首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Sesia zone (Italian Western Alps) offers one of the best preserved examples of pre-Alpine basement reactivated, under eclogite facies conditions, during the Alpine orogenesis. A detailed mineralogical study of eclogitized acid and basic granulites, and related amphibolites, is presented. In these rare weak to undeformed rocks microstructural investigations allow three main metamorphic stages to be distinguished.
(a) A medium- to low- P granulite stage giving rise to the development of orthopyroxene + garnet + plagioclase + brown amphibole + ilmenite ± biotite in basic granulites and garnet + K-feldspar + plagioclase + cordierite + sillimanite + biotite + ilmenite in acid granulites.
(b) A post-granulite re-equilibration, associated with the development of shear zones, producing discrete amphibolitization of the basic granulites and widespread development of biotite + sillimanite + cordierite + spinel in the acid rocks.
(c) An eo-Alpine eclogite stage giving rise to the crystallization of high- P and low- T assemblages.
In an effort to quantify this evolution, independent well-calibrated thermobarometers were applied to basic and acid rocks. For the granulite event, P-T estimates are 7–9 kbar and 700–800° C, and for subsequent retrograde evolution, P-T was 4–5 kbar and 600° C. For the eo-Alpine eclogite metamorphism, pressure and temperature conditions were 14–16 kbar and 550° C.
The inferred P-T path is consistent with an uplift of continental crust produced by crustal thinning prior to the subduction of the continental rocks. In the light of the available geochronological constraints we propose to relate the pre-Alpine granulite and post-granulite retrograde evolution to the Permo-Jurassic extensional regime. The complex granulite-eclogite transition is thus regarded as a record of the opening and of the closure of the Piedmont ocean.  相似文献   

2.
Three monazite generations were observed in garnet-bearing micaschists from the Schobergruppe in the basement to the south of the Tauern Window, Eastern Alps. Low-Y monazite of Variscan age (321?±?14?Ma) and high-Y monazite of Permian age (261?±?18?Ma) are abundant in the mica-rich rock matrix and in the outer domains of large garnet crystals. Pre-Alpine monazite commonly occurs as polyphase grains with low-Y Variscan cores and high-Y Permian rims. Monazite of Eo-Alpine age (112?±?22?Ma) is rarer and was observed as small, partly Y-enriched grains (3?wt. %?Y2O3) in the rock matrix and within garnet. Based on monazite-xenotime thermometry, Y?+?HREE values in monazite indicate minimum crystallization conditions of 500?°C during the Variscan and 650?°C for the Permian and Alpine events, respectively. Garnet zoning and thermobarometric calculations with THERMOCALC 3.21 record an amphibolite facies, high-pressure stage of ~600?°C/13?C16?kbar, followed by a thermal maximum at 650?C700?°C and 6?C9?kbar. The Eo-Alpine age for these two events is supported by inclusions of Cretaceous monazite in the garnet domains used for thermobarometric constraints and through the high growth temperatures of Eo-Alpine monazite, which is consistent with that of the thermal maximum (~700?°C). The age and growth conditions of a few Mn-rich garnet cores, sporadically present within Eo-Alpine garnet, are unclear because inclusions of monazite, plagioclase and biotite necessary for thermobarometric- and age constraints are absent. However, based on monazite thermometry, Permian and Variscan metamorphic conditions were high enough for the growth of pre-Alpine garnet. The formation of Variscan garnet and its later resorption, plus Y-release, would also explain the high Y in Permian monazite, which cannot originate from preexisting Variscan monazite only. Monazite of Variscan, Permian and/or Eo-Alpine ages were also observed in other garnet-bearing micaschists from the Schobergruppe. This suggests that the basement of the Schobergruppe was overprinted by three discrete metamorphic events at conditions of at least lower amphibolite facies. While the Variscan event affected all parts of this basement, the younger events are more pronounced in its structurally lower units.  相似文献   

3.
Garnet in metapelites from the Wölz and Rappold Complexes of the Austroalpine basement east of the Tauern Window typically shows two distinct growth zones. A first garnet generation usually forms the cores of garnet porphyroblasts and is separated by a prominent microstructural and chemical discontinuity from a second garnet generation, which forms rims of variable width. Whereas the rims were formed during the Eo-Alpine metamorphic overprint, the garnet cores represent remnants of at least two pre-Eo-Alpine metamorphic events. The pressure and temperature estimates obtained from garnet isopleth thermobarometry applied to the first growth increments of the pre-Eo-Alpine garnet cores from the Wölz and Rappold Complexes cluster into two distinct domains: (i) in the Wölz Complex, incipient growth of the first-generation garnet occurred at 4 ± 0.5 kbar and 535 ± 20 °C, (ii) in the Rappold Complex, incipient growth of the oldest garnet cores took place at 5.3 ± 0.3 kbar and 525 ± 15 °C. The Eo-Alpine garnet generation started to grow at 6.5 ± 0.5 kbar and 540 ± 10 °C. According to radiometric dating, the low-pressure garnet from the Wölz complex was formed during a Permian metamorphic event. The first-generation garnet of the Rappold Complex is probably of Variscan age.  相似文献   

4.
Abstract Petrological data from intercalated pelitic schists and greenstones are used to construct a pressure–temperature path followed by the Upper Schieferhülle (USH) series during progressive metamorphism and uplift in the south-west Tauern Window, Italy. Pseudomorphs of Al–epidote + Fe-epidote + albite + oligoclase + chlorite after lawsonite and data on amphibole crystal chemistry indicate early metamorphism in the lawsonite-albite-chlorite subfacies of the blueschist facies at P ± 7–8 kbar. Geothermometry and geobarometry yield conditions of final equilibration of the matrix assemblage of 475±25°C, 5–6 kbar; calculations with plagioclase and phengite inclusions in garnet indicate early garnet growth at pressures of ∼ 7.5 kbar. Garnet zoning patterns are complex and reversals in zoning can be correlated between samples. Thermodynamic modelling of these zoning profiles implies garnet growth in response to four distinct phases of tectonic activity. Fluid inclusion data from coexisting immiscible H2O–CO2–NaCl fluids constrain the uplift path to have passed through temperatures of 380 + 30°C at 1.3 + 0.2 kbar.
There is no evidence for metamorphism of USH at pressures greater than ∼ 7.5 kbar in this area of the Tauern Window. This is in contrast to pressures of ± 10 kbar recorded in the Lower Schieferhülle only 2–3 km across strike. A history of differential uplift and thinning of the intervening section during metamorphism is necessary to reconcile the P–T data obtained from these adjacent tectonic units.  相似文献   

5.
A layer of relict, high-temperature, prograde eclogite has been discovered within felsic granulite of the Gföhl Nappe, which is the uppermost tectonic unit in the Moldanubian Zone of the Bohemian Massif, the easternmost of the European Variscan massifs. Pressure-temperature conditions for eclogite (≥890  °C, 18.0  kbar) and felsic granulite ( c . 1000  °C, 16  kbar) place early metamorphism of the polymetamorphic Gföhl crustal rocks within the eclogite facies, and preservation of prograde compositional zoning in small garnet grains in high-temperature eclogite requires very rapid heating, as well as cooling. Mantle-derived garnet and spinel–garnet peridotites are associated with the high temperature-high pressure crustal rocks in the Gföhl Nappe, and this distinctive lithological suite appears to be unique among European Phanerozoic orogenic belts, implying that tectonic processes during the late stages in evolution of the Variscan belt were different from those in the Caledonian and Alpine belts. The unusually high temperatures and pressures in Gföhl crustal rocks, mineralogical evidence for rapid heating and cooling, juxtaposition of lithospheric and asthenospheric mantle with crustal rocks, and widespread production of late-stage granites indicate that culmination of the Variscan Orogeny may have been driven by lithospheric delamination and asthenospheric upwelling.  相似文献   

6.
Ultra-high pressure eclogites and granulites both occur in the Dabie Mountains, central China. A garnet porphyroblast from felsic granulite in the Dabie Mountains has been analysed for compositional zoning by electron microprobe. Two segments of the porphyroblast have opposite compositional variations. Segment I (from centre outward 9  mm to analytical point 18) has decreasing XSps and increasing XPyr, while Segment II (from analytical point 18, 1  mm outward to the rim) has increasing XSps and XAlm and decreasing XPyr and XGrs. The compositional zoning in segment I is considered as growth zoning and that in Segment II as diffusive retrograde zoning. Garnet growth zoning records a P–T  path prior to the peak granulite metamorphism. The minimum P – T  conditions are estimated to be 1.35  GPa and 850  °C for peak metamorphism, based on the highest Mg/(Fe+Mg) composition in the garnet (analytical point 18) and matrix hypersthene, biotite and plagioclase. A symplectitic corona surrounds the porphyroblast and appears to have formed at 0.6  GPa and 700  °C. The well-preserved growth zoning in garnet suggests a short residence time for the granulite at peak metamorphism and thus rapid tectonic uplift history. The P–T  path is consistent with that of ultra-high-pressure eclogite in the area. Tectonic movements during a collisional event could have brought both the granulite and the eclogite to their present positions.  相似文献   

7.
A detailed high-pressure experimental study of two mafic xenoliths, in which coexisting garnet and clinopyroxene (± plagioclase, spinel and olivine) were crystallized over a P–T range of 10–30 kbar and 950–1200°C, has revealed significant differences in temperatures from those estimated for coexisting garnets and clinopyroxenes using the Ellis & Green Fe–Mg exchange thermometer. The results show perfect matching at 30 kbar, 1150–1200°C, but increasing deviation at lower pressure and lower temperature, with the Ellis & Green calibration reaching a Δ T (overestimate) of c. 145°C at 10–12 kbar and 950°C. The grossular content of the garnet increases from c. 21 mol.% at 10 kbar to 26–31 mol.% at 30 kbar. These results confirm other recent experimental studies that show that the pressure correction, and possibly to a lesser extent the correction for grossular content, applied by Ellis & Green, are not appropriate for lower pressure conditions, and give estimated temperatures that are significantly high when applied to granulitic terranes formed at c. 10 kbar. The new reconnaissance results allow a graphical interpolation of a garnet–clinopyroxene geothermometer based on the Fe–Mg exchange reaction which should be applicable to assemblages formed under lower crustal conditions.  相似文献   

8.
Textural relationships and the trace element chemistry of accessory minerals and garnet can provide the linkage between in situ SHRIMP ages and quantitative pressure–temperature data that is required to decipher complex polymetamorphic and polydeformational histories. Application of these methods to lower amphibolite facies rocks of the Stewart River area, Yukon (Canada) yields robust new constraints on the tectonic evolution of central Yukon Tanana Terrane (YTT).
A TIMS U/Pb titanite age of 365–350 Ma is interpreted to date low- P metamorphism (M1) and D1 deformation associated with arc plutonism above an east-dipping subduction zone. Monazite inclusions in garnet porphyroblasts record a transition from low to high pressure (∼9 kbar and 600 °C) at c . 239 Ma. These data help to establish a c . 260–240 Ma tectonometamorphic event (M2–D2) reflecting intra-arc thickening during west-dipping subduction of Slide Mountain Ocean. Another transition from low- to high- P (M3–D3; 7.8 kbar and 595 °C), dated by c . 195–187 Ma monazite, is interpreted to reflect the change from regional contact metamorphism during arc plutonism to internal duplication of YTT during initial collision of YTT with the North American craton.
The Mt Burnham (north-eastern) region records a different history because of its proximity to later plutons and its late exhumation via extensional faulting. Monazite growth at 146 Ma dates ∼9 kbar metamorphism (M4), interpreted to reflect a previously unrecognized period of plutonism associated with auriferous quartz veins in the Klondike region. Monazite growth at 114–107 Ma reflects low- P (<4.6 kbar) contact metamorphism (M5) accompanying regional plutonism and extension.  相似文献   

9.
Garnet crystals from low-pressure/high-temperature (LPHT) Ryoke metamorphic rocks in the Yanai district, south-western Japan, show several kinds of chemical zoning patterns that systematically vary with grain radius between c . 0.1 and 0.5  mm. Large grains (> c . 0.4  mm) show normal zoning and small grains (< c . 0.4  mm) show unzoned or reversely zoned cores. Observations of the chemical zoning and of the spatial and size distributions of the garnet grains between c . 0.1 and 0.5  mm in radius suggest that they were formed by continuous nucleation and diffusion-controlled growth.
A previously estimated temperature–time path ( T  – t path) for the Ryoke metamorphism, using 1-D numerical simulation, is characterized by a rapid increase in temperature, 0.0017  °C yr−1 on average, and a period of high temperature (>600  °C) shorter than 0.5 Myr, which was presumably caused by the intrusion of a granodiorite sheet. Chemical zoning of garnet grains with different radii simulated for the T  – t path using a numerical model of continuous nucleation and diffusion-controlled growth, in combination with intracrystalline diffusion, compares well with the observed zoning patterns in garnet grains with different radii. This is in spite of the fact that the simulated zoning patterns vary greatly, depending on subtle differences in the T–t history. Therefore, they suggest that the T–t path gives a good explanation for the LPHT Ryoke metamorphism. Although this study only refers to the Ryoke metamorphism, the technique may be applicable to thermal modelling of other metamorphic terranes.  相似文献   

10.
Garnets from recrystallized, staurolite- and kyanite-bearing mica schists from the central Saualpe basement, representing the host rocks of the type-locality eclogites, give concordant Sm–Nd garnet–whole-rock isochron ages between 88.5±1.7 and 90.9±0.7 Ma. The millimetre-sized, mostly inclusion-free grains show fairly homogeneous element profiles with pyrope contents of 25–27%. Narrow rims with an increase in Fe and Mn and a decrease in Mg document minor local re-equilibration during cooling. According to phengite geothermobarometry, peak metamorphic conditions at 90 Ma were close to 20  kbar and 680  °C and similar to those recorded by the eclogites. The garnet rims record about 575  °C/7  kbar for the final stages of metamorphism. A phengitic garnet–mica schist, sampled at the immediate contact with the Gertrusk eclogite, gave a garnet–whole-rock Sm–Nd age of 94.0±2.7 Ma.
Garnet porphyroclasts separated from a pegmatite–mylonite of the Koralpe plattengneiss near Stainz are unzoned and show spessartine contents of 15%. Composition and Sm–Nd ages of close to 260 Ma point to a magmatic origin for these garnets.
The garnet data from the Saualpe document an intense Alpine metamorphism for this part of the Austroalpine basement. The mica schists recrystallized during decompression and rapid exhumation, at the final stages of and immediately following a high- P event. The Koralpe data show that high Alpine temperatures did not reopen the Sm–Nd isotope system, implying a closure temperature in excess of c . 600  °C for this isotopic system in garnet.  相似文献   

11.
The garnet-olivine Fe-Mg exchange geothermometer and the garnet-olivine-plagioclase geobarometer have been simultaneously calibrated using reversed experimental data based on the model reactions and between 900 and 1500 °C at 9.1–95.0 kbar and between 4.7 and 7.0 kbar at 750–1050 °C, respectively. The resulting garnet-olivine thermometer reproduces experimental temperatures mostly within ±75 °C and the garnet-olivine-plagioclase barometer reproduces experimental pressures well within ±0.19 kbar. These new thermobarometers use the same garnet and olivine activity models and are thermodynamically consistent. Application of these thermobarometers to garnet peridotites from mantle xenoliths, orogenic garnet peridotites over the world and the Adirondack olivine-bearing metagabbros yielded reasonable P–T results. The present garnet-olivine thermometer can be used to measure medium-high-grade to ultrahigh-grade, low-pressure to ultrahigh–high-pressure garnet peridotites and metagabbros, whereas the garnet-olivine-plagioclase barometer has limited application to garnet-olivine-plagioclase-bearing granulites.  相似文献   

12.
The upper pressure limit of pyrophyllite is given by the equilibria (i) pyrophyllite=diaspore+quartz and (ii) pyrophyllite=diaspore+coesite. High- P experimental investigations carried out to locate equilibrium (i) yield brackets between 497 °C/24.8  kbar and 535 °C/25.1  kbar, and between 500 °C/23  kbar and 540 °C/23  kbar. Equilibrium (ii) was bracketed at 550 °C between 26.0 and 28.3  kbar. In the experimental P–T  range, equilibria (i) and (ii) are metastable with respect to kyanite. A stable P–T  grid is calculated using thermodynamic data derived under consideration of the present experimental results. According to these data, the lower pressure limit of the assemblage diaspore+quartz according to equilibrium (i) range from about 12  kbar/300 °C to 20  kbar/430 °C (in the presence of pure water). The upper stability of diaspore+quartz is limited by the reaction diaspore+quartz=kyanite+H2O at about 450 °C (nearly independent of pressure) and, to higher pressure, by the quartz=coesite transition. Equilibrium (ii) is metastable over the whole P–T  range.
Natural occurrences600.S of the diaspore–quartz assemblage in metamorphic rocks in Sulawesi, New Caledonia, Amorgos and the Vanoise are characterized by minerals indicative of high- P such as ferro-magnesiocarpholite, glaucophane, sodic pyroxene and lawsonite. The metamorphic P–T  conditions of these rocks are estimated to be in the range 300–400 °C, >8  kbar. These data are compatible with the derived P–T  stability field of the diaspore+quartz assemblage. We conclude that, in metamorphic rocks, diaspore+quartz is, as ferrocarpholite, an indicator for unusual low- T  /very high- P settings.  相似文献   

13.
Two distinct age estimates for eclogite-facies metamorphism in the Sanbagawa belt have been proposed: (i) c.  120–110 Ma based on a zircon SHRIMP age for the Western Iratsu unit and (ii) c.  88–89 Ma based on a garnet–omphacite Lu–Hf isochron age from the Seba and Kotsu eclogite units. Despite the contrasting estimates of formation ages, petrological studies suggest the formation conditions of the Western Iratsu unit are indistinguishable from those of the other two units—all ∼20 kbar and 600–650 °C. Studies of the associated geological structures suggest the Seba and Western Iratsu units are parts of a larger semi-continuous eclogite unit. A combination of geochronological and petrological studies for the Western Iratsu eclogite offers a resolution to this discrepancy in age estimates. New Lu–Hf dating for the Western Iratsu eclogite yields an age of 115.9 ± 0.5 Ma that is compatible with the zircon SHRIMP age. However, petrological studies show that there was significant garnet growth in the Western Iratsu eclogite before eclogite facies metamorphism, and the early core growth is associated with a strong concentration of Lu. Pre-eclogite facies garnet (Grt1) includes epidote–amphibolite facies parageneses equilibrated at 550–650 °C and ∼10 kbar, and this is overgrown by prograde eclogite facies garnet (Grt2). The Lu–Hf age of c.  116 Ma is strongly skewed to the isotopic composition of Grt1 and is interpreted to reflect the age of the pre-eclogite phase. The considerable time gap ( c.  27 Myr) between the two Lu–Hf ages suggests they may be related to separate tectonic events or distinct phases in the evolution of the Sanbagawa subduction zone.  相似文献   

14.
Abstract A detailed study of garnet–chloritoid micaschists fom the Sesia zone (Western Alps) is used to constrain phase relations in high pressure (HP) metapelitic rocks. In addition to quartz, phengite, paragonite and rutile, the micaschists display two distinct parageneses, namely garnet + chloritoid + chlorite and garnet + chloritoid + kyanite. Talc has never been observed. Garnet and chloritoid are more magnesian when chlorite is present instead of kyanite. The distinction of the two equilibria results from different bulk rock chemistries, not from P–T conditions or redox state. Estimated P–T conditions for the eclogitic metamorphism are 550–600°C, 15–18 kbar.
The presence of primary chlorite in association with garnet and chloritoid leads us to construct two possible AFM topologies for the Sesia metapelites. The paper describes a KFMASH multisystem for HP pelitic rocks, which extends the grid of Harte & Hudson (1979) towards higher pressures and adds the phase talc. Observed parageneses in HP metapelites are consistent with predicted phase relations. Critical associations are Gt–Ctd–Chl and Gt–Ctd–Ky at relatively low temperatures and Gl–Chl–Ky and Gt–Tc–Ky at relatively high temperatures.  相似文献   

15.
Abstract An outcrop of staurolite-bearing pelitic schist from the Solitude Range in the south-western Rocky Mountains, British Columbia, was examined in order to determine the nature of prograde garnet- and staurolite-producing reactions using information from garnet zoning and inclusion mineralogy. Although not present as a matrix phase, chloritoid is present as inclusions in garnet and is interpreted to have participated in the simultaneous growth of garnet and staurolite by a reaction such as chloritoid + quartz = garnet + staurolite + H2O.
A garnet zoning trend reversal, which is most pronounced with respect to almandine and grossular components, is present in the outer core of garnets. The location of the zoning reversal corresponds to the outer limit of chloritoid inclusions in garnet. As there is no evidence for polymetamorphism, the zoning reversal is interpreted to indicate continued garnet growth by prograde reaction(s) during a single metamorphic event after the exhaustion of chloritoid as a matrix phase.
Metamorphic conditions recorded by mineral rim compositions are 550–600° C at 6–7 kbar. Because there is no evidence for partial resorption of garnet during production of staurolite, we interpret these results to represent peak conditions.  相似文献   

16.
Garnet in metapelites from the Wölz Complex of the Austroalpine crystalline basement east of the Tauern Window characteristically consists of two growth phases, which preserve a comprehensive record of the geothermal history during polymetamorphism. From numerical modelling of garnet formation, detailed information on the pressure–temperature–time (P–T–t) evolution during prograde metamorphism is obtained. In that respect, the combined influences of chemical fractionation associated with garnet growth, modification of the original growth zoning through intragranular diffusion and the nucleation history on the chemical zoning of garnet as P and T change during growth are considered. The concentric chemical zoning observed in garnet and the homogenous rock matrix, which is devoid of chemical segregation, render the simulation of garnet growth through successive equilibrium states reliable. Whereas the first growth phase of garnet was formed at isobaric conditions of ~3.8 kbar at low heating/cooling rates, the second growth phase grew along a Barrovian P–T path marked with a thermal peak of ~625°C at ~10 kbar and a maximum in P of ~10.4 kbar at ~610°C. For the heating rate during the growth of the second phase of garnet, average rates faster than 50°C Ma?1 are obtained. From geochronological investigations the first growth phase of garnet from the Wölz Complex pertains to the Permian metamorphic event. The second growth phase grew in the course of Eo-Alpine metamorphism during the Cretaceous.  相似文献   

17.
This paper reports an occurrence of medium-pressure granulite facies calc-silicate rocks intercalated with pelitic gneisses in the Higo metamorphic terrane, central Kyushu, Japan, which is classified as a low- P /high- T (andalusite-sillimanite type) metamorphic belt. Three equilibrium stages are recognized in the calc-silicate rock based on reaction textures: M1 stage characterized by an assemblage of porphyroblastic garnet + coarse-grained clinopyroxene + plagioclase included in the clinopyroxene; M2 stage by two kinds of breakdown products of garnet, one is plagioclase + coronitic clinopyroxene within garnet and the other is plagioclase + vermicular clinopyroxene surrounding garnet; and M3 stage by amphibole replacing clinopyroxene. The key assemblage in the calc-silicate rock common to M1 and M2 stages is Grt + Cpx + Pl ± Qtz, which constrains the pressure and temperature ( P – T ) conditions for these stages by Fe–Mg exchange reaction and the two univariant net-transfer reactions: 2Grs + Alm + 3Qtz = 3Hd + 3An or 2Grs + Prp + 3Qtz = 3Di + 3An. The P – T conditions for M1 and M2 stages were estimated to be about 8.4 ± 1.9 kbar and 680 ± 122 °C, and 6.7 ± 1.9 to 8.9 ± 2.2 kbar and 700 ± 130 to 820 ± 160 °C, respectively. Estimates are consistent with an isobaric heating P – T path. The high peak temperature conditions at normal crustal depths and the prograde isobaric heating path probably require heat advection due to melt migration during the high- T metamorphism.  相似文献   

18.
Garnet from a kinzigite, a high-grade gneiss from the central Black Forest (Germany), displays a prominent and regular retrograde diffusion zoning in Fe, Mn and particularly Mg. The Mg diffusion profiles are suitable to derive cooling rates using recent datasets for cation diffusion in garnet. This information, together with textural relationships, thermobarometry and thermochronology, is used to constrain the pressure–temperature–time history of the high-grade gneisses. The garnet–biotite thermometer indicates peak metamorphic temperatures for the garnet cores of 730–810  °C. The temperatures for the outer rims are 600–650  °C. Garnet–Al2SiO5–plagioclase–quartz (GASP) barometry, garnet–rutile–Al2SiO5–ilmenite (GRAIL) and garnet–rutile–ilmenite–plagioclase–quartz (GRIPS) barometry yield pressures from 6–9  kbar. U–Pb ages of monazite of 341±2  Ma date the low- P high- T metamorphism in the central Black Forest. A Rb/Sr biotite–whole rock pair defines a cooling age of 321±2  Ma. The two mineral ages yield a cooling rate of about 15±2  °C Ma−1. The petrologic cooling rates, with particular consideration of the f O2 conditions for modelling retrograde diffusion profiles, agree with the geochronological cooling rate. The oldest sediments overlying the crystalline basement indicate a minimum cooling rate of 10  °C Ma−1.  相似文献   

19.
Pre-Alpine eclogites in the Pennine Basement Complex of the Eastern Alps   总被引:1,自引:0,他引:1  
An occurrence of quartz-eclogite is described from the Inner Schieferhülle unit of the Pennine Basement Complex in the SE Tauern Window, Austria.
Field relations strongly suggest a pre-Alpine age for the primary eclogitic mineral assemblage (garnet + omphacite + quartz + rutile). This implies that there was no connection between the formation of these eclogites and the late Cretaceous and Tertiary tectonic evolution of the Eastern Alps. The quartz-eclogite mineral assemblage crystallized under conditions of 620 ± 100°C and at pressures in excess of 12 kbar, and suffered amphibolitic overprinting of Alpine and possibly Hercynian age.
A four-stage polymetamorphic history is proposed for the Inner Schieferhülle:  相似文献   

20.
《Geodinamica Acta》2013,26(1):91-105
Slices of continental crust pertinent to the lower Austroalpine domain of the western Alps, crop out within the ophiolitic Piemonte Zone. Among them, the Châtillon slice was studied in detail. The slice consists of orthogneiss with subordinate metabasics and very minor paraschist. The garnet-phengite-epidote-albite orthogneiss is characterised by polyphase garnet porphyroclasts. Metabasics consist of prasinite lenses and eclogite relics. Phengite-clinozoisite eclogite is characterised by small garnet idioblasts with prograde zoning; jadeite content in omphacite increases towards the rim; Si content in phengite decreases towards the rim. Garnet-glaucophane-phengiteparagonite micaschist is characterised by polymetamorphic garnet porphyroclasts, and small Alpine garnet idioblasts. A pre-Alpine amphibolite-facies metamorphism is inferred for the polymetamorphic rocks of the Châtillon slice. Paragneiss and micaschist probably derive from pre-Alpine “kinzigites”; the orthogneiss protolith was a late-Variscan porphyritic granitoid. Thermobarometry in the eclogite constrains the metamorphic peak at T ≤ 560 °C and P = 16 kbar. The HP minerals were partly retrogressed to greenschist-facies assemblages during the late Alpine tectono-metamorphic recrystallisation. The inferred Alpine P-T conditions are consistent with those for other Penninic and Austro-Alpine nappes of the northwestern internal Alps. The Châtillon slice is very similar to the Eclogitic Micaschists Complex of the Sesia-Lanzo Zone and to the other eclogite-facies Austroalpine slices of the Dent Blanche Nappe, but it could also represent a portion of the Sesia-Lanzo Zone basement, which experienced a somewhat different subduction depth. The tectonic position of the Châtillon slice within the Piemonte Zone is essential to reconstruct the geometric relationships in the Austroalpine-Piemonte nappe stack of the northwestern internal Alps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号