首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Maastrichtian regressive sequence of the Hekimhan-Malatya area in Eastern Turkey consists of dolomitic limestones, limestones and calcareous mudstones which are dominated by rudists and Loftusia (foraminifera) assemblages. Several Loftusia species indicating middle to late Maastrichtian age such as Loftusia anatolica Meriç, L. baykali Meriç, L. coxi Henson, L. harrisoni Cox, L. minor Cox and L. morgani Douvillé have been recorded. Other benthic foraminifers present include Orbitoides medius d’ Archiac, Omphalocyclus macroporus (Lamarck), Laffitteina conica Drooger, Laffitteina mengaudi (Astre) and Laffitteina oeztuerki Inan. The rudists are abundant in the dolomitic limestones in the study area. The genus Miseia Patrulius is dominant and represented by Miseia bilacunosa Özer and Miseia hekimhanensis Karacabey-Öztemür. The Loftusia species and the Rudists assemblage indicates middle to late Maastrichtian age for the formation. The paleobiogeographic distribution of the assemblage has been discussed taking this find into account.  相似文献   

2.
Suraqalatia brasieri n.gen., n.sp. from the family Dicyclinidae Loeblich and Tappan 1964 occurs on the Maastrichtian carbonate platform of northern Iraq. The new genus is recognizable by its large very compressed conical test, up to 55–70 mm in diameter, to 0.3–1.6 mm in thickness, planspiral cooling having very small proloculus in the initial part and later circular chambers including numerous chamberlets with an agglutinated wall. Suraqalatia brasieri n.gen., n.sp. is associated with textulariids, miliolids and rotaliids as Loftusia elongata Cox, L. morgani Douvillé, Orbitoides medius d’Archiac, O. megaloformis Papp & Kupper, O. gruenbachensis Papp, O. apiculatus Schlumberger, Omphalocyclus macroporus (Lamarck), Siderolites calcitrapoides Lamarck, Sirtina orbitoidiformis Brönnimann & Wirz. The associated macrofauna comprises large and rich giant rudists (Preradiolites sp.), other bivalves (Gryphaea sp. and Glycymeris sp.), gastropods (Acteonella sp.), echinoderms and corals. The fauna indicates shallow marine carbonate platform conditions within the Maastrichtian green house. It is also worth mentioning that the new genus has only been recorded from the Maastrichtian age.  相似文献   

3.
A new species of fossil palm rhizome having root-mat under the organ genus Rhizopalamoxylon (Rhizopalmoxylon nypoides sp. nov.) is reported. The specimen shows the closest resemblance with the modern monotypic genus Nypa Wurmb of the Arecaceae. The specimen was collected from the late Maastrichtian–early Danian sediments of Deccan Intertrappean beds, Mothi, Sagar district, Madhya Pradesh, India. Nypa is a mangrove palm naturally found in estuaries and swamps of the tropical region and represents one of the oldest records of the genus from the Deccan Intertrappean beds of central India. The abundance of palms, including Nypa and previously recorded coastal and mangrove elements such as Acrostichum, Barringtonia, Cocos, Sonneratia and marine algae (Distichoplax and Peyssonellia) from the Deccan Intertrappean beds indicate marine influence and existence of tropical rainforest ecosystem in the vicinity of fossil locality in contrast to the deciduous forests occurring there at present.  相似文献   

4.
Seven planktic foraminiferal zones are distinguished in the Maastrichtian-Paleocene succession at the north Farafra Oasis. These are the Rugoglobigerina hexacamerata (CF8b), Gansserina gansseri, and Contusotruncana contusa zones in the Maastrichtian topped by a well-known unconformity across the Cretaceous/Paleogene (K/Pg) boundary. The Danian is subdivided into two biozones: Globanomalina compressa/Praemurica inconstans-Praemurica uncinata Subzone (P1c) and Praemurica uncinata–Morozovella angulata (P2) Zone. The Late Paleocene is divided into two zones: Morozovella angulata-Globanomalina pseudomenardii (P3) and Globanomalina pseudomenardii (P4). A minor hiatus between the Danian/Selandian and Selandian/Thanetian boundaries are also recorded. These time gaps across the stage boundaries may be related to the tectonic events that affected the sedimentation regime throughout the Upper Cretaceous–Lower Paleogene interval in the Farafra Oasis.  相似文献   

5.
A comparative morphological analysis is performed for 13 valid dinocyst species of genus Vesperopsis. Their distribution over Eurasia and North America in the Hauterivian–Cenomanian is traced and the characteristics of these deposits are given. Three species of the most stratigraphically significant dinocysts are distinguished: V. fragilis for the Upper Hauterivian of Western Siberia and V. mayi and V. longicornis for the Aptian of East Greenland. Analysis of facies confinement of the dinocysts Vesperopsis made it possible to group species of the considered genus over conditionally preferable paleosettings. Continental facies (freshwater, brackish-water) are characterized by species V. yanjiensis, V. glabra, V. sanjiensis, and V. jixianensis, while V. zhaodongensiis, V. didaoensis, and V. dolabella are typical of the coastal–marine facies, and V. digitatа, V. nebulosa, and V. mayi are typical of marine facies.  相似文献   

6.
A rich assemblage of palynomorphs including miospores and megaspores has been recorded from the bore core no. IBKAN-2 drilled at a depth of 17.80m in Kuraloi Block-A, south-west part of the Ib-River Coalfield, Jharsuguda district, Odisha. The miofloral assemblage recovered shows prominence of cingulate, zonate, taeniate, non-striate and non saccate palynotaxa which indicate an early Triassic age and is comparable with the palynoassemblages of the same age known from the Damodar basin, India. The megaspore assemblage includes eight genera and fifteen species namely, Banksisporites karanpuraensis, B. indicus, B. utkalensis, Banksisporites sp., Barakarella pantii, Barakarella sp., Biharisporites spinosus, Biharisporites sp., Erlansonisporites triassicus, Erlansonisporites cf. erlansonii, Erlansonisporites sp. Jhariatriletes sp., Singhisporites sp., Ramispinatispora sp. and Talchirella trivedii. Records of megaspores are sparse in the early Triassic of Gondwana basins of India. The present study records the first occurrence of miospores and megaspores from the early Triassic of Mahanadi basin besides substantiating the earlier data.  相似文献   

7.
Smaller foraminifers from Upper Yakhtashian and Bolorian deposits of the stratotype area (Pamir, Darvaz, Tajikistan) are investigated. Four assemblages are defined. The first assemblage is from Chalaroschwagerina vulgaris-Pamirina darvasica Zone. The second assemblage found in the transitional Yakhtashian-Bolorian beds includes Globivalvulina, Palaeotextulariidae, Hemigordiidae, and Glomospira, associated with the first Pachyphloia and Langella forms. Characteristic taxa of third assemblage from the Misellina (Brevaxina) dyhrenfurthi Zone are Geinitzinidae, Globivalvulina, Palaeotextulariidae, Glomospira, and rare Pachyphloia. The forth assemblage of Hemigordiidae, Pachyphloia, Palaeotextulariidae, Geinitzinidae, Pseudoagathammina is identified in the M. (Misellina) parvicostata Zone. The assemblages were compared with concurrent analogs from China, Japan, and Russia. New species and subspecies Glomospira paleograndis sp. nov., G. darvasica sp. nov., Agathammina darvasica sp. nov., Pachyphloia darvasica sp. nov., Nodosinelloides cubanicus elongatus subsp. nov., and Hemigordius saranensis darvasicus subsp. nov. are described.  相似文献   

8.
High-pressure phase transitions of CaRhO3 perovskite were examined at pressures of 6–27 GPa and temperatures of 1,000–1,930°C, using a multi-anvil apparatus. The results indicate that CaRhO3 perovskite successively transforms to two new high-pressure phases with increasing pressure. Rietveld analysis of powder X-ray diffraction data indicated that, in the two new phases, the phase stable at higher pressure possesses the CaIrO3-type post-perovskite structure (space group Cmcm) with lattice parameters: a = 3.1013(1) Å, b = 9.8555(2) Å, c = 7.2643(1) Å, V m  = 33.43(1) cm3/mol. The Rietveld analysis also indicated that CaRhO3 perovskite has the GdFeO3-type structure (space group Pnma) with lattice parameters: a = 5.5631(1) Å, b = 7.6308(1) Å, c = 5.3267(1) Å, V m  = 34.04(1) cm3/mol. The third phase stable in the intermediate P, T conditions between perovskite and post-perovskite has monoclinic symmetry with the cell parameters: a = 12.490(3) Å, b = 3.1233(3) Å, c = 8.8630(7) Å, β = 103.96(1)°, V m  = 33.66(1) cm3/mol (Z = 6). Molar volume changes from perovskite to the intermediate phase and from the intermediate phase to post-perovskite are –1.1 and –0.7%, respectively. The equilibrium phase relations determined indicate that the boundary slopes are large positive values: 29 ± 2 MPa/K for the perovskite—intermediate phase transition and 62 ± 6 MPa/K for the intermediate phase—post-perovskite transition. The structural features of the CaRhO3 intermediate phase suggest that the phase has edge-sharing RhO6 octahedra and may have an intermediate structure between perovskite and post-perovskite.  相似文献   

9.
Salpingoporella species from algal bearing of Barremian-Aptian limestones in the Kopet Dagh basin (NE of Iran) are described. Different species (S. cemi, S. hasi, S. heraldica, S. hispanica, S. milovanovici, S. muehlmbergi, S. parapiriniae, S. piriniae, S. cf. biokovensis, S. steinhauseri, S. polygonalis) are investigated from different biometrical aspects such as depositional environments and biogeographical distribution as well as their systematic palaeontology from two formations (the Tirgan and Sarcheshmeh formations) in nine stratigraphic sections.  相似文献   

10.
The high-pressure behavior of a vanadinite (Pb10(VO4)6Cl2, a = b = 10.3254(5), = 7.3450(4) Å, space group P63/m), a natural microporous mineral, has been investigated using in-situ HP-synchrotron X-ray powder diffraction up to 7.67 GPa with a diamond anvil cell under hydrostatic conditions. No phase transition has been observed within the pressure range investigated. Axial and volume isothermal Equations of State (EoS) of vanadinite were determined. Fitting the PV data with a third-order Birch-Murnaghan (BM) EoS, using the data weighted by the uncertainties in P and V, we obtained: V 0 = 681(1) Å3, K 0 = 41(5) GPa, and K′ = 12.5(2.5). The evolution of the lattice constants with P shows a strong anisotropic compression pattern. The axial bulk moduli were calculated with a third-order “linearized” BM-EoS. The EoS parameters are: a 0 = 10.3302(2) Å, K 0(a) = 35(2) GPa and K′(a) = 10(1) for the a-axis; c 0 = 7.3520(3) Å, K 0(c) = 98(4) GPa, and K′(c) = 9(2) for the c-axis (K 0(a):K 0(c) = 1:2.80). Axial and volume Eulerian-finite strain (fe) at different normalized stress (Fe) were calculated. The weighted linear regression through the data points yields the following intercept values: Fe a (0) = 35(2) GPa for the a-axis, Fe c (0) = 98(4) GPa for the c-axis and Fe V (0) = 45(2) GPa for the unit-cell volume. The slope of the regression lines gives rise to K′ values of 10(1) for the a-axis, 9(2) for the c-axis and 11(1) for the unit cell-volume. A comparison between the HP-elastic response of vanadinite and the iso-structural apatite is carried out. The possible reasons of the elastic anisotropy are discussed.  相似文献   

11.
12.
A CCD BV R photometric study of the central region (15″ ≤ r ≤ 100″) of the globular cluster NGC 7006 based on color-magnitude diagrams is presented. We find for the main parameters of the cluster [Fe/H] = ?1.62, Y = 0.21, E B?V = 0.15 m , V HB = 18.84 m , M V HB =+0.56 m , R = 37.1 kpc). Two previously unknown RR Lyr variables were discovered in the central region of the cluster. The morphological index of the horizontal branch for the entire region studied indicates that the red stellar population dominates, consistent with previous studies: HB mi = ?0.13. Such anomalously negative morphological indices are possessed by a whole group of Ool clusters with intermediate metallicities, which also display a characteristic distribution of stars along the horizontal branch. There is a radial dependence for the horizontal-branch morphology, with the color becoming primarily blue with approach toward the cluster center. One possible origin for this behavior could be the effect of inner dynamical processes on the spatial distribution of hot stars.  相似文献   

13.
Bortnikovite, a new mineral species that is an intermetallic compound of Pd, Cu, and Zn with the simplified formula Pd4Cu3Zn has been detected at the unique Konder placer deposit in the Ayan-Maya district, Khabarovsk krai. The primary source of this placer is a concentrically zoned alkaline ultramafic massif. The X-ray diffraction pattern is indexed on the assumption of a tetragonal unit cell: a = 6.00 ± 0.02 Å and c = 8.50 ± 0.03 Å, V = 306 ± 0.01 Å3, Z = 3, probable space group P4/mmm. The calculated density is 11.16 g/cm3; the mean microhardness VHN is 368 kg/mm2. In reflected light, the new mineral is white with a slight grayish beige tint; bireflectance, anisotropy, and internal reflections are not observed. The reflectance spectrum belongs to the concave group of the anomalous type. The measured values of reflectance are as follows: 56.9 (470 nm), 61.7 (546 nm), 63.4 (589 nm), and 65.4% (650 nm). The new mineral is intergrown with isoferroplatinum, titanite, perovskite, V-bearing magnetite, bornite, and chlorite. The origin of bortnikovite is related to the effect of alkaline fluid on ultramafic rocks. The new mineral is named in honor of Professor Nikolai Stefanovich Bortnikov, a prominent mineralogist and researcher of ore deposits and a corresponding member of the Russian Academy of Sciences. Bortnikovite is the first platinum group mineral that contains Zn as a major mineralforming element.  相似文献   

14.
The crystal structure of a new compound Zn(SeO4)(H2O)2 (orthorhombic, Pbca, a = 9.0411(13), b = 10.246(2), c = 10.3318(15) Å, V = 957.1(3) Å3) has been solved by direct methods and refined to R 1 = 0.033 on the basis of 1076 observed reflections with |F hkl | ≥ 4σ|F hkl |. The structure contains one independent Zn2+ cation coordinated by two water molecules and four oxygen atoms of selenate group. The only independent (SeO4)2? tetrahedral oxoanion is tetradentate, sharing its corners with four adjacent [Zn2+O2(H2O4)]2+ octahedrons. The structure can be described as consisting of heteropolyhedral sheets parallel to the (001) plane and linked together into a three-dimensional network. The compound belongs to the variscite structure type and is the first structurally characterized selenate of this group.  相似文献   

15.
The elastic and structural behaviour of the synthetic zeolite CsAlSi5O12 (= 16.753(4), = 13.797(3) and = 5.0235(17) Å, space group Ama2, Z = 2) were investigated up to 8.5 GPa by in situ single-crystal X-ray diffraction with a diamond anvil cell under hydrostatic conditions. No phase-transition occurs within the P-range investigated. Fitting the volume data with a third-order Birch–Murnaghan equation-of-state gives: V 0 = 1,155(4) Å3, K T0 = 20(1) GPa and K′ = 6.5(7). The “axial moduli” were calculated with a third-order “linearized” BM-EoS, substituting the cube of the individual lattice parameter (a 3, b 3, c 3) for the volume. The refined axial-EoS parameters are: a 0 = 16.701(44) Å, K T0a = 14(2) GPa (βa = 0.024(3) GPa?1), K′ a = 6.2(8) for the a-axis; b 0 = 13.778(20) Å, K T0b = 21(3) GPa (βb = 0.016(2) GPa?1), K′ b = 10(2) for the b-axis; c 0 = 5.018(7) Å, K T0c = 33(3) GPa (βc = 0.010(1) GPa?1), K′ c = 3.2(8) for the c-axis (K T0a:K T0b:K T0c = 1:1.50:2.36). The HP-crystal structure evolution was studied on the basis of several structural refinements at different pressures: 0.0001 GPa (with crystal in DAC without any pressure medium), 1.58(3), 1.75(4), 1.94(6), 3.25(4), 4.69(5), 7.36(6), 8.45(5) and 0.0001 GPa (after decompression). The main deformation mechanisms at high-pressure are basically driven by tetrahedral tilting, the tetrahedra behaving as rigid-units. A change in the compressional mechanisms was observed at ≤ 2 GPa. The P-induced structural rearrangement up to 8.5 GPa is completely reversible. The high thermo-elastic stability of CsAlSi5O12, the immobility of Cs at HT/HP-conditions, the preservation of crystallinity at least up to 8.5 GPa and 1,000°C in elastic regime and the extremely low leaching rate of Cs from CsAlSi5O12 allow to consider this open-framework silicate as functional material potentially usable for fixation and deposition of Cs radioisotopes.  相似文献   

16.
A new taxon, ?Crassodontidanus gen. nov. of Hexanchiformes (cow sharks) from the Jurassic of Germany is described. It is characterized by peculiar teeth combining apomorphic (serrated mesial cutting edge of the main cusp) and plesiomorphic features (deep root with convex mesial and distal margins in labial and lingual views; protruding lingual root bulge). This character combination readily distinguishes members of the new taxon from all other known extant (Heptranchias, Hexanchus, Notorynchus) and extinct (?Gladioserratus, ?Notidanodon, ?Notidanoides, ?Pachyhexanchus, ?Paraheptranchias, ?Weltonia) hexanchiforms. Currently, two species, ?C. serratus (type species; Late Jurassic, Late Kimmeridgian of Nusplingen, South Germany) and ?C. wiedenrothi (Early Jurassic, Early Pliensbachian of Gretenberg (Hanover), North Germany) are assigned to this taxon. ?Crassodontidanus gen. nov. is member of ?Crassonotidae fam. nov. and sister to ?Notidanoides Maisey, 1986 and ?Pachyhexanchus Cappetta, 1990. We consider ?Notidanus amalthei Oppel, 1854 from the Pliensbachian of South Germany, ?Notidanus insignis Seguenza, 1887 from the Oxfordian of Sicily (Italy) and ?Notidanus wagneri Agassiz, 1843 from the Early Tithonian of Solnhofen (South Germany) nomina dubia and nomina nuda, respectively. The family ?Crassonotidae comprises plesiomorphic hexanchiforms ranging from the Sinemurian (Early Jurassic) to the Hauterivian (Early Cretaceous).  相似文献   

17.
Hydroxylborite, a new mineral species, an analogue of fluoborite with OH > F, has been found at the Titovsky deposit (57°41′N, 125°22′E), the Chersky Range, Dogdo Basin, Sakha-Yakutia Republic, Russia. Prismatic crystals of the new mineral are dominated by the {10\(\overline 1 \)0} faces without distinct end forms and reach (1?1.5) × (0.1?0.2) mm in size. Radial aggregates of such crystals occur in the mineralized marble adjacent to the boron ore (suanite-kotoite-ludwigite). Calcite, dolomite, Mg-rich ludwigite, kotoite, szaibelyite, clinohumite, magnetite, serpentine, and chlorite are associated minerals. Hydroxylborite is transparent colorless, with a white streak and vitreous luster. The new mineral is brittle. The Mohs’ hardness is 3.5. The cleavage is imperfect on {0001}. The density measured with equilibration in heavy liquids is 2.89(1) g/cm3; the calculated density is 2.872 g/cm3. The wave numbers of the absorption bands in the IR spectrum of hydroxylborite are (cm?1; sh is shoulder): 3668, 1233, 824, 742, 630sh, 555sh, 450sh, and 407. The new mineral is optically uniaxial, negative, ω = 1.566(1), and ε = 1.531(1). The chemical composition (electron microprobe, H2O measured with the Penfield method, wt %) is 18.43 B2O3, 65.71 MgO, 10.23 F, 9.73 H2O, 4.31-O = F2, where the total is 99.79. The empirical formula calculated on the basis of 6 anions pfu is as follows: Mg3.03B0.98[(OH)2.00F1.00]O3.00. Hydroxylborite is hexagonal, and the space group is P63/m. The unit-cell dimensions are: a = 8.912(8) Å, c = 3.112(4) Å, V = 214.05(26) Å3, and Z = 2. The strongest reflections in the X-ray powder pattern [d, Å (I, %)(hkil)] are: 7.69(52)(01\(\overline 1 \)0), 4.45(82)(11\(\overline 2 \)0), 2.573(65)(03\(\overline 3 \)0), 2.422(100)(02\(\overline 2 \)1), and 2.128(60)(12\(\overline 3 \)1). The compatibility index 1 ? (K p/K c) is 0.038 (excellent) for the calculated density and 0.044 (good) for the measured density. The type material of hydroxylborite is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow (inventory number 91968) and the Geological Museum of the All-Russia Institute of Mineral Resources, Moscow (inventory number M-1663).  相似文献   

18.
A pyroxene with composition LiNiSi2O6 was synthesized at T = 1,473 K and P = 2.0 GPa; the cell parameters at T = 298 K are a = 9.4169(6) Å, b = 8.4465(7) Å, c = 5.2464(3) Å, β = 110.534(6)°, V = 390.78(3) Å3. TEM examination of the LiNiSi2O6 pyroxene showed the presence of h + k odd reflections indicative of a primitive lattice, and of antiphase domains obtained by dark field imaging of the h + k odd reflections. A HT in situ investigation was performed by examining TEM selected area diffraction patterns collected at high temperature and synchrotron radiation powder diffraction. In HTTEM the LiNiSi2O6 was examined together with LiCrSi2O6 pyroxene. In LiCrSi2O6 the h + k odd critical reflections disappear at about 340 K; they are sharp up to the transition temperature and do not change their shape until they disappear. In LiNiSi2O6 the h + k odd reflections are present up to sample deterioration at 650 K. A high temperature synchrotron radiation powder diffraction investigation was performed on LiNiSi2O6 between 298 and 773 K. The analysis of critical reflections and of changes in cell parameters shows that the space group is P-centred up to the highest temperature. The comparative analysis of the thermal and spontaneous strain contributions in P21/c and C2/c pyroxenes indicates that the high temperature strain in P-LiNiSi2O6 is very similar to that due to thermal strain only in C2/c spodumene and that a spontaneous strain contribution related to pre-transition features is not apparent in LiNiSi2O6. A different high-temperature behaviour in LiNiSi2O6 with respect to other pyroxenes is suggested, possibly in relation with the presence of Jahn–Teller distortion of the M1 polyhedron centred by low-spin Ni3+.  相似文献   

19.
A new mineral barioferrite—a natural analogue of synthetic barium ferrite Ba Fe 12 3+ O19—has been identified in the central part of a metamorphosed barite nodule in the rock of the Haturim Formation (Mottled Zone) on the southern slope of Mount Ye’elim in Israel. The mineral is associated with barite, calcite, magnetite, and maghemite and occurs as tiny platy crystals up to 3 × 15 × 15 μm and their irregular aggregates. Barioferrite is black with streaks of brown, and its luster is submetallic. Its Calculated density is 5.31 g/cm3. The mineral is brittle; cleavage is absent. IR absorption bands (cm?1) are observed at 635 (shoulder), 582, 544, 433, and 405 (shoulder). Barioferrite is characterized by ferrimagnetic behavior. Under a microscope in reflected light, barioferrite is grayish white with brownish red internal reflections, the pleochroism is weak (from gray-white on R o to gray-white with a brown tint on R e), and the bireflectance is weak with distinct anisotropy. The reflectance values of R o/R e, % (λ, nm) are 24.51/22.80 (470), 24.17/22.25 (546), 23.65/21.68 (589), and 22.67/20.85 (650). The chemical composition (electron microprobe, wt %; the ranges are given in parentheses) is BaO 13.13 (12.5–13.8), Fe2O3 86.47 (85.5–87.5), and 99.60 in total. The empirical formula is Ba0.95Fe 12.03 3+ O19. Barioferrite is hexagonal with space group P63/mmc, a = 5.875 (3) Å, c = 23.137 (19) Å, V = 691.6 (5) Å3, and Z = 2. The strongest lines of the X-ray powder diffraction pattern [d, Å, (I, 5) (hkl)] are 2.938(46) (110), 2.770(100) (107), 2.624 (84) (114, 200), 2.420(44) (203), 2.225(40) (205), and 1.627(56) (304, 2.0.11). The holotype specimen of barioferrite is deposited at the Mineralogical Museum of St. Petersburg State University; its catalogue number is 1/19436.  相似文献   

20.
Fine-granular (<0.1 mm) flattened colorless transparent crystals of ivsite form white aggregates. The empirical formula (Na2.793Cu0.056)2.849HS2.016O8 is close to the ideal Na3H(SO4)2. The structure was refined up to R = 0.040. Ivsite has a monoclinic symmetry, P21/c, a = 8.655(1) Å, b = 9.652(1) Å, c = 9.147(1) Å, β = 108.76(1)°, V = 723.61(1) Å3, Z = 4. Na atoms occur at six- and seven-fold sites (NaO6 and NaO7); S atoms, in isolated SO4 tetrahedrons; these polyhedrons form a three-dimensional framework. The diagnostic lines of powder diffraction patterns (d[Å]–Ihkl) are 4.010–53–12-1, 3.949–87–012, 3.768–100–210, 3.610–21–20-2, 3.022–22–031, 2.891–42–22-2, 2.764–49–31-1, and 2.732–70–13-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号