首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 781 毫秒
1.
张成良  李新平  代翼飞 《岩土力学》2007,28(Z1):354-358
在地下厂房岩锚梁爆破施工中,为获得良好的开挖轮廓面和较小的损伤区,常采用光面爆破的开挖方式,但在光面爆破施工中,主爆孔爆破对光爆层岩石造成较大程度的损伤,使岩石的力学参数发生变化,而在爆破设计与施工中未考虑这种损伤效应,结果造成单孔装药量偏大,岩石受到过度破坏,出现超挖或产生大量的爆振裂隙。应用动力有限元程序,建立岩体二维弹塑性模型,对不考虑损伤和考虑损伤的光面爆破过程进行了数值模拟,并比较两种模型最大有效应力随距离的变化关系。研究结果表明,在相同情况下,考虑损伤影响时可适当加大光面爆破的炮孔间距和抵抗线。在现场进行了考虑爆破损伤和未考虑爆破损伤的两组爆破试验,观察爆后效果表明:考虑爆破损伤效应的参数设计爆破效果好、损伤作用小。  相似文献   

2.
白羽  朱万成  魏晨慧  魏炯 《岩土力学》2013,34(Z1):466-471
考虑岩石介质的非均匀性,把爆破过程视为爆炸应力波和爆生气体压力共同作用的结果,基于损伤力学理论建立了岩石爆破的力学模型,并对不同地应力条件下岩石双孔爆破裂纹演化规律进行了数值模拟,分析了不同侧压力系数和埋 深对裂纹扩展规律的影响。数值模拟结果表明:①爆炸应力波导致裂纹的萌生,爆生气体压力则会使裂纹进一步扩展和贯通; ②裂纹演化过程与地应力密切相关,裂纹扩展的主方向趋于最大地应力方向;③随着埋深增加和初始地应力增大,裂纹扩展半径和裂纹区面积减小,地应力对爆破致裂的抑制作用明显。  相似文献   

3.
基于所建立的反映岩石冲击压缩、拉伸损伤理论模型以及深孔微差爆破数值模拟结果,研究了爆炸载荷作用下岩石损伤演化和破碎规律,分析了岩石的动态力学特性;通过对水平边界条件下爆破破岩物理、力学过程的研究,探讨了深孔微差爆破的作用机制和爆破设计原则。  相似文献   

4.
岩石时效损伤模型及其在工程爆破中应用   总被引:2,自引:0,他引:2  
王志亮  郑田中  李永池 《岩土力学》2007,28(8):1615-1620
为了实现爆破智能化,降低爆破带来的负面影响,通过数值模拟预估出岩体中爆破诱发损伤的大小以及分布范围在工程上具有重要意义,其中科学合理的爆破损伤模型是关键。基于岩石介质是连续的、各向同性的、且存在初始裂纹的假设,把考虑时效的岩石拉裂损伤演化方程和双线形弹塑性本构结合起来,通过用户自定义简明地嵌入到大型LS-DYNA软件中,并引入了该软件中的侵蚀算法,对半无限岩体中临空面附近爆破漏斗问题进行了重点数值模拟,计算结果比较接近实际。本文方法在工程中将具有一定的参考价值。  相似文献   

5.
分析了水下岩石工程爆破技术的发展现状,通过对各方面影响因素的研究分析,认为影响水下岩石爆破炸药单耗的主要因素是岩石的RQD,水深H及岩性因素f,推导出了水下岩石爆破炸药单耗q的公式。  相似文献   

6.
项斌 《探矿工程》2016,43(6):88-91
为了解决复杂城市环境下岩石边坡控制爆破的有害效应问题,依托某景区岩石边坡爆破工程,提出相应的爆破设计方案。方案采用以弱松动定向控制爆破为主,辅以浅孔城市爆破以及预裂爆破的爆破设计,提出了各爆破形式的爆破设计参数,设计了相应的起爆网络、起爆顺序及装药结构。通过严格执行该方案,大大降低了爆破振害,实际爆破施工效果达到预期目标。该设计可为其他复杂城市环境爆破工程提供参考。  相似文献   

7.
舟山灌门水道海底隧道钻爆法施工稳定性分析   总被引:1,自引:0,他引:1  
蔚立元  李术才  徐帮树 《岩土力学》2009,30(11):3453-3459
以舟山灌门水道海底隧道为背景,依据地质资料,选取隧道典型横断面来研究钻爆法施工时围岩的稳定性。由典型横断面的几何参数和地质资料构建数值计算模型,采用国际上常用的计算模式模拟爆破荷载,根据FLAC3D动态计算的特点,将爆破荷载以等效应力的方式加载于模拟炮孔之上。数值计算结果表明,各关键点的位移、振动速度、加速度-时程曲线均满足隧道爆破变形规律,且振动速度峰值均小于规范要求临界值,爆破作用影响范围小于岩石覆盖层建议厚度,验证了岩层覆盖厚度建议值和爆破方案的合理性。最后,为了弄清岩石覆盖厚度和炸药量对围岩稳定性的影响,给出了不同岩石覆盖厚度和炸药量情况下的计算结果。所得结论对后续施工和类似工程具有一定的指导意义。  相似文献   

8.
坚硬顶煤弱化爆破的宏观损伤破坏程度研究   总被引:4,自引:0,他引:4  
索永录 《岩土力学》2005,26(6):893-895
根据综放开采坚硬顶煤预先弱化爆破作用的目的和特点,认为在爆炸载荷作用下坚硬煤体的动态断裂破坏也是一个连续损伤演化积累过程。通过大煤样爆破超动态应变测试,提出坚硬顶煤预先弱化爆破的爆破中区应变波峰值体积应变符合幂函数衰减规律,并在此基础上,结合Tarlor、Drady等岩石爆破损伤演化模型,建立了坚硬顶煤预先弱化爆破宏观损伤破坏程度的分布函数,给出了相应的计算参数和系数,为分析和确定顶煤弱化爆破合理参数提供了基础。  相似文献   

9.
岩石爆破中的断裂控制方法   总被引:2,自引:0,他引:2       下载免费PDF全文
吴立  张时忠  张天锡 《探矿工程》1997,(3):54-55,59
在断裂力学理论的基础上,提出了岩石爆破中实现断裂控制的基本原则,分析了岩石爆破中的断裂控制方法。  相似文献   

10.
分析了爆破冲击波的传播特点,指出了对岩石破坏最大的是拉伸应力波,并对岩体结构对岩石爆破效果的影响进行了探讨。  相似文献   

11.
One of the fundamental requirements for being able to optimise blasting is the ability to predict fragmentation. An accurate blast fragmentation model allows a mine to adjust the fragmentation size for different downstream processes (mill processing versus leach, for instance), and to make real time adjustments in blasting parameters to account for changes in rock mass characteristics (hardness, fracture density, fracture orientation, etc). A number of blast fragmentation models have been developed in the past 40 years such as the Kuz-Ram model [1]. Fragmentation models have a limited usefulness at the present time because: 1. The input parameters are not the most useful for the engineer to determine and data for these parameters are not available throughout the rock mass. 2. Even if the input parameters are known, the models still do not consistently predict the correct fragmentation. This is because the models capture some but not all of the important rock and blast phenomena. 3. The models do not allow for 'tuning' at a specific mine site. This paper describes studies that are being conducted to improve blast fragmentation models. The Split image processing software is used for these studies [2, 3].  相似文献   

12.
危岩是三峡库区主要地质灾害之一,现呈现出多发、频发的趋势。危岩的分类为坠落式、倾倒式和滑塌式。危岩的综合治理措施有清除、支撑、锚固、拦截、封填、灌浆、排水、防护网等。控爆技术,包括洞室控爆技术、深孔控爆技术、光面爆破、预裂爆破、浅眼循环控爆技术等,以及无声破碎和防护网,均适用于危岩排险工程。危岩的爆破不同于一般的工程爆破,针对不同的危岩类型采用不同的控爆技术和综合应用措施,可以充分保护母岩,稳定岩体,达到应急排险的目的。  相似文献   

13.
Most blast fragmentation models assume the rock mass properties. explosive properties and blast design variables to be constants and uniformly distributed within a blast. However, in reality all these input variables vary within a blast resulting in variation in the resulting fragmentation size distribution. A stochastic modelling approach is introduced in this paper to quantify this variation. This technique takes the input variables as statistical distributions rather than constants and through several thousand iterations, generates a statistical representation of the expected fragmentation resulting from a poduction blast. A case study of three production blasts from a large open pit mine are presented and the modelled fragmentation 'envelope' shows good agreement with the fragmentation 'envelope' estimated from Split image analysis. The various blast-related parameters influence different parts of the fragmentation distribution, e.g., rock strength and explosive velocity of detonation have most impact on the fines. The technique is used to identify the parameters that have the greatest influence on various size fractions. Such an analysis will be useful to direct resources to efficiently minimise the variation.  相似文献   

14.
Explosion gas plays an important role in rock mass fragmentation and cast in rock blasting. In this technical note, the discontinuous deformation analysis method is extended for bench rock blasting by coupling the rock mass failure process and the penetration effect of the explosion gas based on a generalized artificial joint concept to model rock mass fracturing. By tracking the blast chamber evolution dynamically, instant explosion gas pressure is derived from the blast chamber volume using a simple polytropic gas pressure equation of state and loaded on the blast chamber wall. A bench blasting example is carried out. The blast chamber volume and pressure time histories are obtained. The rock failure and movement process in bench rock blasting is reproduced and analysed.  相似文献   

15.
New Prediction Models for Mean Particle Size in Rock Blast Fragmentation   总被引:2,自引:1,他引:1  
The paper refers the reader to a blast data base developed in a previous study. The data base consists of blast design parameters, explosive parameters, modulus of elasticity and in situ block size. A hierarchical cluster analysis was used to separate the blast data into two different groups of similarity based on the intact rock stiffness. The group memberships were confirmed by the discriminant analysis. A part of this blast data was used to train a single-hidden layer back propagation neural network model to predict mean particle size resulting from blast fragmentation for each of the obtained similarity groups. The mean particle size was considered to be a function of seven independent parameters. An extensive analysis was performed to estimate the optimum value for the number of units for the hidden layer for each of the obtained similarity groups. The blast data that were not used for training were used to validate the trained neural network models. For the same two similarity groups, multivariate regression models were also developed to predict mean particle size. Capability of the developed neural network models as well as multivariate regression models was determined by comparing predictions with measured mean particle size values and predictions based on one of the most applied fragmentation prediction models appearing in the blasting literature. Prediction capability of the trained neural network models as well as multivariate regression models was found to be strong and better than the existing most applied fragmentation prediction model. Diversity of the blasts data used is one of the most important aspects of the developed models.  相似文献   

16.
Blasting is sometimes inevitable in civil engineering work, to fragment the massive rock to enable excavation and leveling. In Minyak Beku, Batu Pahat also, blasting is implemented to fragment the rock mass, to reduce the in situ rock level to the required platform for a building construction. However, during blasting work, some rocks get an excessive amount of explosive energy and this energy may generate flyrock. An accident occurred on 15 July 2015 due to this phenomenon, in which one of the workers was killed and two other workers were seriously injured after being hit by the flyrock. The purpose of this study is to investigate the causes of the flyrock accidents through evaluation of rock mass geological structures. The discontinuities present on the rock face were analyzed, to study how they affected the projection and direction of the flyrock. Rock faces with lower mean joint spacing and larger apertures caused excessive flyrock. Based on the steoreonet analysis, it was found that slope failures also produced a significant effect on the direction, if the rock face failure lay in the critical zone area. Empirical models are often used to predict flyrock projection. In this study five empirical models are used to compare the incidents. It was found that none of the existing formulas could accurately predict flyrock distance. Analysis shows that the gap between predicted and actual flyrock can be reduced by including blast deign and geological conditions in forecasts. Analysis revealed only 69% of accuracy could be achieved if blast design is the only parameter to be considered in flyrock projection and the rest is influenced by the geological condition. Other causes of flyrock are discussed. Comparison of flyrock prediction with face bursting, cratering and rifling is carried out with recent prediction models.  相似文献   

17.
The estimation of wave transmission across the fractured rock masses is of great importance for rock engineers to assess the stability of rock slopes in open pit mines. Presence of fault, as a major discontinuity, in the jointed rock mass can significantly impact on the peak particle velocity and transmission of blast waves, particularly where a fault contains a thick infilling with weak mechanical properties. This paper aims to study the effect of fault properties on transmission of blasting waves using the distinct element method. First, a validation study was carried out on the wave transmission across a single joint and different rock mediums through undertaking a comparative study against analytical models. Then, the transmission of blast wave across a fault with thick infilling in the Golgohar iron mine, Iran, was numerically studied, and the results were compared with the field measurements. The blast wave was numerically simulated using a hybrid finite element and finite difference code which then the outcome was used as the input for the distinct element method analysis. The measured uplift of hanging wall, as a result of wave transmission across the fault, in the numerical model agrees well with the recorded field measurement. Finally, the validated numerical model was used to study the effect of fault properties on wave transmission. It was found that the fault inclination angle is the most effective parameter on the peak particle velocity and uplift. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
为了研究岩石在循环爆破作用下的动力学响应,本文对黑云母花岗岩试块进行了小型爆破试验,利用加速度传感器和声波测试仪,分别对循环爆破荷载下质点振动衰减规律与累积损伤演化机理进行了探析,并对不同装药量下花岗岩试块的裂纹扩展与断裂形态进行了比较。结果表明:萨道夫斯基公式对室内花岗岩试块的爆破振动衰减规律具有较好的适用性,拟合相关参数都处于0.90以上;花岗岩的爆破损伤随着爆破次数的增加而增加,且损伤值随着距爆心距离(爆心距)的增加而降低,近区损伤值迅速降低,降幅约为1.46/m,而中区和远区损伤值降低相对缓慢,约为0.57/m和0.13/m;花岗岩的破坏程度和装药量有较高的关联度,当药量较低时,岩块致裂所需要的爆破次数就越大;随着药量增加到一定程度,岩块在低爆破次数下就会发生破坏;此外,还发现随着装药量的增加,试块爆后破裂的块数呈现增加趋势,如较低药量时试样破裂成2块,较高药量下破裂成3~4块。  相似文献   

19.
Drilling and blasting is a major technology in mining since it is necessary for the initial breakage of rock masses in mining. Only a fraction of the explosive energy is efficiently consumed in the actual breakage and displacement of the rock mass, and the rest of the energy is spent in undesirable effects, such as ground vibrations. The prediction of induced ground vibrations across a fractured rock mass is of great concern to rock engineers in assessing the stability of rock slopes in open pit mines. The waveform superposition method was used in the Gol-E-Gohar iron mine to simulate the production blast seismograms based upon the single-hole shot vibration measurements carried out at a distance of 39 m from the blast. The simulated production blast seismograms were then used as input to predict particle velocity time histories of blast vibrations in the mine wall using the universal distinct element code (UDEC). Simulated time histories of particle velocity showed a good agreement with the measured production blast time histories. Displacements and peak particle velocities were determined at various points of the engineered slope. The maximum displacement at the crest of the nearest bench in the X and Y directions was 26 mm, which is acceptable in regard to open pit slope stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号