首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Eyles, N., Eyles, C., Menzies, J. & Boyce, J. 2010: End moraine construction by incremental till deposition below the Laurentide Ice Sheet: Southern Ontario, Canada. Boreas, 10.1111/j.1502‐3885.2010.00171.x. ISSN 0300‐9483. Just after 13 300 14C a BP in central Canada, the retreating Ontario lobe of the Laurentide Ice Sheet briefly re‐advanced westwards through the Lake Ontario basin to build a large end moraine. The Trafalgar Moraine (27 km long, 4 km wide) is composed of a distinctly red‐coloured silt‐rich till (Wildfield Till, up to 16.5 m thick) formed by the reworking of proglacial lake deposits and soft shale bedrock. The moraine has a pronounced ramp‐like longitudinal form passing upglacier into fluted till resting on exposed shale. Analysis of water well stratigraphic data, drilled sediment cores, downhole gamma‐ray logs and exposures in deep test pits shows that within the moraine the Wildfield Till is built of superposed beds up to 7 m in thickness. These are inferred to result from the repeated incremental deposition of fine‐grained debris being moved towards the ice margin as a deforming bed such as identified at modern glaciers. A total till volume of 0.81 km3 was produced in a very brief time‐span along a transport path probably no greater than 10 km in length. Subglacial mixing of pre‐existing sediment and soft shale was clearly a very effective process for generating and moving large volumes of till to the ice margin. Similar till‐dominated end moraines occur widely around the margins of the Great Lake basins, where the markedly lobate margin of the retreating Laurentide Ice Sheet re‐advanced repeatedly into proglacial lakes and over fine‐grained sediment. This suggests the wider applicability of the till transport and incremental depositional model presented here.  相似文献   

2.
Herein we report on the results of an anisotropy of magnetic susceptibility (AMS) fabric case‐study of two Late Weichselian tills exposed in a bedrock quarry in Dalby, Skåne, southern Sweden. The region possesses a complex glacial history, reflecting alternating and interacting advances of the main body of the Scandinavian Ice Sheet (SIS) and its ice lobes from the Baltic basin, perhaps driven by streaming ice. AMS till fabrics are robust indicators of ice‐flow history and till kinematics, and provide a unique tool to investigate till kinematics within and amongst till units. The till section investigated here contains ~8 m of the Dalby Till – a dark grey silt‐clay rich till deposited during one or more Baltic advance – overlain by ~1.5 m of the regional surface diamicton. AMS fabrics within the lower part of the Dalby Till conform to the regional surface fluting, and reflect sustained flow from the ENE with progressive increases in basal strain. A boulder‐rich horizon approximately 3 m from the base of the till marks a restricted excursion in till fabric direction, fabric strength and style of strain. Ice flow is from the SW and W in the upper section. We interpret these fabrics to record shifting ice flow and bed conditions at the margins of the Young Baltic Advance ice lobe in southern Sweden, prior to a short‐lived re‐advance of the main body of the SIS over mainland Sweden recorded by the surface diamicton.  相似文献   

3.
Structural, stratigraphic, and lithologic data from a section 69 m long of Catfish Creek drift (north shore of Lake Erie) tell a complex story of two competing glacial lobes. Stone surface features and orientations indicate that stones rotated in viscously deforming, fine-medium textured subglacial till prior to final emplacement. Fractures, shears, and attenuated sediment lenses in tills reveal that they experienced some brittle shear superposed on ductile shear during till dewatering and stiffening. The Huron-Georgian Bay lobe advanced first from the northwest, deforming interstadial sediments and depositing subglacial till. Next, southward confluent flow of the Huron, Georgian Bay, and Erie lobes carved subglacial troughs into sediments and deposited (then deformed) bouldery deformation till by squeeze flow. The northwest flowing Erie lobe then prevailed, depositing deformation till, subglacial aquatic sediments, and mudflows. Finally, a pavement-bearing, hybrid deformation-lodgement till covered the section. Till formation was mainly by subglacial viscous flow with minor lodgement superposed as water content decreased and some fines were probably winnowed. This implies that till deformation probably accounted for much of the glacier movement. Therefore, rapid ice flow could have occurred over the section, along the southern margin of the Laurentide Ice Sheet.  相似文献   

4.
We report evidence for a major ice stream that operated over the northwestern Canadian Shield in the Keewatin Sector of the Laurentide Ice Sheet during the last deglaciation 9000–8200 (uncalibrated) yr BP. It is reconstructed at 450 km in length, 140 km in width, and had an estimated catchment area of 190000 km2. Mapping from satellite imagery reveals a suite of bedforms ('flow-set') characterized by a highly convergent onset zone, abrupt lateral margins, and where flow was presumed to have been fastest, a remarkably coherent pattern of mega-scale glacial lineations with lengths approaching 13 km and elongation ratios in excess of 40:1. Spatial variations in bedform elongation within the flow-set match the expected velocity field of a terrestrial ice stream. The flow pattern does not appear to be steered by topography and its location on the hard bedrock of the Canadian Shield is surprising. A soft sedimentary basin may have influenced ice-stream activity by lubricating the bed over the downstream crystalline bedrock, but it is unlikely that it operated over a pervasively deforming till layer. The location of the ice stream challenges the view that they only arise in deep bedrock troughs or over thick deposits of 'soft' fine-grained sediments. We speculate that fast ice flow may have been triggered when a steep ice sheet surface gradient with high driving stresses contacted a proglacial lake. An increase in velocity through calving could have propagated fast ice flow upstream (in the vicinity of the Keewatin Ice Divide) through a series of thermomechanical feedback mechanisms. It exerted a considerable impact on the Laurentide Ice Sheet, forcing the demise of one of the last major ice centres.  相似文献   

5.
Ross, M., Lajeunesse, P. & Kosar, K. G. A. 2010: The subglacial record of northern Hudson Bay: insights into the Hudson Strait Ice Stream catchment. Boreas, 10.1111/j.1502‐3885.2010.00176.x. ISSN 0300‐9483. In this paper, we present new insights into the glacial dynamics and potential configuration of the Hudson Strait Ice Stream catchment in the northern Hudson Bay–western Hudson Strait region. Our reconstruction is based on new field observations and till compositional data from Southampton Island, remote sensing imagery and multibeam bathymetric data from the Hudson Bay sea floor, as well as on a re‐examination of previously published data from this vast region. Our findings suggest that, during the late Quaternary, the HSIS catchment consisted of a number of ice‐stream tributaries feeding a curvilinear trunk that potentially extended into western Hudson Bay. In contrast to previous interpretations, the occurrence of fluted bedrock hills, over‐deepened basins, Dubawnt erratics and carbonaceous till on the islands at the head of Hudson Strait is taken to imply that cold‐based conditions did not prevail on these islands. The upland area of Southampton Island and the surrounding channels played an important role in controlling the location of the main tributaries, with the higher central terrain forming a large inter‐ice‐stream zone lacking carbonate detritus. Coats Island contains abundant evidence of vigorous ice flow, such as mega‐scale glacial lineations (MSGLs). MSGLs also occur on the sea floor southwest of Coats Island but the sea‐floor imprint is highly discontinuous. Observations on the western Hudson Bay mainland show evidence of southeastward fast ice flow that is spatially consistent with the Dubawnt dispersal train. Despite the geomorphological discontinuities, this may indicate that the HSIS onset zone extended far inside the Laurentide Ice Sheet and across contrasting geological domains.  相似文献   

6.
Pleistocene ice sheets can be reconstructed through three separate approaches: (1) Evidence based on glacial geological studies, such as erratic trains, till composition, crossing striations and exposures of multiple tills/nonglacial sediments. (2) Reconstructions based on glaciological theory and observations. These can be either two- or three-dimensional models; they can be constrained by ‘known’ ice margins at specific times; or they can be ‘open-ended’ with the history of growth and retreat controlled by parameters resting entirely within the model. (3) Glacial isostatic rebound after deglaciation provides a measure of the distribution of mass (ice) across a region. A ‘best fit’ ice sheet model can be developed that closely approximates a series of relative sea level curves within an area of a former ice sheet; in addition, the model should also provide a reasonable sea level fit to relative sea level curves at sites well removed from glaciation.This paper reviews some of the results of a variety of ice sheet reconstructions and concentrates on the various attempts to reconstruct the ice sheets of the last (Wisconsin, Weischelian, Würm, Devensian) glaciation. Evidence from glacial geology suggests flow patterns at variance with simple, single-domed ice sheets over North America and Europe. In addition, reconstruction of ice sheets from glacial isostatic sea level data suggests that the ice sheets were significantly thinner than estimates based on 18 ka equilibrium ice sheets (cf. Denton and Hughes, 1981). The review indicates it is important to differentiate between ice divides, which control the directions of glacial flow, and areas of maximum ice thickness, which control the glacial isostatic rebound of the crust upon deglaciation. Recent studies from the Laurentide Ice Sheet region indicate that the center of mass was not over Hudson Bay; that a major ice divide lay east of Hudson Bay so that flow across the Hudson Bay and James Bay lowlands was from the northeast; that Hudson Bay was probably open to marine invasions two or three times during the Wisconsin Glaciation; and that the Laurentide Ice Sheet was thinner than an equilibrium reconstruction would suggest.  相似文献   

7.
Surficial stratigraphic units of Aroostook County, Maine, have been mapped and formal stratigraphic names for these units are proposed. Evidence exists for at least two distinct glacial phases which are represented by three tills. Two of these tills were deposited penecontemporaneously either as the result of coalescing ice sheets or as the result of the thermal regime existing within a single ice sheet. The oldest till is named the St. Francis and is correlated with the Chaudière Till of southeastern Quebec. The other tills are named the Mars Hill and Van Buren tills, respectively, and are correlated with the Lennoxville till of southeastern Quebec. Interbedded stratified sediments associated with the St. Francis till are correlated with the Gayhurst Formation. Stratified sediments associated with Van Buren and Mars Hill tills are correlated with post Lennoxville sediments of Quebec. Granite-gneiss erratics of Canadian Shield provenance in the Van Buren till indicate advance of the Laurentide ice into northern Maine during late Wisconsinan time. Moraines in southern Aroostook County with associated outwash and eskers record general recession from coastal Maine. Recession occurred after the formation of the Pineo Ridge moraine in Maine and the St. Antonin-Highland Front moraine complex in Quebec. The Caribou-Winterville moraine complex in northern Maine marks the boundary between the penecontemporaneously deposited Van Buren and Mars Hill surface tills and is correlated with the Grand Falls moraine at Grand Falls, New Brunswick.  相似文献   

8.
Evidence for former fast glacier flow (ice streaming) in the southwest Laurentide Ice Sheet is identified on the basis of regional glacial geomorphology and sedimentology, highlighting the depositional processes associated with the margin of a terrestrial terminating ice stream. Preliminary mapping from a digital elevation model of Alberta identifies corridors of smoothed topography and corridor‐parallel streamlined landforms (megaflutes to mega‐lineations) that display high levels of spatial coherency. Ridges that lie transverse to the dominant streamlining patterns are interpreted as: (a) series of minor recessional push moraines; (b) thrust block moraines or composite ridges/hill–hole pairs constructed during readvances/surges; and (c) overridden moraines (cupola hills), apparently of thrust origin. Together these landforms demarcate the beds and margins of former fast ice flow trunks or ice streams that terminated as lobate forms. Localised cross‐cutting and/or misalignment of flow sets indicates temporal separation and the overprinting of ice streams/lobes. The fast‐flow tracks are separated by areas of interlobate or inter‐stream terrain in which moraines have been constructed at the margins of neighbouring (competing) ice streams/outlet glaciers; this inter‐stream terrain was covered by more sluggish, non‐streaming ice during full glacial conditions. Thin tills at the centres of the fast‐flow corridors, in many places unconformably overlying stratified sediments, suggest that widespread till deformation may have been subordinate to basal sliding in driving fast ice flow but the general thickening of tills towards the lobate terminal margins of ice streams/outlet glaciers is consistent with subglacial deformation theory. In this area of relatively low relief we speculate that fast glacier flow or streaming was highly dynamic and transitory, sometimes with fast‐flowing trunks topographically fixed in their onset zones and with the terminus migrating laterally. The occurrence of minor push moraines and flutings and associated landforms, because of their similarity to modern active temperate glacial landsystems, are interpreted as indicative of ice lobe marginal oscillations, possibly in response to seasonal climatic forcing, in locations where meltwater was more effectively drained from the glacier bed. Further north, the occurrence of surging glacier landsystems suggests that persistent fast glacier flow gave way to more transitory surging, possibly in response to the decreasing size of ice reservoir areas in dispersal centres and also locally facilitated by ice‐bed decoupling and drawdown initiated by the development of ice‐dammed lakes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Paleozoic fossiliferous limestones from the Hudson Bay area were dispersed southeastward a total distance of 110 km in the Québec part of theJames Bay Lowlands during the surging Cochrane flow event of the Laurentide Ice Sheet. The dispersal by the surging ice appears comparable to non-surging ice dispersal events elsewhere in terms of the dispersal index and the half distance of transportation; however, the total distance of transportation of the limestone clasts and their relatively high abundance far away from their source suggest that part of the transport of the debris during the surge was englacial, with the load later deposited as a surface mantle, or that the flow of the surging ice was limited to rapid basal sliding, with little or no internal shear within the ice mass. The glacial transport characteristics of earlier non-surging flow events in the same area were determined using the Total Transport Distance (TTD) method of measurements. Based on an indirect measurement of the half distance of transportation, the Selbaie till is characterized by longer transport distance than the Matheson till, and the Nouveau-Québec till has the shortest transport distance of all the tills of the area.  相似文献   

10.
Ice streams are major dynamic elements of modern ice sheets, and are believed to have significantly influenced the behaviour of past ice sheets. Funen Island exhibits a number of geomorphological and geological features indicative of a Late Weichselian ice stream, a land-based, terminal branch of the major Baltic Ice Stream that drained the Scandinavian Ice Sheet along the Baltic Sea depression. The ice stream in the study area operated during the Young Baltic Advance. Its track on Funen is characterized by a prominent drumlin field with long, attenuated drumlins consisting of till. The field has an arcuate shape indicating ice-flow deflection around the island's interior. Beneath the drumlin-forming till is a major erosional surface with a boulder pavement, the stones of which have heavily faceted and striated upper surfaces. Ploughing marks are found around the boulders. Exact correspondence of striations, till fabric and drumlin orientation indicates a remarkably consistent flow direction during ice streaming. We infer that fast ice flow was facilitated by basal water pressure elevated to the vicinity of the flotation point. The ice movement was by basal sliding and bed deformation under water pressure at the flotation level or slightly below it, respectively. Subglacial channels and eskers post-dating the drumlins mark a drainage phase that terminated the ice-stream activity close to the deglaciation. Identification of other ice streams in the Peribaltic area is essential for better understanding the dynamics of the land-based part of the Scandinavian Ice Sheet during the last glaciation.  相似文献   

11.
This research reconstructs ice-sheet processes operating during the Late Devensian in northeast England. The article assesses the lithostratigraphy of the Devensian glacial tills of Whitburn Bay, eastern County Durham, and presents the first detailed analysis of petrological, geochemical and biostratigraphical data to reconstruct lithostratigraphy, provenance and iceflow pathways. Two Devensian tractions tills (the Blackhall and Horden tills) are separated by a boulder pavement, pointing to a switch in ice-bed conditions and the production of a melt-out lag prior to deposition of the upper traction till, the Horden Till. The Blackhall Till contains Magnesian Limestone, Carboniferous Limestone, Whin Sill dolerite and Old Red Sandstone, suggesting a northwesterly source, probably from the Midland Valley and the Southern Uplands. The Horden Till contains erratics and heavy minerals derived from crystalline bedrock sources in the Cheviot Hills and northeast Scotland. Within the Horden Till are numerous sand, clay and gravel-filled canals incised downwards into the diamicton which are attributed to a low-energy, distributed, subglacial canal drainage system. Coupled with hydro-fractures and the boulder pavement, this suggests that a partially decoupled, fast-flowing ice stream deposited the Horden Till. The uphill, landward direction of ice movement indicates that the ice stream was confined in the North Sea Basin, possibly by the presence of Scandinavian Ice.  相似文献   

12.
The Northern Till is a thick (>65 m) deformation till underlying some 7500 km2 of Southern Ontario, Canada including the Peterborough Drumlin Field. It was deposited below the Lake Ontario ice stream of the Laurentide Ice Sheet. The till rests on glaciotectonized aquifer sediments and consists of multiple beds of till up to 6 m thick. These are separated by boulder lags, sometimes in the form of striated pavements, with thin (<30 cm) interbeds of poorly sorted waterlaid sand. The composite till stratigraphy indicates ‘punctuated aggradation’ where the subglacial bed was built up incrementally by the repeated ‘immobilization’ of deforming overpressured till layers. Boulders and sands indicate pauses in subglacial aggradation marked by sluggish sheet flows of water that reworked the top of the underlying till. Interbeds are laterally extensive and correlated using downhole electrical conductivity, core recovery and natural gamma data. A 3-D finite element model (FEFLOW) using data from 200 cored and geophysically logged boreholes, and a large digital water well dataset of 3400 individual records shows that the till functions as a ‘leaky aquitard’ as a consequence of water flow through interbeds. It is proposed that interbeds played a similar role in the subglacial hydraulic system below the Laurentide Ice Sheet by allowing drainage of excess porewater pressures in deforming sediment and promoting deposition of till. This is in agreement with theoretical studies of deforming bed dynamics and observations at modern glaciers where porewater in the deforming layer is discharged into underlying aquifers. In this way, the presence of interbeds may be fundamental in retarding downglacier transport of deforming bed material thereby promoting the build-up of thick subglacial till successions.  相似文献   

13.
For the past half-century, reconstructions of North American ice cover during the Last Glacial Maximum have shown ice-free land distal to the Laurentide Ice Sheet, primarily on Melville and Banks islands in the western Canadian Arctic Archipelago. Both islands reputedly preserve at the surface multiple Laurentide till sheets, together with associated marine and lacustrine deposits, recording as many as three pre-Late Wisconsinan glaciations. The northwest corner of Banks Island was purportedly never glaciated and is trimmed by the oldest and most extensive glaciation (Banks Glaciation) considered to be of Matuyama age (>780 ka BP). Inside the limit of Banks Glaciation, younger till sheets are ascribed to the Thomsen Glaciation (pre-Sangamonian) and the Amundsen Glaciation (Early Wisconsinan Stade). The view that the western Canadian Arctic Archipelago remained largely ice-free during the Late Wisconsinan is reinforced by a recent report of two woolly mammoth fragments collected on Banks and Melville islands, both dated to ~22 ka BP. These dates imply that these islands constitute the northeast extremity of Beringia.A fundamental revision of this model is now warranted based on widespread fieldwork across the adjacent coastlines of Banks and Melville islands, including new dating of glacial and marine landforms and sediments. On Dundas Peninsula, southern Melville Island, AMS 14C dates on ice-transported marine molluscs within the most extensive Laurentide till yield ages of 25–49 ka BP. These dates require that Late Wisconsinan ice advanced northwestward from Visount Melville Sound, excavating fauna spanning Marine Isotope Stage 3. Laurentide ice that crossed Dundas Peninsula (300 m asl) coalesced with Melville Island ice occupying Liddon Gulf. Coalescent Laurentide and Melville ice continued to advance westward through M'Clure Strait depositing granite erratics at ≥235 m asl that require grounded ice in M'Clure Strait, as do streamlined bedforms on the channel floor. Deglaciation is recorded by widespread meltwater channels that show both the initial separation of Laurentide and Melvile ice, and the successive retreat of Laurentide ice southward across Dundas Peninsula into Viscount Melville Sound. Sedimentation from these channels deposited deltas marking deglacial marine limit. Forty dates on shells collected from associated glaciomarine rhythmites record near-synchronous ice retreat from M'Clure Strait and Dundas Peninsula to north-central Victoria Island ~11.5 ka BP. Along the adjacent coast of Banks Island, deglacial shorelines also record the retreat of Laurentide ice both eastward through M'Clure Strait and southward into the island's interior. The elevation and age (~11.5 ka BP) of deglacial marine limit there is fully compatible with the record of ice retreat on Melville Island. The last retreat of ice from Mercy Bay (northern Banks Island), previously assigned to northward retreat into M'Clure Strait during the Early Wisconsinan, is contradicted by geomorphic evidence for southward retreat into the island's interior during the Late Wisconsinan. This revision of the pattern and age of ice retreat across northern Banks Island results in a significant simplification of the previous Quaternary model. Our observations support the amalgamation of multiple till sheets – previously assigned to at least three pre-Late Wisconsinan glaciations – into the Late Wisconsinan. This revision also removes their formally named marine transgressions and proglacial lakes for which evidence is lacking. Erratics were also widely observed armouring meltwater channels originating on the previously proposed never-glaciated landscape. An extensive Late Wisconsinan Laurentide Ice Sheet across the western Canadian Arctic is compatible with similar evidence for extensive Laurentide ice entering the Richardson Mountains (Yukon) farther south and with the Innuitian Ice Sheet to the north. Widespread Late Wisconsinan ice, in a region previously thought to be too arid to sustain it, has important implications for paleoclimate, ice sheet modelling, Arctic Ocean ice and sediment delivery, and clarifying the northeast limit of Beringia.  相似文献   

14.
《Sedimentary Geology》1999,123(3-4):163-174
Over large areas of the western interior plains of North America, hummocky moraine (HM) formed at the margins of Laurentide Ice Sheet (LIS) lobes that flowed upslope against topographic highs. Current depositional models argue that HM was deposited supraglacially from stagnant debris-rich ice (`disintegration moraine'). Across southern Alberta, Canada, map and outcrop data show that HM is composed of fine-grained till as much as 25 m thick containing rafts of soft, glaciotectonized bedrock and sediment. Chaotic, non-oriented HM commonly passes downslope into weakly-oriented hummocks (`washboard moraine') that are transitional to drumlins in topographic lows; the same subsurface stratigraphy and till facies is present throughout. These landforms, and others such as doughnut-like `rim ridges', flat-topped `moraine plateaux' and linear disintegration ridges, are identified as belonging to subglacially-deposited soft-bed terrain. This terrain is the record of ice lobes moving over deformation till derived from weakly-lithified, bentonite-rich shale. Drumlins record continued active ice flow in topographic lows during deglaciation whereas HM was produced below the outer stagnant margins of ice lobes by gravitational loading (`pressing') of remnant dead ice blocks into wet, plastic till. Intervening zones of washboard moraine mark the former boundary of active and stagnant ice and show `hybrid' drumlins whose streamlined form has been altered by subglacial pressing (`humdrums') below dead ice. The presence of hummocky moraine over a very large area of interior North America provides additional support for glaciological models of a soft-bedded Laurentide Ice Sheet.  相似文献   

15.
The Catfish Creek Drift Formation is a significant and extensive lithostratigraphical marker unit in SW Ontario. Here the stratotype, exposed in the Lake Erie bluffs of the Plum Point-Bradtville (Grandview) area south of London, Ontario, Canada, is proposed. It consists of subglacial and proglacial sediments deposited at the beginning of the Nissouri Phase of the Wisconsinan glaciation. In the 2.5-km-long stratotype section, the Catfish Creek Drift consists of 9 members. Five of them, the Dunwich and Grandview I-IV members, mainly consist of till, with minor components of stratified drift. The Dunwich till was deposited by the Huron-Georgian Bay lobe, but the Grandview I-IV tills by the Erie lobe. The Zettler Farm Member consists of co-lobal till in the central part of the section and of a proglacial waterlain flow diamicton and a subglacial undermelt diamicton in the SW part. Three members consist entirely of stratified drift; the glaciolacustrine silty and clayey Waite Farm Member, the ice-marginal deltaic Oosprink Farm Member and the Boy Scout Camp Member - deposited by meltwater streams in subglacial channels. The sequence of interbedded till and stratified drift represents the oscillating advance of the Laurentide Ice Sheet in the Lake Erie basin.  相似文献   

16.
A complex of glacial landforms on northeastern Victoria Island records diverse flows within the waning late Wisconsinan Laurentide Ice Sheet over an area now divided by marine straits. Resolution of this ice flow pattern shows that dominant streamlined landforms were built by three radically different ice flows between 11,000 and 9000 BP. Subsequent to the glacial maximum, the marine-based ice front retreated at least 300 km to reach northeast Victoria Island by 10,400 BP. Disequilibration at the rapidly retreating margin induced minor surges on western Storkerson Peninsula (Flow 1). Next, a readvance into Hadley Bay transported 10,300 BP shells, while a major ice stream over eastern Storkerson Peninsula (Flow 2) remoulded till into a drumlin field several hundred kilometres long and at least 80 km wide until flow ceased prior to 9600 BP. The ice stream surged into Parry Channel, covering 20,000 km2 with the Viscount Melville Sound Ice Shelf. Finally, Flow 2 drumlins on the northwest shore of M'Clintock Channel were cross-cut c . 9300 BP by advance of the grounded margin of a buoyant glacier (Flow 3), possibly an analogue of Flow 2 displaced farther south.  相似文献   

17.
Recent results concerning the extent of the last Weichselian (Valdaian) Kara Sea Ice Sheet in the area around the Polar Urals and the north-eastern Russian Plain allow reconstruction of the surface form of this part of the ice sheet by using a combination of moraine-ridge elevation data and ice-flow indicators. The resulting reconstruction suggests a thin ice sheet with a pronounced lowering of surface gradient at the transition from bedrock substrate around the Urals to a substrate consisting of unconsolidated sediments in the Pechora Basin. Comparison with similar reconstructions from along the southern and north-western parts of the Laurentide Ice Sheet margin, for which a deformable-bed model of glacier dynamics has been proposed, shows strong similarities in surface gradients and ice thicknesses as well in overall sedimentological and morphological characteristics of the associated basal till-deposits. This suggests comparable styles of glacier dynamics for the two ice sheets. If this first approximation of the Kara Sea Ice Sheet surface form is correct, it can be postulated that at least the south-western part of the ice sheet was much more mobile and dynamic than previously expected.  相似文献   

18.
Despite the application of radiocarbon dating for more than three decades along the southern margin of the Laurentide Ice Sheet, fundamental questions about the timing of glacial advances remain. For one of its sublobes, the Miami, we undertook areal mapping, detailed lithostratigraphic analysis, and radiocarbon dating to interpret four pulses of ice advance. On top of the undated sediments deposited during the first advance is a major unconformity. The second advance occurred about 20,000 BP and marks the beginning of the late Wisconsin glaciation. A minor recession (more than 30 km) ensued, but plants did not reoccupy the landscape. A third advance of the ice margin produced a stone-rich lodgement till to within 20 km of the late Wisconsin maximum. The final ice motion only occurred in the northern part of the study area and may be of local extent. Large accumulations of supraglacial gravity flowtills and outwash mark the final ice-margin retreat. Of these. only the second advance is well dated. This study implies that the number of advances of the ice margin is fewer than previously suggested. Consequently we argue that several of the sublobes across the southern margin of the Laurentide Ice Sheet acted in unison for the interval of 22.000 to 18.000 BP implying ice-sheet external forcing.  相似文献   

19.
We investigated the Upper Pleistocene mollusc sequence in the loess deposit of Buzzard's Roost, Nebraska, and compared the results with those obtained for Eustis, 50 km to the west. Both sequences show similarities in: (i) stratigraphy and magnetic susceptibility implying identical fluctuations in loess deposition, (ii) biostratigraphy which indicates a succession of cold-and-moist to cold-and-dry conditions, and (iii) an increasing trend in mollusc abundance and diversity of species characterizing a climatic and/or environmental improvement. We interpret the variations in both sequences as related to the advance of the James and Des Moines ice lobes towards both sites, which was synchronous with the retreat of the Laurentide Ice Sheet. The occurrence of hygrophilous species in the mollusc record, from the upper sequences of Buzzard's Roost, suggests a moister environment than in Eustis. Our preliminary comparison of both malacological sequences suggests that regional or local, rather than global, influence prevailed over the Great Plains between 20 and 12 kyr BP.  相似文献   

20.
《Quaternary Science Reviews》2005,24(12-13):1499-1520
The provenance of Late Quaternary Ross Embayment till was investigated by comparing the coarse sand composition of East and West Antarctic source area tills with till samples from across the Ross Sea. The West Antarctic samples from beneath the Whillans (B) and Kamb (C) ice streams are petrologically distinct from samples of lateral moraines flanking several East Antarctic outlet glaciers. The characteristic assemblage of four West Antarctic samples includes felsic intrusive and detrital sedimentary lithic fragments, plagioclase and abundant quartz. In contrast, most of the ten East Antarctic till samples contains abundant mafic intrusive and detrital sedimentary lithic fragments as well as less abundant quartz. The distinctive composition of these source areas can be linked to 33 samples from 20 cores of Last Glacial Maximum (LGM) age till distributed across the Ross Sea. Western Ross Sea till samples exhibit mineralogic and lithological similarities to East Antarctic till samples, although these western Ross Sea tills contain higher percentages of felsic intrusive and extrusive lithic fragments. Eastern Ross Sea till samples are compositionally similar to West Antarctic till, particularly in their abundance of quartz and dearth of mafic and extrusive lithic components. Central Ross Sea till exhibits compositional similarities to both East and West Antarctic source terranes including a mafic lithic component, and marks the confluence of ice draining from East and West Antarctica during the LGM, thus West Antarctic-derived ice streams did not advance into the western Ross Sea. This indicates that even if pre-LGM equivalents of the present Siple Coast ice streams existed, they did not simply expand allowing West Antarctic-derived ice to dominate the LGM Ross Ice Sheet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号