首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aliphatic hydrocarbon compositions were quantitatively characterized in plankton, sediment trap-collected particulate materials and sediments from Dabob Bay using high resolution glass capillary gas chromatography. The average net accumulation of individual hydrocarbons measured in a 1-yr series of sediment traps was compared with the net accumulation of corresponding compounds measured in three depth intervals of 210Pb-dated bottom sediments. Systematic and rapid decreases in the net accumulation of individual hydrocarbons were observed from the sediment traps to the sediments. Most pronounced decreases were measured for planktonically derived hydrocarbon constituents (e.g. pristane and two unsaturated compounds) which are rapidly remineralized at or near the sediment-water interface. Consequently, the amount of each compound measured in deposited sediments is not necessarily a quantitative indication of its initial flux to the sediments. The n-alkanes (C25,27,29,31). characteristic of terrestrial plant waxes, are the predominant hydrocarbons measured by 4–6 cm depth in these sediments and show reasonably constant net accumulation below this interval.Significant diagenetic alteration of the bulk organic matter contained in the average sediment trap particulate material is also noted through comparison with bottom sediments on the basis of organic C/N and δ13C measurements. Organic matter elementally similar to marine plankton is preferentially remineralized upon deposition of the sedimentary particulates. The residual organic matter remaining and buried in the bottom sediments closely resembles terrestrial organic matter.  相似文献   

2.
Aliphatic hydrocarbons, cupric oxide oxidation products of lignin and polycyclic aromatic hydrocarbons (PAH) were analyzed by capillary gas chromatography in sediments from the southern Washington continental shelf and slope. The concentration of diploptene relative to plantwax n-alkanes increased systematically in surface sediments with distance offshore along east-west transects of the study area and remained constant in surface sediments along the midshelf silt deposit. Analogous trends were also observed for the concentration of cinnamyl phenols relative to vanillyl phenols and total methylphenanthrenes relative to phenanthrene. These changes in sedimentary composition are evidence that diploptene from some terrestrial source, lignin characteristic of non-woody vascular plant tissue and a fossil organic material contained within weathered rock debris disperse across the Washington continental shelf and slope in geographic patterns distinct from that for other river-derived, chemically related materials. The compositional variations are explained by the particulate associations of the land-derived chemicals and differential hydraulic dispersion of their respective carrier particles after discharge at the mouth of the Columbia River.  相似文献   

3.
Measurements of nutrients and trace metals are used to examine the processes controlling their distributions in the interstitial waters of Saanich Inlet. Samples were collected using both in situ and squeezing techniques with excellent agreement. Additional measurements of porosity, organic carbon and sedimentation rate by 210Pb are used in conjunction with the nutrient measurements to test the equation for the diagenesis of organic matter in fine-grained, organic-rich and rapidly-accumulating sediments.Organic carbon and sulfate decrease with depth in the sediment whereas ammonia and alkalinity increase. In the zone of sulfate reduction (0–20 cm) the rate constants for sulfate reduction (ks), ammonia production (kN) and organic carbon decomposition (kc) agree within a factor of two. Our calculations indicate, however, that this is fortuitous since the observed decrease in paniculate organic carbon is insufficient to account for the sulfate consumption. Sulfate must also be consumed by reaction with methane diffusing up from the underlying sediments. The rate constant for sulfate reduction using particulate organic carbon is lower than a modelled rate encompassing all organic species, including methane.The rate constant for ammonia production (kN) decreases by an order of magnitude when sulfate is completely depleted and methane production dominates.Thermodynamic calculations suggest that the interstitial waters are saturated or supersaturated with respect to all forms of iron ‘monosulfides’, apatite and rhodochrosite.  相似文献   

4.
Surface sediments from the South West Africa shelf and the Gulf of California have been analysed for iodine and organic carbon. The iodine contents range from 96 to 1990 ppm. While iodine and organic carbon show certain anomalies on the South West Africa shelf, the trend of the IC ratios is smooth and decreases from the shelf edge, an area of oxidising surface sediment, shorewards to reducing sediments, formed as a result of intense water upwelling. In the Gulf of California, a similar distribution of IC ratios with surface sediment type occurs; lowest values occur in the reduced sediments and highest in oxidised sediments. Values of the IC(× 104) ratio of the oxidised sediments (~250) are more than an order of magnitude higher than in reduced sediments, and are similar to some other surface oxidised sediments.The high I content of oxidised sediments is mostly due to uptake of I on to plankton seston on the seabed. In reduced sediments, I contained in planktonic matter originating in surface waters forms the bulk of iodine in the sediment.With sediment burial, oxidised sediments lose most of the iodine through degradation of unspecified organic constituents. This does not happen to the same extent in reduced sediments. The geological implications of these reactions are briefly discussed.  相似文献   

5.
Sedimentary pyrite formation: An update   总被引:1,自引:0,他引:1  
Sedimentary pyrite formation during early diagenesis is a major process for controlling the oxygen level of the atmosphere and the sulfate concentration in seawater over geologic time. The amount of pyrite that may form in a sediment is limited by the rates of supply of decomposable organic matter, dissolved sulfate, and reactive detrital iron minerals. Organic matter appears to be the major control on pyrite formation in normal (non-euxinic) terrigenous marine sediments where dissolved sulfate and iron minerals are abundant. By contrast, pyrite formation in non-marine, freshwater sediments is severely limited by low concentrations of sulfate and this characteristic can be used to distinguish ancient organic-rich fresh water shales from marine shales. Under marine euxinic conditions sufficient H2S is produced that the dominant control on pyrite formation is the availability of reactive iron minerals.Calculations, based on a sulfur isotope model, indicate that over Phanerozoic time the worldwide average organic carbon-to-pyrite sulfur ratio of sedimentary rocks has varied considerably. High CS ratios during Permo-Carboniferous time can be explained by a shift of major organic deposition from the oceans to the land which resulted in the formation of vast coal swamps at that time. Low CS ratios, compared to today, during the early Paleozoic can be explained in terms of a greater abundance of euxinic basins combined with deposition of a more reactive type of organic matter in the remaining oxygenated portions of the ocean. The latter could have been due to lower oceanic oxygen levels and/or a lack of transportation of refractory terrestrial organic matter to the marine environment due to the absence of vascular land plants at that time.  相似文献   

6.
《Organic Geochemistry》1999,30(2-3):133-146
Lake George, located in the St. Marys River, has been heavily impacted by human-induced environmental changes over the past century. The effects of human impacts starting in the late nineteenth century and of natural, gradual diagenesis can be distinguished in the bulk organic matter and molecular contents of the sedimentary record. Organic carbon concentrations increase from 0.5% in sediments deposited 200 years ago to ∼4% in recent sediments. A fourfold increase in organic carbon mass accumulation rates accompanies the change in concentrations. Elevated C/N ratios in near-modern sediments indicate that increased delivery of land-derived organic matter has been responsible for much of the recent increases in sedimentary organic carbon. Organic δ13C and δ15N values change significantly and coincidentally with the environmental changes, reflecting depressed algal productivity since the introduction of industrial effluents to the aquatic system, increased delivery of land-derived organic matter and some impacts of acid rain. Increases in microbial and petroleum hydrocarbon contributions occur in sediments deposited since 1900. Fatty acid distributions provide evidence of substantial microbial reworking of organic matter throughout the sedimentary record.  相似文献   

7.
Mercury distribution was examined in the sediments of Lake Baikal that were sampled within the scope of the Baikal Drilling International Project in 1996–1999. The Hg concentrations in the ancient sediments are close to those in the modern sediments with the exception of a few peak values, whose ages coincide with those of active volcanism in adjacent areas. Mercury was demonstrated to be contained in the sediments in the adsorbed Hg0 mode, predominantly in relation with organic matter. When the organic matter of the bottom sediments is decomposed in the course of lithification, Hg is retained in the sediments adsorbed on the residual organic matter, and the concentration of this element corresponds to its initial content in the bottom sediments during their accumulation. Mercury concentrations in lithologically distinct bottom sediments of Lake Baikal and its sediments as a whole depend on the climate. Sediments that were formed during warm periods of time contain more Hg than those produced during cold periods or glaciation. Periodical variations in the Hg concentrations in the bottom sediments of Lake Baikal reflect the variations in the contents of this element in the Earth’s atmosphere in the Late Cenozoic, which were, in turn, controlled by the climatic variations on the planet and, thus, can be used for detailed reconstructions of variations in the average global temperature near the planet’s surface.  相似文献   

8.
We evaluate anaerobic oxidation of methane (AOM) in the Black Sea water column by determining distributions of archaea-specific glyceryl dialkyl glyceryl tetraethers (GDGTs) and 13C isotopic compositions of their constituent biphytanes in suspended particulate matter (SPM), sinking particulate matter collected in sediment traps, and surface sediments. We also determined isotopic compositions of fatty acids specific to sulfate-reducing bacteria to test for biomarker and isotopic evidence of a syntrophic relationship between archaea and sulfate-reducing bacteria in carrying out AOM. Bicyclic and tricyclic GDGTs and their constituent 13C-depleted monocyclic and bicyclic biphytanes (down to −67‰) indicative of archaea involved in AOM were present in SPM in the anoxic zone below 700 m depth. In contrast, GDGT-0 and crenarchaeol derived from planktonic crenarchaeota dominated the GDGT distributions in the oxic surface and shallow anoxic waters. Fatty acids indicative of sulfate-reducing bacteria (i.e., iso- and anteiso-C15) were not strongly isotopically depleted (e.g., −32 to −25‰), although anteiso-C15 was 5‰ more depleted in 13C than iso-C15. Our results suggest that either AOM is carried out by archaea independent of sulfate-reducing bacteria or those sulfate-reducing bacteria involved in a syntrophy with methane-oxidizing archaea constitute a small enough fraction of the total sulfate-reducing bacterial community that an isotope depletion in their fatty acids is not readily detected. Sinking particulate material collected in sediment traps and the underlying sediments in the anoxic zone contained the biomarker and isotope signature of upper-water column archaea. AOM-specific GDGTs and 13C-depleted biphytanes characteristic of the SPM in the deep anoxic zone are not incorporated into sinking particles and are not efficiently transported to the sediments. This observation suggests that sediments may not always record AOM in overlying euxinic water columns and helps explain the absence of AOM-derived biomarkers in sediments deposited during past periods of elevated levels of methane in the ocean.  相似文献   

9.
Analyses for dissolved oxygen, nitrate and total CO2 in the interstitial water have been combined with solid phase sediment analyses of carbon and nitrogen to calculate the rates of reaction and stoichiometry of decomposing organic matter in central Equatorial Pacific pelagic sediments. The diagenesis is dominated by aerobic respiration and nitrification.Organic carbon and total nitrogen decrease exponentially with depth in both red clay and carbonate ooze sediments. In addition, there is a correlation between surface organic carbon and total nitrogen with distance from the equator. Fixed NH4 is relatively constant with depth and constitutes 12 to 64% of the total nitrogen. The remainder is considered to be organic nitrogen.The CN ratio of the decomposing organic matter was obtained using three approaches. Using the correlations of organic carbon with total nitrogen or organic nitrogen the molar ratios varied from 3.4 to 18.1. The average of all stations was 12.6 using total nitrogen and 13.7 using organic nitrogen. The Redfield ratio is 6.6. Approaches using interstitial water chemistry gave lower ratios. The average value using correlations between dissolved oxygen and nitrate was 8.1. The same approach using total CO2 and nitrate gave an average of 9.1. Due to difficulties in unambiguously interpreting the solid phase data we favor the ratios obtained from the pore water analyses.The rate of organic matter decomposition can be obtained from model calculations using the dissolved oxygen and solid organic carbon data. Most gradients occur in the upper 10 to 20 cm of the sediments. Assuming that bioturbation is more important than sedimentation we have calculated first order rate constants. The average values using organic carbon and dissolved oxygen was 3.9 kyr? and 4.2 kyr? respectively using a biological mixing coefficient of 100 cm2 kyr?1. These rate constants decrease in direct proportions to the mixing coefficient.  相似文献   

10.
Critical shear stress of erosion and erosion rate of particulate inorganic and organic matter were measured in a flume at three muddy stations. Critical shear stress ranged between 0.022 and 0.038 Nm?2. At the deepest site, annual erosion of particulate organic nitrogen and phosphorus could exceed net deposition fluxes, showing the importance of erosion processes. Erosion may modify total system mineralisation rates by introducing sedimentary particulate organic matter into the water column and thus this process must be taken into account in studies of biogeochemical cycles. To cite this article: E. Schaaff et al., C. R. Geoscience 334 (2002) 1071–1077.  相似文献   

11.
Humic matter fractions from modern sediments of Lake Huron and Lake Michigan have been compared. Large yields of saccharinic acids from alkaline hydrolysis suggest that these fractions contain large portions of carbohydrate materials. Evidence for contributions of aquatic lipid (C-16 fatty acids) and of liginin (phenolic acids) to these sediments is also present in the hydrolysis products. Qualitative differences among fulvic acid, humic acid and humin from the same lake are minor, suggesting common (or similar) organic sources for these fractions. The lability of sedimentary humic matter to alkaline hydrolysis is inversely related to its degree of exposure to oxidative weathering. Lability may also be related to diagenetic state as fulvic acids generally yield greater quantities of hydrolysis components than humic acids which in turn yield more than humin.  相似文献   

12.
青海湖底沉积物的矿物物相及有机质保存研究   总被引:2,自引:0,他引:2  
盐湖沉积环境是烃源岩发育的重要地质环境。本文以青海湖湖底沉积物为例,根据有机质与粘土矿物含最及矿物表面积的关系,分析了矿物学因素对盐湖相富有机质沉积物中有机质保存的影响。研究发现:湖底沉积物中有机质丰富,为上层水中的浮游生物和南河流携带束的陆地高等植物两种来源。矿物物相分析发现沉积物中粘土矿物含量达到32.4%,以伊利石为主。沉积物经密度分离后测试发现,有机碳含量与粘土矿物含量及矿物表面积之间具有很好的正相关性,说明粘土矿物吸附是青海湖底沉积物中有机质的主要赋存形式。  相似文献   

13.
Oxygen profiles in pelagic sediments from the Manganese Nodule Program calcareous and siliceous ooze sites (MANOP sites C and S) in the central Pacific Ocean were measured with microelectrodes and are used to predict oxygen consumption rates beneath the sediment-water interface. We explain possible artifacts which occur during sample recovery and argue that minimum estimates of 0.083 and 0.025 μ moles O2cm2day (C and S, respectively) can be calculated from the data. These oxygen consumption rates are in good agreement with in situ respirometer measurements previously reported for comparable sediments in the north Pacific, but previous estimates based on modeling of pore water nitrate profiles at both sites are two to five times smaller than our minimum fluxes. The differences in oxygen fluxes calculated by the two methods are probably in part due to uncertainty in the assumptions inherent in the nitrate model. However, non-steady state fluctuations in particulate organic matter fluxes could also be a reason for the disparity.  相似文献   

14.
《Applied Geochemistry》2001,16(3):363-374
The Nordåsvannet fjord in western Norway is a modern semi-enclosed basin suitable for studying sedimentary cycles as they occur under anoxic bottom conditions. It is characterized by strongly anoxic conditions in the water column and bottom sediments. Diagenetic pyrite formation occurs in the sediments, and syngenetic pyrite is formed in the lower water column. Organic matter burial in the fjord exceeds that of other environments with normal marine or upwelling conditions. This is due to the better preservation of organic matter. Organic matter composition appears to have changed over time with higher fractions of terrigenous organic matter being present in the most recent sediments. This may be a result of increased input of terrigenous organic matter, possibly due to sewage supply to the fjord over the last decades. Organic C and CaCO3 contents of the sediments do not appear to reflect a productivity signal. Calcium carbonate content is influenced by chemogenic calcite formation. Biogenic opal content appears to reflect a productivity signal, but different degrees of dissolution may obscure its clear recognition.  相似文献   

15.
Organic molecules originating only from the in situ diagenesis of biogenic molecules are ideal geochemical fossils which may provide information essential for the characterization and reconstruction of depositional environments and subsequent chemical reactions during diagenesis. It is proposed herein that this is the case for the 5β-isomers of stanols and stanones produced during stenol hydrogenation in young aquatic sediments, if shown to be essentially free of any major anthropogenic pollution (particularly, sewage). In order to clarify the environmental factors controlling the production of the 5β-steroidal isomers from stenols in recent aquatic sediments, attempts were made to relate the occurrence of 5β-stanols to various environmental parameters. Positive correlations between elevated concentrations of 5β-stanols and the degree of autochthonous contribution to sedimentary organic matter were consistently found in various surface aquatic sediments from a wide variety of depositional environments and also in older sediments extending even to the late Pleistocene. According to this finding, it was concluded that the primary factor controlling the conversion of stenols to 5β-stanols through 5β-stanones in anaerobic aquatic sediments is probably the relative contribution of autochthonous organic matter suitable for microbial metabolism (i.e. metabolizable organic matter) to the sediments. Consequently, it is proposed that the 5β-isomers of stanols and stanones, at least in immature aquatic (marine and non-marine) sediments, can serve as primary markers for defining the quality of sedimentary organic matter (viz. the relative contribution of metabolizable organic materials to sedimentary organic matter) and as indicators for the types and rates of microbiological activities responsible for early diagenesis of organic matter in anaerobic sediments. It is also suggested that the combination of the 5β-steroidal isomers with organic source parameters will allow these compounds to assist in indicating oxic or anoxic depositional environments.  相似文献   

16.
The source, quantity and quality of sedimentary organic matter (SOM) were investigated in the surface sediments of Lake Fuxian, a deep oligotrophic lacustrine system in China. Granulometry, biochemical organic composition, bulk organic proxies and their stable isotopes were determined in the surface sediments (0–4 cm). The values of δ13C, δ15N and atomic ratio of total organic carbon to total nitrogen (TOC/TN) indicated that the sediments in the large partial lake were influenced by autochthonous organic matter. The concentrations of TOC, protein (PRT) and total hydrolysable amino acids may be mainly modulated by phytodetritus sinking from euphotic zones since they correlated significantly with chlorins. Otherwise, the lack of correlation between chlorins concentrations and carbohydrate (CHO) and lipid (LIP) indicated that the latter may have an additional terrestrial source. The highest sediment quantity was found in the deepest station NC owing to its fine sediment. Stations near northwestern shore accumulated more SOM than other littoral stations, which was in accordance with sewage discharge strength. Degradation quality indices, such as chlorin index, degradation index, PRT/CHO, and LIP/CHO, were in general agreement in showing the degraded status of SOM in Lake Fuxian. No clear spatial patterns were found in sediment degradation quality, which may be influenced by bottom oxygen concentration in the deep stations.  相似文献   

17.
18.
The composition of light hydrocarbon gases in the Orca Basin, an anoxic, hypersaline intraslope depression on the continental slope of the northern Gulf of Mexico, indicates that both methane and ethane are biogenic in nature with a C1(C2 + C3) ratio of 730 and a δ13C of methane of ?73%. relative to the PDB standard. The concentrations of methane (750 mM) and ethane (1300 mM) in the Orca Basin brine are higher than any other marine anoxic basin. These high levels result not from high rates of productivity, but from the long residence time of the brine in the basin, due to its high stability toward mixing with overlying seawater (Δσ1ΔZ = 3.2m). Both methane and ethane show well mixed distributions in the brine. These distributions probably result from convective mixing of the isohaline brine pool due to normal heat flow from the basin sediments. Methane and ethane maxima above the pycnocline at the brine/seawater interface reflect in situ production and/or consumption in the aerobic water column. Concurrent maxima in suspended particulate material distributions in this region suggest methane may be produced there in anaerobic microenvironments associated with the suspended matter. Reduced rates of anaerobic decomposition (including sulfate reduction) in the brine sediments are inferred from preserved Sargassum fronds in the sediments, vertical sulfate profiles in most cores, and the sediment organic carbon content which is two to three times higher in sediments below the high salinity brine than in the normal Gulf sediments nearby.  相似文献   

19.
Remobilization of authigenic uranium in marine sediments by bioturbation   总被引:1,自引:0,他引:1  
Uranium behaves as a nearly conservative element in oxygenated seawater, but it is precipitated under chemically reducing conditions that occur in sediments underlying low-oxygen bottom water or in sediments receiving high fluxes of particulate organic carbon. Sites characterized by a range of bottom-water oxygen (BWO) and organic carbon flux (OCF) were studied to better understand the conditions that determine formation and preservation of authigenic U in marine sediments. Our study areas are located in the mid latitudes of the northeast Pacific and the northwest Atlantic Oceans, and all sites receive moderate (0.5 g/cm2 kyr) to high (2.8 g/cm2 kyr) OCF to the sediments. BWO concentrations vary substantially among the sites, ranging from <3 to ∼270 μM. A mass balance approach was used to evaluate authigenic U remobilization at each site. Within each region studied, the supply of particulate nonlithogenic U associated with sinking particles was evaluated by means of sediment traps. The diffusive flux of U into sediments was calculated from pore-water U concentration profiles. These combined sources were compared with the burial rate of authigenic U to assess the efficiency of its preservation. A large fraction (one-third to two-thirds) of the authigenic U precipitated in these sediments via diffusion supply is later regenerated, even under very low BWO concentrations (∼15 μM). Bioturbating organisms periodically mix authigenic U-containing sediment upward toward the sediment-water interface, where more oxidizing conditions lead to the remobilization of authigenic U and its loss to bottom waters.  相似文献   

20.
The carbon isotopic composition of organic matter from lake sediments has been extensively used to infer variations in productivity. In this paper, based on the study of the contents and δ13C values of organic matter in different types of lakes, it has been found that δ13C values of organic matter have different responses to lake productivity in different lakes. As to the lakes dominated by aqutic macrophytes such as Lake Caohai, organic matter becomes enriched in 13C with increasing productivity. As to the lakes dominated by aquatic algae such as Lake Chenghai, δ13C values of organic matter decrease with increasing productivity, and the degradation of aquatic algae is the main factor leading to the decrease of δ13C values of organic matter with increasing productivity. Therefore, we should be cautious to use the carbon isotopic composition of organic matter to deduce lake productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号