首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of cyanide (CN), which is characterized by volatility, toxicity and high odor, in gold mining is scarcely addressed in the literature and remain controversial. Environmentalists oppose CN usage as it potentially poses serious environmental threats, whereas economic and mining geologists are in favor of its usage for its extracting capacity and economic feasibility. The present study investigates the possible dispersion of CN into groundwater resources caused by a gold mine (ca. 15 years old) located in the arid area of Yanqul, North Oman. The gold is hosted in gossan deposits associated with ophiolitic rocks and sulfide deposits. Sodium cyanide is mixed with 0.5 m3 of water and then added to a tonne of crushed ore rock to extract 6 g of gold mineral. The final residues are dumped in engineered, lined and uncovered tailing dams. Subsequent to rainfall water draining the mine plateau flows along the wadies and percolates into the shallow Quaternary alluvium aquifer. Hence, groundwater samples were collected from 16 piezometers adjacent to and around the mine. The samples were analyzed for CN using the revised phenolphthalin method and they all show CN concentration below the detection limit (5 ppb). The samples were also analyzed for heavy metals to investigate the potential of CN complexation. Most of heavy metals indicated very trace concentration. The absence of CN in groundwater is attributed to volatilization of CN (converted to HCN), lined dam structure, high evapotranspiration rate and deeper water table. This finding is consistent with the historical CN analysis in the groundwater and solid wastes. It can be pointed out that within few years of operation well engineered tailing dams can provide safe structure preventing CN-groundwater pollution in arid areas. Potential threats to the air and soil are not addressed in this article.  相似文献   

2.
Farmlands and rivers have been seriously polluted by cyanide from a goldmine tailings dam that collapsed in early spring of 1995 in Yining County, Xinjiang Autonomous Region of China. The cyanide distribution in the polluted farmland and the abandoned tailings dam was studied, three and 4 years after the accident occurred. The results indicated that natural degradation of cyanide in soils is slower than in natural water bodies. The cyanide transport in the soil section is similar to freely soluble salts. In arid and semiarid areas, cyanide can be highly enriched in the salt crust in which the concentration is even higher than the fresh tailings debris though cyanide has decomposed for 4 years. In the polluted farmland, the sticky layer in the soil section can highly adsorb and enrich cyanide so it can partly prevent cyanide transfer to groundwater. According to the characteristics of cyanide natural degradation in soil, the measures for prevention and cure of soil polluted by goldmine tailing dam collapse have been discussed.  相似文献   

3.
During more than a century of gold mining in South Africa large amounts of tailings were produced, which now cover vast areas in densely populated regions. These dumps contain elevated levels of uranium and other toxic heavy metals associated with gold in the mined ore. Large-scale extraction of uranium from auriferous ore only took place during the cold war, leaving tailings with high uranium concentrations that were deposited before and after this period. Recent studies found elevated levels of the radioactive heavy metal in groundwater and streams, mainly attributed to the discharge of contaminated water from mines. In this paper the contribution of seepage from slimes dams to the uranium pollution of adjacent streams is analysed. Based on geochemical analyses of samples, field observations and long-term in situ measurements of hydraulic and hydrochemical parameters at selected mining sites across the Witwatersrand goldfields, the extent, mechanisms and dynamics of diffuse stream contamination by tailings seepage is characterised. Temporal and spatial variations of the process and the associated hazard potential are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
河北邯邢式铁矿尾矿地球化学特征   总被引:1,自引:0,他引:1  
徐国志  邓金火  徐锦鹏 《地质通报》2014,33(9):1439-1444
邯邢铁矿是中国重要的铁矿山之一,利用钻探方法对西石门铁矿后井尾矿56种元素进行地球化学评价,了解元素在尾矿库中的空间分布特征。研究表明,尾矿库中Fe、Cu、S、Co元素可进一步开采利用,局部可达到或超出原生矿的工业品位要求。后井尾矿中Fe、S、Cu、Co资源量分别是28.5×104t、4.5×104t、0.36×104t和0.2×104t,适合二次综合开发利用,同时研究中也探索了这些元素在尾矿沙中富集作用和富集机理及影响因素,旨在探索出一种利用地球化学评价尾矿的资源量勘查方法,加速实现中国尾矿资源化。  相似文献   

5.
Acid Mine Drainage (AMD) is a great concern in many abandoned mines because of its adverse effect on the environment. In mining processes, many kinds of wastes are produced. These wastes may become eventually sources of environmental degradation. The focus of this study is the geochemical characterization of the end-processed tailings generated by Akara Gold Mine, the biggest gold mine in Thailand. Tailing samples were systematically collected for analyses of chemical and mineralogical compositions. As a result, their quantitative chemical analyses are slightly different from place to place, but mineral components cannot be clearly differentiated. For instance, it may be assumed that the end-processed tailings, which were a mixture between high and low grade concentrates, would have similar mineral components. However, the little variation of chemical composition may be caused by the ore refining processes that are somehow varied in proportion to chemical additives, alkali cyanide and quick lime in particular. In addition, clay composition in ore-bearing layers may also influence alumina content of tailings, accordingly. Distribution of the tailings is not related to depth and distance of the tailing storage pond because the disposal has sped them over the pond during operation. Total heavy metals of the tailing samples were analyzed on the basis of the EPA 3052 method. Consequently, the most toxic elements (e.g., Co, Cu, Cd, Cr, Pb, Ni and Zn) were found falling within the standard of Thailand Soil Quality Standards for Habitat and Agriculture. Only Mn appears to have higher content than the standard. In addition, leaching tests proved that these tailings contain low metal concentrations. As a result, at pH 2, Mn can leach out exceeding the Thailand Surface Water Quality Standard for Agricultural (Mn <1 ppm) and the Thailand Industrial Effluent Standard (<5 ppm). Although leachate at pH 4 and neutral conditions contains lower Mn than the Industrial Effluent Standard it still exceeds the surface water quality standard. Interestingly, Pb can be leached out exceeding both standards (0.2 ppm for the industrial effluent standard and 0.05 ppm for the surface water quality standard). For Ni leaching, its concentration is lower than the Industrial Effluent Standard at all pH conditions but still exceeds the Surface Water Standard at pH 2 and 4. This information should be taken into consideration for further environmental monitoring. Acid generating potential of the tailings was estimated using acid–base accounting (ABA) and net acid generation (NAG) tests. The results of ABA and NAG tests show that the tailing samples contain a high amount of sulfur. However, they also contain high acid neutralization capacity. Consequently, these tailings may not have potential to generate acid drainage; in the other words, they can be classified as a non-acid forming (NAF) material. However, since these tailings contain some heavy metals (e.g., Ni, Mn and Pb) that are observed in leachates exceeding the standards at low pH, the AMD conditions may lead to heavy metal release. Therefore, prevention of oxidizing process and dissolution should be considered with great care. In addition, Mn and Pb can also be leached at neutral conditions. Barrier of air and water, clay layer for example, should be placed over the tailings pound before covering by topsoil for re-vegetation. Growing native grass is recommended for stabilization of the surface and reducing erosion rate. Monitoring of water quality should also be carried out annually.  相似文献   

6.
Waste management issue in mining industry has become increasingly important. In this regard, construction of tailings dams plays a major role. Most of the tailings dams require some kinds of remedial actions during their operational lifetime, among which heightening is the most common. In the first stage of the remedial provisions for Sarcheshmeh Copper Complex tailings dam in Iran, it has been decided to use hydrocyclone method to provide suitable construction material due to the high cost associated with using borrow materials for heightening of the dam. To undertake this project a series of laboratory experiments was performed to determine the copper ‘original tailings’ and ‘cycloned materials’ geotechnical characteristics to evaluate the applicability of the cycloned materials for construction purposes. Different laboratory experiments were conducted to determine the grain-size distribution, Atterberg limits, specific gravity, maximum density, shear strength parameters, consolidation coefficient, and hydraulic conductivity. The results were compared with those of similar mines to check whether they follow the trends observed in other copper tailing materials elsewhere. Variation of the cohesion and internal friction angle versus different compaction ratios were studied in order to determine realistic shear strength parameters for tailing dam stability analysis. In this study, using oedometer test, a mild linear relation between void ratio and the consolidation coefficient has been found for tailings materials. By considering the effects of void ratio and weight of passing sieve #200 materials, a new relationship is proposed that can be used for estimating the copper slimes hydraulic conductivity in seepage analysis of tailings dams.  相似文献   

7.
The potential for photo-induced dissociation of ferri- and ferro-cyanide was investigated. The overall reactions followed first order kinetics, judged by the free cyanide analyzed in aqueous solution. The dissociation rates for ferri- and ferro-cyanide were mathematically described by the equations: C (CN,t) = C (CN,O)e1.3t and C (CN,t) = C (CN,O)e0.39t , respectively. In addition, photo-induced dissociation of both iron cyanides was enhanced under an alkaline environment than a neutral condition. Results from the temperature-dependent tests indicated that the dissociation rate of ferri- cyanide was significantly higher than that of ferro-cyanide at all treatment temperatures. The kinetic parameter, activation energy (E a ) was also experimentally determined to be 12.02 and 12.32 kJ/mol for ferri- and ferro-cyanide, respectively. The results obtained suggest that both iron cyanides are susceptible to photo-dissociation and the rates are positively correlated to the change of temperatures. The information collectively also has important implications for waste management of iron cyanides as well as for risk assessment in a field trial.  相似文献   

8.
The area in Guntur district, Andhra Pradesh, India, is selected to discuss the impact of seasonal variation of groundwater quality on irrigation and human health, where the agriculture is the main livelihood of rural people and the groundwater is the main source for irrigation and drinking. Granite gneisses associated with schists and charnockites of the Precambrian Eastern Ghats underlie the area. Groundwater samples collected seasonally, pre- and post-monsoons, during three years from forty wells in the area were analyzed for pH, EC, TDS, TA, TH, Ca2+, Mg2+, Na+, K+, CO32−, HCO3, Cl, SO42−, NO3and F. The chemical relationships in Piper’s diagram, Chebotarev’s genetic classification and Gibbs’s diagram suggest that the groundwaters mainly belong to non-carbonate alkali type and Cl group, and are controlled by evaporation-dominance, respectively, due to the influence of semi-arid climate, gentle slope, sluggish drainage conditions, greater water–rock interaction, and anthropogenic activities. A comparison of the groundwater quality in relation to drinking water quality standards proves that most of the water samples are not suitable for drinking, especially in post-monsoon period. US Salinity Laboratory’s and Wilcox’s diagrams, and %Na+ used for evaluating the water quality for irrigation suggest that the majority of the groundwater samples are not good for irrigation in post-monsoon compared to that in pre-monsoon. These conditions are caused due to leaching of salts from the overlying materials by infiltrating recharge waters. A management plan is suggested for sustainable development of the area.  相似文献   

9.
Steelmaking-coal waste rock placed in mountain catchments in the Elk Valley, British Columbia, Canada, drain constituents of interest (CIs) to surface water downgradient of the waste rock dumps. The role of groundwater in transporting CIs in the headwaters of mountain catchments is not well understood. This study characterizes the physical hydrogeology of a portion of a 10-km2 headwater catchment (West Line Creek) downgradient of a 2.7-km2 waste rock dump placed over a natural headwater valley-bottom groundwater system. The study site was instrumented with 13 monitoring wells. Drill core samples were collected to determine subsurface lithology and geotechnical properties. The groundwater system was characterized using field testing and water-level monitoring. The valley-bottom sediments were composed of unconsolidated glacial and meltwater successions (<64 m thick) deposited as a series of cut and fill structures overlying shale bedrock. An unconfined basal alluvial aquifer located above fractured bedrock was identified as the primary conduit for groundwater flow toward Line Creek (650 m from the toe of the dump). Discharge through the basal alluvial aquifer was estimated using the geometric mean hydraulic conductivity (±1 standard deviation). These calculations suggest groundwater discharge could account for approximately 15% (ranging from 2 to 60%) of the total water discharged from the watershed. The residence time from the base of the waste rock dump to Line Creek was estimated at <3 years. The groundwater system was defined as a snowmelt (i.e., nival) regime dominated by direct recharge (percolation of precipitation) across the catchment.  相似文献   

10.
The Rodalquilar mineral deposits (SE Spain) were formed in Miocene time in relation to caldera volcanic episodes and dome emplacement phenomena. Two types of ore deposits are recognized: (1) the El Cinto epithermal, Au–As high sulphidation vein and breccia type; and (2) peripheral low sulphidation epithermal Pb–Zn–Cu–(Au) veins. The first metallurgical plants for gold extraction were set up in the 1920s and used amalgamation. Cyanide leaching began in the 1930s and the operations lasted until the mid 1960s. The latter left a huge pile of ~900,000–1,250,000 m3 of abandoned As-rich tailings adjacent to the town of Rodalquilar. A frustrated initiative to reactivate the El Cinto mines took place in the late 1980s and left a heap leaching pile of ~120,000 m3. Adverse mineralogical and structural conditions favoured metal and metalloid dispersion from the ore bodies into soils and sediments, whereas mining and metallurgical operations considerably aggravated contamination. We present geochemical data for soils, tailings and wild plant species. Compared to world and local baselines, both the tailings and soils of Rodalquilar are highly enriched in As (mean concentrations of 950 and 180 μg g−1, respectively). Regarding plants, only the concentrations of As, Bi and Sb in Asparagus horridus, Launaea arborescens, Salsola genistoides, and Stipa tenacissima are above the local baselines. Bioaccumulation factors in these species are generally lower in the tailings, which may be related to an exclusion strategy for metal tolerance. The statistical analysis of geochemical data from soils and plants allows recognition of two well-differentiated clusters of elements (As–Bi–Sb–Se–Sn–Te and Cd–Cu–Hg–Pb–Zn), which ultimately reflect the strong chemical influence of both El Cinto and peripheral deposits mineral assemblages.  相似文献   

11.
A detailed characterization of the site is crucial to designing an efficient method of managing the risks associated with tailings from abandoned mines. Therefore, samples collected from various depths within tailings in Guryong mine, Korea, were analyzed for their chemical, physical and mineralogical characteristics. All samples of the Guryong tailings had acid-generating potential. However, in the oxidation zone, the net acid generation (NAG) was low (30 kg H2SO4 t−1) although the acid neutralization potential (ANP) was less than zero. The ANP values in the unoxidation zone were higher (> −56.0 kg CaCO3 t−1) than in the other zones. As a result, the amount of alkali ions that are needed to neutralize the acid needs to be considered. In this experiment G3, G4 and G6 drill cores containing fine tailings particles near the unoxidation zone were observed to contain calcite (CaCO3) with acid-neutralizing capacity. A low pH (2−4) in the oxidation zone of the tailings changed to a neutral pH in the unoxidation zone of the tailings. These results suggest that the acid-neutralizing capacity of the tailings was controlled by particle and mineral composition of tailings.  相似文献   

12.
As one of the largest copper–molybdenum (Cu–Mo) mines in the world, the Erdenet Mine in Mongolia has been active since 1978 and is expected to continue operations for at least another 30 years. In this study, the potential impacts of mining activities on the soil and water environments have been evaluated. Water samples showed high concentrations of sulfate, calcium, magnesium, Mo, and arsenic, and high pH values in the order of high to low as follows: tailing water > Khangal River > groundwater. Statistical analysis and the δ2H and δ18O values of water samples indicate that the tailing water directly affects the stream water and indirectly affects groundwater through recharge processes. Soil and stream sediments are highly contaminated with Cu and Mo, which are major elements of ore minerals. Based on the contamination factor (CF), the pollution load index (PLI), and the degree of contamination (Cd), soil appears to be less contaminated than stream sediments. The soil particle size is similar to that of tailing materials, but stream sediments have much coarser particles, implying that the materials have different origins. Contamination levels in stream sediments display a tendency to decrease with distance from the mine, but no such changes are found in soil. Consequently, soil contamination by metals is attributable to wind-blown dusts from the tailing materials, and stream sediment contamination is caused by discharges from uncontained subgrade ore stock materials. Considering the evident impact on the soil and water environment, and the human health risk from the Erdenet Mine, measures to mitigate its environmental impact should be taken immediately including source control, the establishment of a systematic and continuous monitoring system, and a comprehensive risk assessment.  相似文献   

13.
The Iron Quadrangle has been the scenery of the most important gold production in Brazil. It is estimated that during the three centuries of gold mining in the Iron Quadrangle, at least 390,000 t of arsenic was discharged into the drainage system. This study presents geochemical data for the three river basins in the region, with focus on surface water and stream sediment monitoring. Samples of primary and oxidized sulfide ores as well as of tailings and groundwater from the major gold mines were also studied. The highest As concentrations in water and stream sediments occur in the vicinity of mining areas. In surface water, up to 300 g As/l were found whereas the As contents in stream sediments were in the range of 20 to 4,000 mg/kg. The As3+/As5+ concentration ratios obtained for some water samples range from 1.10у to 4.10ф. The As mobility associated with ore-deposit weathering could be traced in some closed gold mines by observation of in-situ pyrite and arsenopyrite oxidation, precipitation of scorodite and gippsite, As adsorption onto goethite, and final liberation of As into underground and surface waters. This process is likely to produce large volumes of mine effluents containing total As and trivalent As up to 1,960 and 60 g/l, respectively. River sediments and tailings pile samples were submitted to a leaching procedure showing maximal arsenic release from 1 to 4% of the original total As in the samples. There are potential risks for As hazards in some areas induced by, for instance, the dispersion of old tailings by flooding, occupation of poisoned soils for settlements, and occasional consumption of contaminated surface and groundwater.  相似文献   

14.
一般认为原生或伴生金矿床在成因上与中酸性火成岩有关.文章通过我国金伯利岩型金刚石矿床伴生金的试验研究,确定该类型伴生金矿与超基性火成岩有关.金伯利岩中个别样品w(Au)=0.46×10-6,金刚石选矿尾矿及其重选精矿金的质量分数均较高,具有一定的学术研究价值和开发利用前景.  相似文献   

15.
In this study, the amount of cyanide in gold mine tailings is modeled as conceptual, statistical, and mathematical to determine environmental risk level and also to estimate the fate and transport of cyanide in tailings. Therefore, 116 points were selected for sampling from three levels of gold mine tailings and analyzed by colorimetric method. As a matter of fact, new hybrid modeling methods such as AdaBoost, Support Vector Machine, Linear Discriminant Analysis, and Random Forest were used in estimation. In current study, The AdaBoost method was qualified as the best one by minimum estimation error (less than 10%). The model derived from the AdaBoost method shows an average variation of 581 g/day in the volume of cyanide tailings. Thus, the important results of this paper are the presentation of 3D numerical and especially conceptual models according to the 3D cyanide variation in the sulfide gold mine tailings and governing physic/chemical parameters. These qualitative and quantitative results can be used for the management of tailings dam and prevention of the contaminant extension.  相似文献   

16.
Paste fill is the newest form of backfill material in the spectrum available to international mines and is made from full mill tailings. Tailings have an effective grain size of approximately 5 μm and are combined with a small portion of binder and water to make paste. It is deposited into the voids created by mining which are referred to as stopes. The empty voids are approximated as vertical rectangular prisms, with plan dimensions of 15–40 m and heights of 100 m or more. Backfilling of mined stopes provide an increased level of local and regional stability to the ore body, as well as providing a suitable and economic dump of mining related waste. Paste is a relatively new technology in the mining industry and a review of the physical properties and mechanical fill behaviour was considered pertinent.  相似文献   

17.
通过盆栽实验,研究了不同营养土改良的铜尾矿对旱柳(Salix matsudana)扦插枝条生长及根系特性的影响。处理方式分别为TA100(100%尾矿)、TA80(80%尾矿+20%营养土)、TA60(60%尾矿+40%营养土)、TA40(40%尾矿+60%营养土)、TA20(20%尾矿~80%营养土)、TA00(100%营养土)。研究结果发现,旱柳枝条在5种处理方式下均可生根成活,但长势存在差异。随着尾矿含量的降低,旱柳枝条的生物量呈现出增加的趋势;随着尾矿含量的降低,旱柳枝条不定根数目增多、平均根长及最长的根长增加,根系活力先增强后降低。结果表明,旱柳可用于铜尾矿废弃地植被恢复,利用营养土改良有利于柳条不定根的形成和生长。  相似文献   

18.
吴文 《岩土力学》2010,31(11):3367-3372
尾矿充填主要包括3种类型:尾矿砂浆充填、尾矿糊状充填(paste fill)和废矿石充填(rock fill),其中前面两种充填属于水力充填,第3种属于干式充填。3种充填方法在加拿大的矿山都有应用。压缩强度和渗透性是水力充填材料的关键力学特性,直接影响井下充填的效果。一方面,为了使充填材料具有一定的强度,必须在尾矿砂浆(slurry backfill)材料中添加水泥,其用量非常大,水泥在充填成本中占有很大的比例。另一方面,尾矿砂浆水力充填是利用水力旋流器来分级固体颗粒,颗粒较细的部分将通过溢流派到废矿池中,颗粒较粗的部分回收利用作为井下充填的材料使用,有时充填的尾矿数量不够,需要另外购置砂子混合作为充填材料。如何减少水泥的使用量和从水力旋流器底流增加尾矿砂的细颗粒的固体部分产量,以达到节约充填成本的目的,一直是矿山企业所面临的重要课题。为此,专门研究絮凝药剂对尾矿砂浆充填材料的单轴抗压强度的影响。研究结果表明,絮凝药剂能够大幅度地提高尾矿砂浆充填材料的强度,而且絮凝药剂使用量有一个最优值,使强度达到最大。当过量使用絮凝药剂,尾矿砂浆充填材料的强度则有所降低。  相似文献   

19.
Hydrogeochemical evaluation of groundwater in the lower Offin basin,Ghana   总被引:3,自引:0,他引:3  
Alumino-silicate mineral dissolution, cation exchange, reductive dissolution of hematite and goethite, oxidation of pyrite and arsenopyrite are processes that influence groundwater quality in the Offin Basin. The main aim of this study was to characterise groundwater and delineate relevant water–rock interactions that control the evolution of water quality in Offin Basin, a major gold mining area in Ghana. Boreholes, dug wells, springs and mine drainage samples were analysed for major ions, minor and trace elements. Major ion study results show that the groundwater is, principally, Ca–Mg–HCO3 or Na–Mg–Ca–HCO3 in character, mildly acidic and low in conductivity. Groundwater acidification is principally due to natural biogeochemical processes. Though acidic, the groundwater has positive acid neutralising potential provided by the dissolution of alumino-silicates and mafic rocks. Trace elements’ loading (except arsenic and iron) of groundwater is generally low. Reductive dissolution of iron minerals in the presence of organic matter is responsible for high-iron concentration in areas underlain by granitoids. Elsewhere pyrite and arsenopyrite oxidation is the plausible process for iron and arsenic mobilisation. Approximately 19 and 46% of the boreholes have arsenic and iron concentrations exceeding the WHO’s (Guidelines for drinking water quality. Final task group meeting. WHO Press, World Health Organization, Geneva, 2004) maximum acceptable limits of 10 μg l−1 and 0.3 mg l−1, for drinking water.  相似文献   

20.
四川是我国轻稀土的重要产地,稀土开采至今已有二十多年的历史,积存了大量尾砂。尾砂中仍然有丰富的稀土资源,但这部分资源究竟有多大的量、能不能再次回收,如何回收,则是当务之急。为查明稀土尾砂中各类元素的分布特征,本文对A、B、C、D四个稀土矿山的尾砂开展了稀土元素和微量元素地球化学特征的初步研究。结果表明:尾砂中稀土元素配分特征继承了原矿石,稀土氧化物含量普遍偏高(0.78%~2.12%),均超过了现行工业指标的边界品位(0.5%~1.0%),且老尾砂的稀土含量高于新尾砂;除了富集稀土元素之外,B尾砂中Sr含量超过10%,C矿区尾砂中Sr含量为2.7%,A矿区尾砂中Ba含量可达1.8%。同时,不同矿区的尾砂中Mo、Bi、Pb、Ag等有用元素发生了不同程度地富集(值得综合回收利用),尤其是Mo达到了边界品位(磁选后的尾砂Mo含量达到2.275%)。本文提出,今后不仅要加强保护四川稀土尾砂,而且需对富集的有用元素采取恰当的方式加以综合回收。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号