首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Abstract

An interpreted CA–IDTIMS age of 1642.2?±?3.9?Ma for a volcanogenic tuffaceous siltstone from the previously undated Fraynes Formation of the Birrindudu Basin in the northwestern Northern Territory enables a rigorous chronostratigraphic correlation to be made with the economically important Barney Creek Formation of the southern McArthur Basin. This result supports previous interpretations that these geographically widely separated formations are probably linked in the subsurface. It also establishes the stratigraphic interval encompassing the Fraynes and Barney Creek formations as a potential target for greenfields base metals and petroleum exploration programs across the greater McArthur Basin.
  • KEY POINTS
  • A new interpreted CA–IDTIMS age provides a chronostratigraphic link between the Fraynes Formation of the Birrindudu Basin and the economically important Barney Creek Formation of the southern McArthur Basin.

  • The Fraynes and Barney Creek formations are probably linked in the subsurface.

  • This stratigraphic level is a potential target for greenfields base metals and petroleum exploration across the greater McArthur Basin.

  相似文献   

2.
Abstract

Quaternary alluvial and colluvial sediments infill major river valleys and form alluvial fans and colluvium-filled bedrock depressions on the range fronts and within the Mount Lofty Ranges of southern Australia. A complex association of alluvial successions occurs in the Sellicks Creek drainage basin, as revealed from lithostratigraphy, physical landscape setting and optically stimulated luminescence (OSL) ages. Correlation of OSL ages with the Marine Oxygen Isotope record reveals that the alluvial successions represent multiple episodes of alluvial sedimentation since the penultimate glaciation (Marine Isotope Stage 6; MIS 6). The successions include a penultimate glacial maximum alluvium (Taringa Formation; 160?±?15?ka; MIS 6), an unnamed alluvial succession (42?±?3.2?ka; MIS 3), a late last glacial colluvial succession within bedrock depressions (ca 15?ka; MIS 2) and a late last glacial alluvium (ca 15?ka; MIS 2) in the lowest, distal portion of Sellicks Creek. In addition, the Waldeila Formation, a Holocene alluvium (3.5?±?0.3?ka; MIS 1), and sediments deposited during a phase of Post-European Settlement Aggradation (PESA) are also identified. The age and spatial distribution of the red/brown successions, mapped as the Upper Pleistocene Pooraka Formation, directly relate to different topographic and tectonic settings. Neotectonic uplift locally enhanced erosion and sedimentation, while differences in drainage basin sizes along the margin of the ranges have influenced the timing and delivery of sediment in downstream locations. Close to the Willunga Fault Scarp at Sellicks Creek, sediments resembling the Pooraka Formation have yielded a pooled mean OSL age of 83.9?±?7?ka (MIS 5a) corroborating the previously identified extended time range for deposition of the formation. Elsewhere, within major river valleys, the Pooraka Formation was deposited during the last interglacial maximum (128–118?ka; MIS 5e). In general, alluviation occurred during interglacial and interstadial pluvial events, while erosion predominated during drier glacial episodes. In both cases, contemporaneous erosion and sedimentation continued to affect the landscape. For example, in the Sellicks Creek drainage basin, which lies across an actively uplifting fault zone, late glacial age sediments (MIS 2) occur within the ranges and near the distal margin of the alluvial fan complex. OSL dating of the alluvial successions reported in this paper highlights linkages between the terrestrial and marine environments in association with sea-level (base-level) and climatic perturbations. While the alluvial successions relate largely to climatically driven changes, especially in major river valleys, tectonics, eustasy, geomorphic setting and topography have influenced erosion and sedimentation, especially on steep-sloped alluvial fan environments.
  1. KEY POINTS
  2. Luminescence dating of the Sellicks Creek alluvial fan complex reveals that sedimentation occurred predominantly during the later stages of glacial cycles accompanying lower sea-levels than present.

  3. Luminescence dating confirms that the stratigraphically lower portions of the Pooraka Formation are beyond the range of radiocarbon dating.

  4. Upper Pleistocene alluvial fan sedimentation at Sellicks Creek correlates with pluvial events in southeastern Australia.

  相似文献   

3.
Abstract

Small- and medium-sized basins are widely distributed, and some contain commercial gas reservoirs demonstrating their gas-generation potential. The Xuanhua Basin, which is a small-sized coal-bearing basin in north China, includes a promising target for shale-gas exploration in the Xiahuayuan Formation. In this study, we used this basin as a case study to assess the critical geochemical features for small or medium-sized basins to form commercial gas reservoirs. Total organic carbon (TOC) analysis, Rock-Eval pyrolysis, microscopic observation of macerals, vitrinite reflectance measurement and kerogen stable carbon isotope analysis were performed to characterise the organic geochemistry of the Xiahuayuan shales. The original total organic carbon (TOCo) content and hydrocarbon-generative potential (S2o) were reconstructed to further evaluate the gas-generation potential of these shales. In addition, geochemical data of shales from other similar-sized basins with gas discoveries were compared. The results showed that the kerogen from the Xiahuayuan Formation is Type III (gas-prone), and macerals are dominated by vitrinite. TOC values showed a strong heterogeneity in the vertical profiles, with most higher than 1.5?wt%. The measured Ro values ranged from 1.4 to 2.0%. However, thermal maturity was not correlated with the present-day burial depth with higher maturity in the wells closest to the diabase intrusion centre. The remaining generation potential (S2) averaged 0.91?mg HC/g rock, equal to 1.4?cm3 CH4/g rock, and the average amount of hydrocarbon generated was 4.33?cm3 CH4/g rock. In small and medium-sized basins, the TOC content of commercially developed gas shales ranged from 0.5 to 2.5?wt%, organic matter was mainly humic (gas-prone), and the burial depth was generally shallow. Biogenic gas reservoirs for commercial exploitation tend to have larger shale thicknesses (120–800?m) than thermogenic gas reservoirs (60–90?m).
  1. The Xiahuayuan Formation is a good gas-source rock with gas-prone kerogen type, relatively high TOC values and moderate thermal maturity.

  2. The average amount of hydrocarbon generated from the Xiahuayuan shales is about 4.33?cm3 CH4/g rock, indicating a potential to form a shale gas reservoir.

  3. Owing to the influence of diabase intrusions, the Xiahuayuan shales have entered the dry gas window at relatively shallow-buried depths.

  4. Small- and medium-sized basins have the potential to generate commercial gas reservoirs with the generated volume mainly a product of the thickness and maturity of black shales.

  相似文献   

4.
Abstract

There is significant economic interest in the Murray Basin of southeastern Australia as it is proving to be a major heavy mineral sands (HMS) province that will be one of Australia’s major source for production of rutile, zircon and ilmenite. The distribution and provenance of HMS resources in the Murray Basin is poorly understood because of its huge size, limited exploration and the complex depositional, structural and weathering mechanisms in their development. In this paper, we focus on the Copi North and Magic deposits some 130–180?km south of Broken Hill, NSW. The heavy mineral assemblages of the Copi North and Magic deposits are very similar, with the main economic minerals being ilmenite, leucoxene, pseudorutile, rutile and zircon. Intensive fracturing and brecciation are identified in many samples and are inferred to have been initially caused by multi-stage deformational processes associated with metamorphism and then further developed through alluvial and eolian transportation. Both deposits are classified as ‘medium sands, symmetrical, mesokurtic and moderately well-sorted’. The majority of economic minerals are of low to medium sphericity and subrounded, along with abundant polished eolian quartz grains. The Copi North deposit has coarser and more poorly sorted sediments with higher HMS grades and magnetics content than the Magic deposit, reflecting a higher energy depositional environment. The main source for the HMS for the Copi North and Magic deposits is largely ascribed to the Broken Hill Block. Previous studies have shown that the Broken Hill orebody underwent substantial sub-aerial weathering over hundreds of millions of years. In addition, the complex metamorphic events experienced by the Broken Hill Block were capable of forming the broad series of minerals identified within the Copi North and Magic deposits. The HMS were believed to have been transported through paleovalleys near the Mulculca Fault in a southeast direction representing a feeder system into the NW Murray Basin. Both deposits feature a relatively linear geometry (roughly parallel to the strike of the paleoshoreline), with high HMS grades, modest tonnages, and coarser sediments when compared to WIM-style offshore deposits. Compared to other strandline HMS deposits of the Murray Basin, they are smaller in size although have similar high grades of 3.7–6.9% THM and similar proportions of the HMS assemblage of ilmenite, leucoxene, rutile and zircon. Deposits of similar size and grade are likely to occur throughout the northern part of the Murray Basin.
  1. KEY POINTS
  2. Both the Copi North and Magic deposits contain similar mineral assemblages with the provenance of the heavy minerals ascribed to the Broken Hill Block.

  3. A relatively high energy inshore environment is inferred for the Copi North deposit while a lower energy environment associated with either a foreshore or backshore environment is inferred for the Magic deposit.

  4. Deposits of similar mineralogy, grades and size are likely to occur elsewhere throughout the northern Murray Basin.

  相似文献   

5.
Abstract

The Jurassic–Cretaceous Great Artesian Basin is the most extensive, and largest volume, sedimentary feature of continental Australia. The source of its mud-dominated Cretaceous infill is attributed largely to contemporary magmatism along the continental margin to the east, but the source of its Jurassic infill, dominated by quartz sandstone, remains unconstrained. This paper investigates the question of a Jurassic sediment source for the northern part of the basin. Jurassic uplift and exhumation of the continental margin crustal sector to the east provided the primary Jurassic sediment source. (U–Th)/He data are presented for zircon and apatite from Pennsylvanian to mid Permian granitoids of the Kennedy Igneous Association distributed within the northern Tasmanides between the Townsville and Cairns regions and for coeval granites of the Urannha batholith from the Mount Carlton district (N Bowen Basin), also within the northern Tasmanides. The data from zircon indicate widespread Jurassic exhumation of a crustal tract located to the east of the northern Great Artesian Basin and largely occupied by rocks of the Tasmanides. Detrital zircon age spectra for samples of the Jurassic Hutton and Blantyre sandstones from the northeastern margin of the Great Artesian Basin show their derivation to be largely from rocks of the northern Tasmanides. In combination, the detrital age spectra and (U–Th)/He data from zircon indicate exhumation owing to uplift generating appreciable physiographic relief along the north Queensland continental margin during the Jurassic, shedding sediment westward into the Great Artesian Basin during its early development. A portion of (U–Th)/He data for zircon are consistent with late Permian–mid Triassic exhumation within the Tasmanides, attributable to the influence of the Hunter--Bowen Orogeny. Evidence of Cretaceous and Paleocene exhumation episodes is also indicated for some samples, mainly by apatite (U–Th)/He analysis, consistent with data previously published from fission track studies. Overall, new data from the present study reveal that the exhumation related to Jurassic regional uplift and the subsequent erosional reworking of the northeast Australian continental margin is critical for the evolution and development of the northern side of the Great Artesian Basin in eastern Australia. Apart from this, another two previously suggested Permian–Triassic and Cretaceous exhumation and uplift episodes along the northeast Australian continental margin are also confirmed by the dataset of this study.
  1. KEY POINTS
  2. U–Pb detrital zircon ages of sandstone samples from the northeastern Eromanga Basin reveal Paleozoic (480–280 Ma) and Proterozoic (1800–1400 Ma) age clusters.

  3. (U–Th)/He zircon and apatite dating results of granitoids samples from Cairns, Townsville and the Mount Carlton districts are dominated by Jurassic (198–164 Ma) and Permian–Triassic (272–238 Ma) age clusters.

  4. Combination of above two datasets proves the regional uplift-driving Jurassic exhumation episode in the northeast Australian continental is vital for the development of the northern Great Artesian Basin.

  相似文献   

6.
7.
Abstract

For the past 200?years, there have been numerous investigations and much speculation concerning the formation of the dramatic valleys of the Blue Mountains of NSW. In this paper, further evidence for the uplift and erosional history of the Blue Mountains is obtained from longitudinal river profiles, detailed mapping of the Rickabys Creek Gravel on the Lapstone Structural Complex and consideration of the topographical position of Miocene basalts. Knickpoints on the main rivers flowing east from the Great Dividing Range are identified and interpreted to be due to uplift events linked to the northward movement of the Australian continent over mantle inhomogeneities. At the Lapstone Structural Complex on the eastern range front, the occurrence of the Rickabys Creek Gravel and the nature of the over-steepened reaches on the rivers and streams crossing the Complex, suggest a more recent ongoing phase of uplift and antecedent river erosion. The Miocene basalts provide evidence of this landscape 20–15?Ma. Their locations with respect to the current rivers and ridges are interpreted to show additional evidence for recent uplift that has resulted in the formation of the Lapstone Structural Complex. It is suggested that this uplift commenced 10–5?Ma when the contemporary compressive stress field was established.
  • KEY POINTS
  • Longitudinal profiles for major rivers in the Blue Mountains are consistent with a model of initial Cretaceous uplift followed by further Cenozoic uplift associated with dynamic topography.

  • Mapping of Rickabys Creek Gravel within the Lapstone Structural Complex suggests the presence of antecedent rivers.

  • Within the Lapstone Structural Complex, stream profiles, gravels and nearby outcrops of Miocene basalts are interpreted to indicate a third phase of uplift, possibly since 10?Ma.

  相似文献   

8.
Abstract

Review and analysis of 1332 gas chromatography (GC) n-alkane traces of oils from the Cooper and Eromanga basins indicate the shape of any GC trace profile is primarily controlled by the degree of organic maturity (early, peak or late) at which the oils were expelled from the parent source rock, rather than indicating the depositional environment, and hence organic composition, of that source rock. The depositional environment of a source rock may still be inferred, however, from the position of the n-alkane maximum on the GC traces of early expulsion oils in association with the pour point of the oil. Departures of GC trace profiles from the standard early, peak or late expulsion profiles can indicate mixing of oils of different maturities, while variations in the GC trace profiles of oils within adjacent reservoir units may indicate phase separation of the parent liquid, or possible seal breach by an accumulation that exceeds the capacity of its overlying seal.
  1. KEY POINTS
  2. GC trace profiles of 1332 oils from across the Cooper and Eromanga basins of central Australia have been reviewed.

  3. Organic maturity, rather than organic composition, of the parent source rock controls the shape of any GC trace profile.

  4. All early maturity oils display a consistent GC trace profile shape that is different from all peak maturity oils and different again from all late maturity oils.

  5. Depositional environment of the source rocks within a basin can be inferred from the relative pour points of the resultant oils.

  相似文献   

9.
Abstract

The Charters Towers Province, of the northern Thomson Orogen, records conversion from a Neoproterozoic passive margin to a Cambrian active margin, as characteristic of the Tasmanides. The passive margin succession includes a thick metasedimentary unit derived from Mesoproterozoic rocks. The Cambrian active margin is represented by upper Cambrian–Lower Ordovician (500–460?Ma) basinal development (Seventy Mile Range Group), plutonism and metamorphism resulting from an enduring episode of arc–backarc crustal extension. Detrital zircon age spectra indicate that parts of the metamorphic basement of the Charters Towers Province (elements of the Argentine Metamorphics and Charters Towers Metamorphics) overlap in protolith age with the basal part of the Seventy Mile Range Group and thus were associated with extensional basin development. Detrital zircon age data from the extensional basin succession indicate it was derived from a far-field (Pacific-Gondwana) primary source. However, a young cluster (<510?Ma) is interpreted as reflecting a local igneous source related to active margin tectonism. Relict zircon in a tonalite phase of the Fat Hen Creek Complex suggests that active margin plutonism may have extended back to ca 530?Ma. Syntectonic plutonism in the western Charters Towers Province is dated at ca 485–480?Ma, close to timing of metamorphism (477–467?Ma) and plutonism more generally (508–455?Ma). The dominant structures in the metamorphic basement formed with gentle to subhorizontal dips and are inferred to have formed by extensional ductile deformation, while normal faulting developed at shallower depths, associated with heat advection by plutonism. Lower Silurian (Benambran) shortening, which affected metamorphic basement and extensional basin units, resulted in the dominant east–west-structural trends of the province. We consider that these trends reflect localised north–south shortening rather than rotation of the province as is consistent with the north–south paleogeographic alignment of extensional basin successions.
  1. KEY POINTS
  2. Northern Tasmanide transition from passive to active margin tectonic mode had occurred by ca 510?Ma, perhaps as early as ca 530?Ma.

  3. Cambro-Ordovician active margin tectonism of the Charters Towers Province (northern Thomson Orogen) was characterised by crustal extension.

  4. Crustal extension resulted in the development of coeval (500–460?Ma) basin fill, granitic plutonism and metamorphism with rock assemblages as exposed across the Charters Towers Province developed at a wide range of crustal levels and expressing heterogeneous exhumation.

  5. Protoliths of metasedimentary assemblages of the Charters Towers Province include both Proterozoic passive margin successions and those emplaced as Cambrian extensional basin fill.

  相似文献   

10.
Abstract

Longstanding debates on the tectonic setting and provenance of the Lower Cretaceous Lingshandao Formation have hindered basin analysis and tectonic studies of the collision of the Yangtze Craton and the North China Craton, and thus the evolution of the Sulu Orogen. Thin-section analysis, identification of rock particles, cathodoluminescence, heavy minerals and trace-element analysis have, in addition to field investigations, been applied to reconstruct the source area and transport pathways of the sediments that build the Lower Cretaceous Laiyang Group on the Lingshan Island, western Yellow Sea. These analyses indicate that the Laiyang Group consists mainly of material derived from a recycled orogen and from transitional continental sediments. The Laiyang Group on Lingshan Island has been sourced from igneous and metamorphic rocks. Comparing analyses of detrital minerals with rocks from surrounding areas leads to the conclusion that the main source area is the Sulu Orogen that supplied sediment to rift basin rather than a residual basin between the Yangtze Craton and the North China Craton.
  1. A recycled orogenic belt is the source area for the Laiyang Group on Linshan Island.

  2. Felsic metamorphic and igneous rocks form the most probable sources.

  3. The rift basin was filled by sediments supplied from the Sulu Orogen on both sides.

  相似文献   

11.

The Savory Basin in central Western Australia was recognized in the mid‐1980s during regional mapping of very poorly exposed Proterozoic rocks previously assigned to the Bangemall Basin. All of the sedimentary rock units in the Savory Basin have been included in the Savory Group, which unconformably overlies the Mesoproterozoic Yeneena and Bangemall Groups. Correlation with adjacent basins is impeded by poor outcrop and the lack of subsurface information. Possible correlations have been investigated with the much better known Amadeus Basin to the east, and with the Officer Basin. Two correlations now clarify the age and relationships of the Savory Group. First, the Skates Hills Formation contains distinctive stromatolites previously recorded from the Bitter Springs Formation of the Amadeus Basin. In addition, the Skates Hills and Bitter Springs Formations have many lithological features in common. This correlation is strengthened by comparison with surface and subsurface units in the northern Officer Basin. Second, the intergrading sandstone‐diamictite of the Boondawari Formation is very similar to the intergrading Pioneer Sandstone‐Olympic Formation of the Amadeus Basin, and the overlying siltstone closely resembles the Pertatataka Formation and its correlative the Winnall beds. The stromatolitic and oolitic carbonates at the top of the Boondawari Formation are broadly comparable with those of the Julie Formation (which grades down into the Pertatataka Formation). Support for this set of correlations comes from carbon isotope chemostratigraphy. The stromatolites include two new forms described herein, Eleonora boondawarica and Acaciella savoryensis, together with a third form too poorly preserved to be formally defined. The age of the upper sandstones is unknown. The McFadden Formation seems to have its provenance in the Paterson Orogen. The southeastern extension of this orogen is the Musgrave Block, where compression followed by uplift at about 560–530 Ma (Peterman Ranges Orogeny) led to the formation of large amounts of conglomerate (Mt Currie Conglomerate) and sandstone (Arumbera Sandstone). If tectonic events in the Paterson Orogen were contemporaneous with those in the Musgrave Block, the McFadden Formation would correlate with the Arumbera Sandstone.  相似文献   

12.
Abstract

Coal measures located in marginal sea basins are important hydrocarbon source rocks. For the purpose of effectively guiding future oil and gas exploration, the characteristics and distribution patterns of coal seams in coal measures of a marginal sea basin are systematically outlined. Coal measures in marginal sea basins can have large thicknesses, but the individual coal seams can be very thin and lack lateral continuity. In the study area, the organic micro-components of the coal are dominated by vitrinite, with very low amounts of inertinite and liptinite. The amount of inorganic microscopic components is large, but with limited drilling results, few cores and thin coal seams, which are easily overlooked during logging activities, a comprehensive analysis of the logging data may improve efficiency in coal-seam identification and thickness determination. The development and distribution of coal seams in marginal sea basins are controlled by various factors, including (1) paleoclimatic and paleobotanic conditions, which could fundamentally limit coal formation, (2) coal-forming sedimentary environmental conditions that may limit the scope of coal-seam development from a macroscopic perspective, and (3) paleotectonic and paleotopographic conditions that define the coal-forming structures. Therefore, the descending and rising cycles of base-levels, along with changes in the growth rates of the accommodation spaces, can be used to determine the horizons that are potentially favourable for coal formation and can also indicate the migration trends of coal-forming environments on the structural plane. Seismic wave impedance inversion methods could be utilised for semi-quantitative assistance for prediction of coal seams. In summary, for models of coal-seam development in marginal sea basins, the grades should be divided according to reliability, and the different reliability levels should be predicted separately.
  1. The characteristics of coal seams developed in marginal sea basins are described.

  2. The macerals of coals developed in marginal sea basins have been ascertained.

  3. A development model and distribution prediction method for coal seams are assessed according to the control factors.

  4. A model for the prediction of coal-seam distribution is presented.

  相似文献   

13.
Detailed mapping and C and O stable isotopic data from sedimentary carbonate in units both above and below the paleo-erosion surface on the Bitter Springs Formation (BSF) in the northeastern Amadeus Basin, Australia, have clarified the stratigraphy of the area. Isotopic data indicate that the top of the Loves Creek Member of the Bitter Springs Formation is preserved near Corroboree Rock, and is overlain by fenestrate-carbonate-clast breccia, and dolomitic quartz sandstone and chert-pebble conglomerate of the Pioneer Sandstone. The isotopic data, as well as lithologic data, indicate the presence of a 1–2 m-thick cap carbonate preserved between Corroboree Rock and areas 10 km to the northeast. In many places the cap carbonate layer is mostly a syn-sedimentary dolomite-clast breccia, consistent with deposition and disturbance in shallow water. C and O isotopic data also indicate that thin-bedded sandstone and dolomite above the Bitter Springs Formation at Ellery Creek, and a newly discovered massive chert-bearing dolomite at Ross River could both belong to the glaciogenic Olympic Formation. Detailed mapping also provides a more detailed context for the famous black chert microfossil locality in the Bitter Springs Formation at Ross River.  相似文献   

14.
Abstract

Acropolis is an Fe-oxide–copper–gold prospect ~20?km from Olympic Dam, South Australia, and marked by near-coincident gravity and magnetic anomalies. Prospective Fe-oxide–apatite?±?sulfide veins occur in Mesoproterozoic and Paleoproterozoic volcanic and granitoid host units beneath unmineralised sedimentary formations. We have produced a geological map and history of the prospect using data from 16 diamond drill holes, including LA-ICPMS and high-precision CA-TIMS ages. The oldest unit is megacrystic granite of the Donington Suite (ca 1850?Ma). A non-conformity spanning ca 250 My separates the Donington Suite and felsic lavas and ignimbrites of the Gawler Range Volcanics (GRV; 1594.03?±?0.68?Ma). The GRV were intruded by granite of the Hiltaba Suite (1594.88?±?0.50?Ma) and felsic dykes (1593.88?±?0.56?Ma; same age as the Roxby Downs Granite at Olympic Dam). The felsic dykes are weakly altered and lack Fe-oxide–apatite–sulfide veins, suggesting that they post-date the main hydrothermal event. If correct, this relationship implies that the main hydrothermal event at Acropolis was ca 1594?Ma and pre-dated the main hydrothermal event at Olympic Dam. The GRV at Acropolis are the same age as the GRV at Olympic Dam and ca 3–7 My older than the GRV exposed in the Gawler Ranges. The gravity and magnetic anomalies coincide with sections through the GRV, Hiltaba Suite and Donington Suite that contain abundant, wide, Fe-oxide veins. The GRV, Hiltaba Suite and Donington Suite are unconformably overlain by the Mesoproterozoic Pandurra Formation or Neoproterozoic Stuart Shelf sedimentary formations. The Pandurra Formation shows marked lateral variations in thickness related to paleotopography on the underlying units and post-Pandurra Formation pre-Neoproterozoic faults. The Stuart Shelf sedimentary formations have uniform thicknesses.
  1. KEY POINTS
  2. Fe-oxide–apatite?±?sulfide veins are hosted by the Gawler Range Volcanics (1594.03?±?0.68?Ma), the Hiltaba Suite granite (1594.88?±?0.50?Ma) and Donington Suite granite (ca 1850?Ma).

  3. The age of felsic dykes (1593.88?±?0.56?Ma) interpreted to be post-mineralisation implies that the main hydrothermal event at Acropolis was ca 1594?Ma.

  4. The Gawler Range Volcanics at Acropolis are the same age as the Gawler Range Volcanics at Olympic Dam and ca 3 to 7 My older than the Gawler Range Volcanics exposed in the Gawler Ranges.

  相似文献   

15.
The stratigraphic succession of formations in the Myall district comprises in ascending order the Bunyah Beds, Wallanbah Formation, Kataway Mudstone, Boolambayte Formation (new names), Nerong Volcanics (E'ngel, 1962), Booti Booti Sandstone, Yagon Siltstone, Koolanock Sandstone, Muirs Creek Conglomerate (new names) and Alum Mountain Volcanics (Engel, 1962). The units range in age from possibly Devonian to possibly Permian, most being Carboniferous. The Mograni (new name), Tugrabakh (Voisey, 1940) and Mayers Flat Limestones (new name) are members of the Wallanbah Formation. The Violet Hill Volcanics (new name) is a member of the Yagon Siltstone. The Burdekins Gap Basalt Member and Lakes Road Rhyolite are members of the Alum Mountain Volcanics.

Environments of deposition range from nonmarine (Nerong Volcanics, Alum Mountain Volcanics, Muirs Creek Conglomerate, upper part of Koolanock Sandstone) through shallow marine (Booti Booti Sandstone, lower part of Koolanock Sandstone, calcareous parts of Wallanbah Formation) to deep marine (most other units). Facies relationships indicate a progressive deepening of the sedimentary environment to the east throughout most of the Carboniferous sequence. The Tournaisian sequence is readily correlated with a similar sequence in the Rocky Creek and Belvue Synclines. Higher units are correlated with sequences at Gloucester (Campbell & McKelvey, 1972) and Booral (Campbell, 1962).  相似文献   

16.
Devonian strata near Fowlers Gap and Nundooka Stations, northern Barrier Ranges comprise ~2.7 km of sparsely fossiliferous, fluvially deposited sandstones (Mulga Downs Group). These strata are subdivided into the Coco Range Sandstone (oldest, Emsian‐Eifelian) found west of the north‐trending Nundooka Creek Fault, and the Nundooka Sandstone (youngest, ?Frasnian‐Famennian found east of the fault). Eleven stratigraphic units are mapped and two of these in the Coco Range Sandstone are formally named as The Valley Tank Arenite and Copi Dam Arenite Members. The Coco Range Sandstone and Nundooka Sandstone are tentatively correlated with strata in the Bancannia Trough. Deposition of the Coco Range Sandstone and Nundooka Sandstone was, however, separate from that of the Bancannia Trough, probably due to topographic highs which occurred east of the Western Boundary Fault.

The Coco Range Sandstone is cut by northeast‐trending faults splaying from the Nundooka Creek Fault. These faults have vertical planes and are thought to predate deposition of the Nundooka Sandstone. In the Late Cretaceous the Nundooka Creek and Western Boundary Faults became active and areas west of these faults were uplifted to form Coco Range and Bald Hill. This fossil landscape was progressively buried by deposition of the Palaeocene‐Eocene Eyre Formation until it was half covered by strata. During the Oligocene silcrete of the Cordillo Surface formed and was overlain conformably by the sandy Doonbara Formation (Miocene). Since the Miocene, much of the Eyre Formation has been removed by erosion to exhume a Late Cretaceous landscape. Subsequently in the ?Pliocene there was some faulting along the Nundooka Creek and Western Boundary Faults because locally the Cordillo Surface and the Doonbara Formation dip toward the faults at 30–72°. At three localities there is evidence of probable Quaternary activity on the Nundooka Creek and the Western Boundary Faults (downthrow to the east) suggesting a different style of tectonics from that in the Miocene.  相似文献   

17.
Abstract

Information, mainly from the granitic and silicic volcanic rocks in the Stawell, Bendigo and Melbourne structural zones in the state of Victoria, shows that the sources of both the S- and I-type rocks of the Stawell and Bendigo zones (SBZ) contrast in ages and chemistry with the sources of similar granitic rocks in the Melbourne Zone, consistent with the absence of the mainly Proterozoic Selwyn Block beneath most of the SBZ. Below a mid-crustal décollement in the SBZ, the crust is evidently highly variable and possibly includes thinned Proterozoic crust. There is geochronological evidence for ca 400 and ca 370?Ma granulite-grade metamorphic events here, and, after this double bout of metamorphism, and depletion in the silicic melt component, the constituents of the entire deep crust of the SBZ would have densities similar to those of overlying, much lower-grade Cambrian metabasaltic to boninitic rocks. Thus, granitic magmas may have formed here by partial melting of a variety of rock types, probably with back-arc affinities, with ages that may extend back to the Proterozoic. Therefore, the basement of the SBZ is unlikely to consist solely of thick ocean-floor rocks, as in some current interpretations.
  1. KEY POINTS
  2. The sources of the Devonian granitic rocks of the Stawell and Bendigo zones (SBZ) contrast in ages and chemistry with those of the Melbourne Zone granites.

  3. Two Devonian granulite-facies events left the melt-depleted deep SBZ crust with densities similar to those of overlying Cambrian metabasaltic rocks.

  4. The SBZ Devonian granitic magmas probably formed by partial melting of heterogeneous Proterozoic to Cambrian arc-related crust, below the mid-crustal décollement.

  相似文献   

18.
The recent increase in exploration activity in the Galilee Basin, Queensland, has highlighted inconsistencies in the usage of Lopingian (upper Permian) stratigraphic nomenclature across the basin. This study utilised peer-reviewed journal, company and government publications to evaluate the current understanding of the naming conventions in use and correlated them to nomenclature in the adjacent Bowen Basin. The prominent misinterpretation is between the stratigraphic relationship and terminology of the northern and western Betts Creek beds and its eastern and southern correlatives the Bandanna Formation and Colinlea Sandstone. The correlation between the units has been assessed from a (1) lithological, (2) sedimentological and (3) coal-seam architectural perspective. The Betts Creek beds appear similar to the Colinlea Sandstone in their lithology and sedimentological character, but increased drilling data suggest the original type-sections no longer fit the heterogeneous lithology of correlated strata bearing that nomenclature. Correlation across the Springsure Shelf into the Bowen Basin suggests that the Betts Creek beds and their subdivisions are in fact equivalent to the Bandanna Formation, the Fort Cooper Coal Measures (the Burngrove and Fair Hill formations) and the Moranbah Coal Measures. A revised stratigraphic column for the Galilee Basin has been proposed to reflect this, and to suggest that a new stratigraphic unit be introduced; the ‘Fort Cooper Coal Measures equivalent’ and its subdivisions the ‘Burngrove and Fair Hill formation equivalents.’  相似文献   

19.
Abstract

Large debris flows in steep-sloped ravines debouching to the Rimac River, in metropolitan Lima (Peruvian capital), have resulted in considerable loss of life and property adversely impacting communities in the region. Temporal, spatial and volumetric features of debris flows are difficult to predict, and it is of utmost importance that achievable management solutions are found to reduce the impact of these catastrophic events. The emotional and economic toll of these debris flows on this increasingly densely populated capital city in South America is devastating where communities must live in such inadequate and dangerous conditions. To address this problem, the application of advanced Japanese technology, Sustainable Actions Basin Orientation (SABO), has been investigated using a geomorphological modelling to develop an implementation plan. Rayos de Sol stream basin in Chosica, was selected as a pilot to develop the proposal, as it is considered high risk due to the presence of ancient debris flows and recent flows in 2012, 2015 and 2017. The recurrence of debris flows in this location has resulted in numerous deaths and catastrophic property losses. This study combines geologic and geomorphic mapping and hydraulic and landform evolution numerical modelling. The implementation of a SABO Master Plan based on the multidisciplinary assessment hazard scenarios, will allow the implementation of feasible mitigation actions. The SABO technology has been applied successfully in Japan and other countries in areas with steep short slopes, similar to the conditions surrounding the Peruvian capital. Results from this study will be presented to the Peruvian Government as part of an action plan to manage debris-flow impact.
  1. KEY POINTS
  2. High-risk mass slope failure is linked to poor urban planning in urban developing regions of Lima the capital of Peru.

  3. A multidisciplinary study including geotechnical and hydrological analysis, engineering design, and socio-economic research is required to implement a SABO Master Plan, and this basin is pilot study basin.

  4. At the present time, a maintenance programme for existing hydraulic structures should be implemented, and a flood risk management plan developed may propose the relocation of some communities and infrastructure.

  相似文献   

20.
Abstract

Two north–south-trending belts of high-temperature–low-pressure (HTLP) sub-regional metamorphism have been identified in the New England Orogen of eastern Australia. Metamorphic complexes in the ~1300?km long Early-Permian Inland belt have ages ca 300–290?Ma, and those of the ~400?km long Mid-Permian Coastal belt ca 275–270?Ma. These periods correspond to the beginning and end of an extended (early–mid Permian) phase of subduction rollback and crustal thinning in eastern Australia. This paper describes and incorporates recent work on the Wongwibinda Metamorphic Complex in the southern New England Orogen as a basis for comparison with thirteen other HTLP sub-regional occurrences within the orogen. These are described in as much detail as is currently available. Some outcrops of HTLP rocks in difficult terrain have been subject to limited study and only conditional comparisons can be made. However, a significant number of characteristics shared between the complexes including: their location at the higher-temperature end of broad areas of very low-grade to greenschist facies metamorphic rocks, indicative of tilted crustal blocks; their association with major shear zones; the presence of migmatite at the high-temperature end of a steep metamorphic field gradient; the presence of two-mica granite formed by the melting of the local sedimentary pile; and temporal association with S-type granites; imply a common extension-related mechanism of formation for these HTLP belts. The connection with major faults and shear zones suggests the belts trace major crustal-scale extensional structures that migrated eastwards from ca 300 to 270?Ma.
  1. KEY POINTS
  2. Two previously undocumented belts of HTLP subregional metamorphism are identified within the NEO.

  3. Available dating indicates that metamorphism occurred along the belts at the beginning and end of a major early–mid Permian extensional phase in eastern Gondwana/Australia.

  4. The characteristics of the HTLP complexes including their association with shear zones indicates they may delineate major loci of extension.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号