forest change. Landsat satellite images from 2000 to 2014 were used to analyze the land cover changes between soil, open water and mangroves. Major changes during this period were observed in soil and water which could be attributed to rising sea level. Furthermore, the mangrove area in the more seaward position was converted to open water due to sea-level rise. A cellular automata model was then used to predict the land cover changes that would occur by the year 2025. Results demonstrated that approximately 21 ha of mangrove area will be converted to open water, while mangroves are projected to expand by approximately 28 ha in landward direction. These changes need to be delineated to better inform precise mitigation and adaptation measures.  相似文献   

8.
Tropical estuaries are increasingly altered by inputs from watersheds subject to widespread deforestation, as well as by globally driven hydrodynamic changes in adjoining seas. To assess contributions of C4 and C3 plants (from pasture and forest vegetation cover, respectively) to particulates exported from Pacific Panama watersheds, we measured δ13C and δ15N in suspended particulate matter (SPM) within eight mangrove estuaries whose watersheds differed in degree of conversion from forest to pasture land cover. These measurements also allowed evaluation of down-estuary transformations and the relative marine influence on transport and exchanges of particles between land, estuary, and sea. Imprint of watershed mosaic was detectable in δ13C of SPM within upper reaches of estuaries but disappeared down-estuary. Detectably heavier δ13C suggested that C4 plants contributed to SPM in upper reaches of estuaries. δ13C signatures were sufficiently sensitive to reveal presence of a small, but still detectable, contribution by C4 grasses to SPM. Influence of heavier marine-derived sources increased down-estuary, erasing terrestrial imprints. δ13C and δ15N in SPM, and in mangrove species present, became enriched down-estuary, likely from increased inputs of particulates bearing heavier signatures from upwelled waters. In this tropical Pacific region, estuarine particulates are subject to increasing shifts in land cover as deforestation increases, and to global-scale changes in hydrodynamic forcing of upwelled waters.  相似文献   

9.
Tropical mountain regions are prone to landslide hazards. Given the current land pressure with increasing occupation of steep uplands, landslide hazards are expected to increase in the near future. Understanding the factors that control landslide hazards is therefore essential. Rare event logistic regression allows us to perform a robust detection of landslide controlling factors. This technique is here applied to the tropical Andes to evaluate the impact of dynamic land cover changes on landslide occurrences. Land cover change trajectories (i.e. dynamic evolution of land cover through time) were specifically included in the probabilistic landslide analysis. While natural physical processes such as slope undercutting by rivers and failure of oversteepened slopes are important in this tropical mountainous site, landslides are increasingly associated with human activities. The data show that land cover trajectories are associated with landslide patterns. In this humid mountainous site, forest degradation does not lead to a measurable increase in landslide occurrence. However, few years after forests are converted to pastures, a rapid decline of slope stability is observed. Land cover conversion from forest to pasture permanently reduces slope stability. It is assumed that major changes in soil properties and hydrology induced by the vegetation conversion play a role in accelerating landslide hazards.  相似文献   

10.
This study was carried out to simulate the forest cover changes in India using Land Change Modeler. Classified multi-temporal long-term forest cover data was used to generate the forest covers of 1880 and 2025. The spatial data were overlaid with variables such as the proximity to roads, settlements, water bodies, elevation and slope to determine the relationship between forest cover change and explanatory variables. The predicted forest cover in 1880 indicates an area of 10,42,008 km2, which represents 31.7% of the geographical area of India. About 40% of the forest cover in India was lost during the time interval of 1880–2013. Ownership of majority of forest lands by non-governmental agencies and large scale shifting cultivation are responsible for higher deforestation rates in the Northeastern states. The six states of the Northeast (Assam, Manipur, Meghalaya, Mizoram, Nagaland, Tripura) and one union territory (Andaman & Nicobar Islands) had shown an annual gross rate of deforestation of >0.3 from 2005 to 2013 and has been considered in the present study for the prediction of future forest cover in 2025. The modelling results predicted widespread deforestation in Northeast India and in Andaman & Nicobar Islands and hence is likely to affect the remaining forests significantly before 2025. The multi-layer perceptron neural network has predicted the forest cover for the period of 1880 and 2025 with a Kappa statistic of >0.70. The model predicted a further decrease of 2305 km2 of forest area in the Northeast and Andaman & Nicobar Islands by 2025. The majority of the protected areas are successful in the protection of the forest cover in the Northeast due to management practices, with the exception of Manas, Sonai-Rupai, Nameri and Marat Longri. The predicted forest cover scenario for the year 2025 would provide useful inputs for effective resource management and help in biodiversity conservation and for mitigating climate change.  相似文献   

11.
Forest conversion due to illegal logging and agricultural expansion is a major problem that is hampering biodiversity conservation efforts in the Zagros region. Yet, areas vulnerable to forest conversion are unknown. This study aims to predict the spatial distribution of deforestation in western Iran. Landsat images dated 1988, 2001, and 2007 are classified in order to generate digital deforestation maps which locate deforestation and forest persistence areas. Meanwhile, in order to examine deforestation factors’ investigation, deforestation maps with physiographic and human spatial variables are entered into the model. Areas vulnerable to forest changes in the Zagros forest region are predicted by a multilayer perceptron neural network (MLPNN) with a Markov chain model. The results show that about 19,294 ha forest areas are deforested in the last 19 years. The predictive performance of the model appears successful, which is validated using the actual land cover map of the same year from Landsat data. The validated map is found to be 94 % accurate. The validation is also tested using the relative operating characteristic approach which yielded a value of 0.96. The model is then further extended to predict forest cover losses for 2020. The MLPNN approach was found to have a great potential to predict land use/land cover changes because it permits developing complex, nonlinear models.  相似文献   

12.
中国过去300年土地利用变化及其气候效应   总被引:2,自引:0,他引:2       下载免费PDF全文
尹永飞  陈星  张洁  汤剑平 《第四纪研究》2009,29(6):1162-1169
以两种植被数据为基础,分别利用区域和全球气候模式对过去300年土地利用和地表覆盖变化的气候效应进行了模拟研究。结果表明,耕地面积不断扩大所造成的自然植被破坏可能对区域性气候产生显著影响。通过对不同时期植被特征下地面温度、降水和低层大气环流的比较分析发现,中国东部地区耕地取代自然植被后,全年平均温度有所降低,且存在明显季节差异。植被退化地区的夏季温度有明显升高而冬季温度则显著降低; 同时夏季降水和850hPa风场发生显著变化: 夏季降水明显减少,而这一结果与低层(850hPa)大气环流的反气旋性增强相联系,即植被退化使中国东部夏季风环流减弱,这与目前观测事实是一致的。土地利用引起的地表覆盖的变化可能是东亚季风减弱的原因之一。  相似文献   

13.
Peatlands are an important multipurpose ecosystem, supporting huge quantities of biomass and peat soil carbon. A time series of Japanese Earth Resource Satellite-1 (JERS-1) L-band Synthetic Aperture Radar (SAR) data was employed to monitor two dynamic ecosystem processes; deforestation and inundation patterns. Using a change detection analysis for three images acquired during dry seasons of 1994, 1997 and 1998, we detected the deforestation that has occurred in the region due to the anthropogenic and natural causes. At a threshold of ±2 dB change in backscattering response, an area of about 98 km2 of these forests was found to have been cleared during 1994–1997 for conversion to cultivatable lands. However, the agricultural crops miserably failed to grow on these cleared lands because of the adverse water and soil chemistry conditions. The deliberate draining of these lands, by laying and extension of a huge network of canals, created congenial ecological conditions for the spread of forest fires, particularly during the 1997 El Niño period. An area of 250 km2 of forests was thus detected to have been destroyed by these fires between September 1997 and January 1998. These deforested lands are rapidly regenerating since their abandonment and the regenerating carbon stocks were simulated using the CENTURY ecosystem dynamics model. Furthermore, the L-band SAR was able to detect the pixel-wise seasonal and spatial inundation information for particular forest types where the transmissivity of the L-band SAR signals was quite significant. These forest types corresponded to comparatively low biomass areas. The SAR derived information about these two important dynamic processes would be useful for improving the accuracy of modelling the spatial and temporal distribution of the carbon and other trace gases in these ecosystems.Edited by D. Boyd  相似文献   

14.
Mangrove forests are important sinks and sources of carbon especially for connections to coral reefs and seagrass beds. However, they are increasing under threat from anthropogenic influences. We investigated correlations between carbon fluxes from the sediment and water column in deforested and intact mangroves. Our findings show that deforestation has a negative effect on sediment organic carbon storage and CO2 fluxes. However, species richness and density showed a positive correlation with sediment organic carbon storage and CO2 fluxes. An increased density of saplings showed a positive relationship with dissolved inorganic and organic carbon draining the mangrove forest at high tide. This research offers insights into the importance of the key forest characteristics influencing the storage and fluxes of carbon. Alterations in mangrove carbon stocks and retention may affect connected ecosystems.  相似文献   

15.
Lise Tole 《GeoJournal》2002,57(4):251-271
This study uses MSS data to derive sub-national level deforestation rates at the constituency administrative level for Jamaica for 1987 and 1992. It then investigates the role of poverty and population in driving forest loss during this period by linking these estimates in a GIS with constituency level demographic and socioeconomic census data for the island. OLS regression results support the importance of population pressures and poverty in driving the destruction of Jamaica's forests and the relative contribution to deforestation of their various measures are noted and discussed. In addition to providing information on Jamaica's deforestation attributes, the study demonstrates how remotely sensed data can be used in conjunction with household census data to derive information on human-forest interactions at the sub-national level. A small simulation experiment based on regression results using key variables suggests that under any scenario, the impacts of key social and demographic changes on Jamaica's remaining forest cover may be substantial by the year 2010. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
《Comptes Rendus Geoscience》2003,335(6-7):577-595
This article focuses on the contribution of natural ecosystems (forests, grasslands) and agrosystems to carbon sequestration either in biomass or in soil. Carbon stocks are important (650 Gt in biomass, 1500 to 2000 Gt in soils as compared with 750 for atmospheric CO2), and also fluxes that led to CO2 emissions in the past (due to deforestation or cultivation) and which now turn to carbon sequestration (2 GtC/year). This article shows great spatial variations in stocks and fluxes and great measurement difficulties, especially for stock variations. Anthropic actions such as reforestation (mainly in the North), changes in land use or in crop management, can increase carbon sequestration in biomass or soil, with a residence time of several decades, which is not insignificant with respect to the Kyoto protocol and which also has other environmental benefits. To cite this article: M. Robert, B. Saugier, C. R. Geoscience 335 (2003).  相似文献   

17.
In many metropolitan regions, natural sources contribute a substantial fraction of volatile organic compound (VOC) emissions. These biogenic VOC emissions are precursors to tropospheric Ozone (O3) formation. Because forests make up 59% of the land area in Taiwan Province, China, the biogenic VOC emissions from forests and farmland could play an important role in photochemical reactions. On the other hand, anthropogenic emissions might also be one of the major inputs for ground level O3 concentrations. Hence, emission inventory data, grouped as point, area, mobile and biogenic VOC sources, are a composite of reported and estimated pollutant emission information and are used by many air quality models to simulate ground level O3 concentrations. Before using relevant air quality models, the emission inventory data generally require huge amounts of processing for spatial, temporal, and species congruence with respect to the associated air quality modeling work. The fist part of this research applied satellite remote sensing and geographic information system (GIS) analyses to characterize land use/land cover (LULC) patterns, integrating various sources of anthropogenic emissions and biogenic emissions associated with a variety of plant species. To investigate the significance of biogenic VOC emissions on ozone formation, meteorological and air quality modeling were then employed to generate hourly ozone estimates for a case study of a high ozone episode in southern Taiwan, which is the leading industrial hub on the island. To enhance the modeling accuracy, a unique software module, SMOKE, was set up for emission processing to prepare emission inputs for the U.S. EPA’s Models-3/CMAQ. An emission inventory of Taiwan, TEDS 4.2, was used as the anthropogenic emission inventory. Biogenic emission modeling was accomplished by BEIS-2 in SMOKE, with improvement of local LULC data and revised emission factors. Research findings show that the majority of biogenic VOC emissions occur in the mountainous areas and farmlands. However, the modeling outputs show that downwind of the most heavily populated and industrialized areas, these biogenic VOC emissions have less impact on air quality than do anthropogenic emissions.  相似文献   

18.
The effects of climate and land use/land cover (LULC) dynamics have directly affected the surface runoff and flooding events. Hence, current study proposes a full-packaged model to monitor the changes in surface runoff in addition to forecast of the future surface runoff based on LULC and precipitation variations. On one hand, six different LULC classes were extracted from Spot-5 satellite image. Conjointly, land transformation model (LTM) was used to detect the LULC pixel changes from 2000 to 2010 as well as predict the 2020 ones. On the other hand, the time series-autoregressive integrated moving average (ARIMA) model was applied to forecast the amount of rainfall in 2020. The ARIMA parameters were calibrated and fitted by latest Taguchi method. To simulate the maximum probable surface runoff, distributed soil conservation service-curve number (SCS-CN) model was applied. The comparison results showed that firstly, deforestation and urbanization have been occurred upon the given time, and they are anticipated to increase as well. Secondly, the amount of rainfall has non-stationary declined since 2000 till 2015 and this trend is estimated to continue by 2020. Thirdly, due to damaging changes in LULC, the surface runoff has been also increased till 2010 and it is forecasted to gradually exceed by 2020. Generally, model calibrations and accuracy assessments have been indicated, using distributed-GIS-based SCS-CN model in combination with the LTM and ARIMA models are an efficient and reliable approach for detecting, monitoring, and forecasting surface runoff.  相似文献   

19.
气候与土地利用变化对水文水资源的影响研究   总被引:27,自引:0,他引:27  
水资源短缺和水患灾害已成为全球关心的重大问题。气候与土地利用变化对流域水资源和旱涝的影响以及由此产生的社会经济后果已引起人类社会的广泛关注。深入综合地开展这方面的研究对国民经济建设和可持续发展规划决策有重要的意义。通过分析总结已进行的有关研究工作 ,对该领域的研究进展作了简要回顾 ,讨论了现有工作的不足和今后的研究内容和方法。  相似文献   

20.
Deforestation has been a major cause of climate change and other environmental problems. An accurate estimation of the volume of deforested area is needed for United Nations Reducing Emissions from Deforestation and Forest Degradation (UN-REDD+) policies implementation and global carbon accounting. Accurate information about three-dimensional (3-D) structure of forests is required to quantify forest carbon stock. This study demonstrates the use of different digital elevation models (DEMs) to monitor changes in height due to deforestation in Cambodia to support climate change mitigation policies of UN-REDD+. The Shuttle Radar Topographic Mission-DEM (SRTM-DEM), Advanced Spaceborne Thermal Emission and Reflection Radiometer Global DEM (ASTER-GDEM) and Panchromatic Remote sensing Instrument for Stereo Mapping-Digital Surface Model (PRISM-DSM) data were calibrated using Ice Cloud and land Elevation Satellite Geoscience Laser Altimeter System (ICESat–GLAS) data. The results obtained from this study clearly indicate the changes in the height of forests due to deforestation activity. The height of cutover forest generated from the PRISM-DSM and SRTM-DEM is more reliable than that from the PRISM-DSM and ASTER-GDEM data. Field data has also been used to validate the height of the cutover forests, which shows ±5 m uncertainties in the estimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号