首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When quenched metastable wüstite (Fe.924O and Fe.947O) is held at 300°C at pressures up to 200 kbar in a diamond anvil cell, a mixture of magnetite, metallic iron and wüstite is found. We interpret this to indicate that magnetite plus metallic iron constitute the stable phase assemblage at pressures and temperatures below this boundary is stoichiometric FeO (a0 = 4.332 ± 0.001 A?) at pressures below 110 kbar at 300°C. However, just below the boundary in the pressure range 110 kbar to 200 kbar at 300°C, the residuál wüstite is non-stoichiometric (a0 < 4.332 A?). Data collected at pressures and temperatures above the boundary indicate that non-stoichiometric wüstite (FexO) plus metallic iron constitute the stable phase assemblage and that the value of x in FexO increases as pressure is increased isothermally to 100 kbar and then decreases as pressure is increased above 100 kbar.  相似文献   

2.
The solubility limits of the α (kamacite) and γ (taenite) phases in the Fe-Ni and Fe-Ni-P phase diagrams have been measured at low temperatures, 700-300°C. The predicted αα + γ retrograde solubility below 500°C was demonstrated experimentally for the first time in the Fe-Ni system. The minimum solubility of Ni in γ at the γα boundary increases with decreasing temperature to as much as 54 wt% at 300°C. The addition of P increases the maximum solubility of Ni in α by as much as 1.6 wt% and decreases the minimum solubility of Ni in γ by as much as 7 wt% at 300°C.The solubility limits of kamacite and taenite were also obtained from heat-treated samples of the Grant and Cape York iron meteorites. The data indicate that in iron meteorites minor and trace elements other than P do not significantly shift the Ni solubility limits of the Fe-Ni and Fe-Ni-P phase diagrams. The measured phase diagrams can be used to explain the Agrell effect and the differences in maximum Ni content of taenite among irons and chondrites. The formation of plessite and the influence of the measured solubility limits on the cooling rate simulation method are also considered.  相似文献   

3.
The pressure and temperature dependence of the composition of sphalerite in equilibrium with troilite + metallic iron has been determined experimentally at 2.5 and 5.0 kbar between 400° and 800°C using both the aqueous and anhydrous alkali halide flux recrystallization techniques. The measured pressure effect is larger than that calculated by us and by Schwarczet al. (1975a), and is described by the equation (T in Kelvins), P (kbar) = ?3.576 + 0.0551T ?0.0296Tlogmole % FeS.Assuming temperatures of final equilibration between sphalerite and troilite of 350°C for iron meteorites and 600°C for enstatite chondrites, published analyses of sphalerites provide estimates of pressures of formation and possible radii of parent objects of meteorites as follows: IA irons (Landes, Sardis, Gladstone, Bogou, Odessa, Toluca) 0.0 to 3.5 kbar, 0 to 442 km; E6 enstatite chondrites (Yilmia, Pillistfer) ?0.2 to 0.7 kbar, 0 to 198 km.  相似文献   

4.
In natural amethyst samples subjected to shock pressures between 10 and 50 GPa (1 GPa=109 Pa), thermoluminescence (TL) was observed after subsequent X-ray irradiation, in some cases even without high energy irradiation. The glow curves could be decomposed into at most five components of Gaussian shape, but no reliable activation energies could be determined from them, perhaps due to a wide distribution of trap depths. With increasing shock pressures traps of higher thermal stability were favored. Emission bands with maxima near 14000 cm?1 were observed independent of shock pressure. They appear to be characteristic of defects created during the shock events, but it is uncertain whether the observed TL is connected with the iron impurities characteristic for amethyst. In natural amethyst samples of the same origin no TL could be observed, even after additional X-ray irradiation. It is concluded that TL in amethysts reported in the literature was actually caused by defects associated with aluminium impurities, not by destruction of Fe4+.  相似文献   

5.
The FeS content of sphalerite, a minor phase in some meteorites, is strongly dependent on pressure when the sphalerite is in equilibrium with troilite. We have determined FeS contents for sphalerite in Bogou, Gladstone, Sardis and Odessa ; these, together with published data on Odessa and Campo del Cielo, have been used to calculate pressures of formation of meteorites, assuming that FeS-diffusion in sphalerite ceases at 350°C. Calculated pressures range from 0.2 to 3.1 kbar, corresponding to formation at centres of chondritic objects from 140 to 410 km in radius, or metallic objects of from 50 to 200 km radius. Formation at shallower depths would require the objects to have been correspondingly larger.All meteorites in this study are members of Ga-Ge group I. Inverse correlation between Ge content and pressure of formation suggests formation at various depths in a compositionally zoned (fractionated?) object. Comparison between our pressure estimates and radii estimated from cooling rates (Frickeret al., 1970, Geochim. Cosmochim. Acta34, 475–492) suggests that Odessa, Bogou and possibly other Group I meteorites formed in a single object with a radius between 400 and 180 km and an overall composition richer in metal than average chondrites.  相似文献   

6.
Thermoluminescence sensitivity measurements have been made on 18 unequilibrated ordinary chondrites; 12 finds from Antarctica, 5 non-Antarctic finds and 1 fall. The TL sensitivities of these meteorites, normalized to Dhajala, range from 0.034 (St. Mary's County) to 2.3 (Allan Hills A78084), and, based primarily on these data, petrologic type assignments range from 3.3 (St. Mary's County) to 3.9 (Allan Hills A78084). Although the very low levels of metamorphism experienced by types 3.0 to ~3.4 evidently cause large changes in TL sensitivity, the new data demonstrate that they are unable to cause any appreciable homogenization of silicate compositions. We have therefore slightly revised the silicate heterogeneity ranges corresponding to the lower petrologic types.We have discovered that the temperature of maximum TL emission and the broadness of the major TL peak, vary systematically with TL sensitivity; as TL increases these parameters first decrease and then increase. Several mechanisms which could account, partially or completely, for the relationship between TL sensitivity and metamorphism are discussed. Those which involve the formation of feldspar—the TL phosphor in equilibrated meteorites—seem to be consistent with the trends in peak temperature and peak width since experiments on terrestrial albite show that the TL peak broadens and moves to higher temperatures as the stable form changes from the low (ordered) state to the high (disordered) state. (The post-metamorphism equilibration temperature of type ~3.5 meteorites would then correspond to the transformation temperature for the high to low form of meteorite feldspar.) Other factors which may be involved are obscuration of the TL by carbonaceous material, changes in the composition of the phosphor and changes in the identity of the phosphor.  相似文献   

7.
Previous studies of chondrites heated in the laboratory for extended periods under conditions approximating those in shock-heated collisional debris indicate that Au, Co, Se, Ga, Rb, Cs, Te, Bi, In, Ag, Zn, Tl and Cd progress in mobility. We report data for these 13 trace elements in 14 L4–6 chondrites of established shock history and discuss these and 13 additional chondrites studied earlier. Trace element contents vary with petrologic type, SFe sub-group and shock history, the last dominating strongly. Absolute abundances and interelement relationships for the 6 or 7 most mobile elements vary with degree of shock-loading (i.e. residual temperatures) established from mineralogic/petrologic study. A tertiary process, shock-heating, previously known to have affected radiogenic 40Ar and/or 4He in meteorites but not other elements, apparently was at least as effective as other open-system processes (secondary [parent body] and primary [nebular and/or accretionary] episodes) in establishing mobile trace element contents of L chondrites and probably others. If conditions during early genetic episodes are to be deduced from compositional information, shocked meteorites should be avoided or effects of later processes should be compensated for.  相似文献   

8.
A laboratory study was conducted to assess the effect of heat-up to high diagenetic to low metamorphic temperatures on vitrinite reflectance (VR) at high pressures using the same heat-up processes, apparatus and starting material as those employed in prior experimental studies on huminite/vitrinite maturation. ??Heat-up?? is the isobaric increase in temperature of an organic matter maturation experiment from room temperature to the desired run temperature T ehu (T ehu ?=?temperature at the end of heat-up). The experiments were performed on xylite of swamp cypress and used a heating rate of 50?°C/min. These confined system maturation experiments were carried out at 10?kbar and involved temperatures T ehu ranging from 175 to 450?°C. Additional experiments were conducted at pressures of 5, 20 and 25?kbar to evaluate the influence of pressure on the effect of heat-up on VR. At 10?kbar, results of this study show that heat-up does not influence VR for T ehu ?< ~270?°C. This absence of maturation is viewed as the result of an activation time delaying vitrinite maturation at these diagenetic to very low metamorphic temperatures. For T ehu ?> ~270?°C, heat-up has a significant effect on VR at 10?kbar: VR greatly increases with T ehu during the short heat-up event. This effect of heat-up on VR points out the rapid kinetics of the initial VR increase. Increasing pressure reduces VR increase gained during heat-up. Obviously, pressure retards the initial VR increase and thus controls organic matter maturation. In addition to temperature, the formulation of VR evolution rate equation must consider pressure, activation time and VR gained during heat-up.  相似文献   

9.
A study was undertaken to determine the chronology, petrogenesis and relationships among the shergottites, Shergotty and Zagami and the unique achondrite ALHA77005. These meteorites are the product of a variety of complex processes.Petrogenesis: Chondrite-normalized abundance patterns of Shergotty and Zagami are very similar and show pronounced depletions of both the light REE (La-Nd) and heavy REE (Dy-Lu) relative to Sm-Gd. These characteristic depletions are even more pronounced for ALHA77005. The light REE depletion is qualitatively consistent with the presence of cumulus pyroxene and/or olivine in these meteorites, but trace element models show that the parental magmas of all three meteorites were probably also light REE depleted. Both trace element model calculations and combined Rb-Sr and Sm-Nd isotopic systematics show that the meteorites could not have been co-magmatic nor can ALHA77005 be representative of the source material of the shergottites. Light REE depletion of the parental magmas also implies light REE depletion of the source material. The Sm-Nd systematics of the shergottites require a time-averaged sub-chondritic (light REE enriched) Sm-Nd ratio since 4.6 AE ago. The Sm-Nd systematics of ALHA77005 permit a time-averaged super-chondritic (light REE depleted) Sm/Nd ratio if its crystallization age is less than TICE = 0.72 AE.Chronology. Rb-Sr internal isochrons for all three meteorites and a Sm-Nd internal isochron for Zagami are concordant at ~ 180 Myr. 39Ar-40Ar plateau ages of Shergotty and Zagami maskelynite are ~250–260 Myr. These ages apparently reflect resetting of these isotopic systems by shock metamorphism which converted the feldspar to maskelynite. The concordance of these ages suggests a single shock event during which the meteorites were in close physical proximity. The time of this event is most precisely given by the Rb-Sr age of 180 ± 4 Myr for Zagami.The crystallization ages of the meteorites were not precisely determined. Extreme upper limits are determined by Sm-Nd model ages relative to an eucrite initial 143Nd144Nd = 0.505835 at 4.6 AE ago. These model ages for Shergotty, Zagami and ALHA77005 are 3600, 3500 and 2850 Myr, respectively. The Sm-Nd whole rock age of 1340 ± 60 Myr for the three meteorites gives the crystallization age if the Sm/Nd ratios of the precursor materials were always the same. We consider this 1340 Myr age as a “best estimate” upper limit. “Best estimate” lower limits for Shergotty and Zagami are taken from the average 39Ar-40Ar ages of 1200 and 900 Myr of pyroxene separates. The average 39Ar-40Ar age of a whole rock sample of ALHA77005 was 1600 Myr and can be partitioned between a low temperature (feldspar) phase and a high temperature (olivine + pyroxene + inclusions) “phase”. The average apparent 39Ar-40Ar age of the low temperature phase is ~1050 Myr, which is chosen as the “best estimate” lower limit to the age. The crystallization ages of Shergotty, Zagami and ALHA77005 probably lie within the ranges of 1200–1300, 900–1300 and 1000–1300 Myr, respectively. The Rb-Sr whole rock age of 4400 ± 400 Myr and single-stage BABI model ages of ~4800–5100 Myr are interpreted as reflecting differentiation of the parent body at ~4600 Myr ago.The complex geochemical and isotopic evolution recorded by these meteorites suggests a geologically active parent body capable of sustaining melting at two or more epochs in its history.  相似文献   

10.
Pallasites are highly differentiated meteorites and provide a unique sample from the deep interiors of solar system parent bodies. They contain evidence of the former existence of one or more residual melts. Olivine is a major phase. Its primary shape is rounded; the angular crystals in many pallasites are secondary. Tubular inclusions are widespread. They perhaps are the residence of CO2, released during laboratory heating experiments. Phosphoran olivine, a new variety of olivine containing 4–5 wt% P2O5, occurs in a few pallasites. Its Fe/Mg ratio is apparently independent of the host olivine composition.Pyroxene (not previously described from pallasites) occurs in symplectic intergrowths in seven meteorites. Compositionally, it lies in the gap between pyroxenes in chondrites and most irons. There are two groups: Fs11.6 ± 0.2 and Fs16.7 ± 0.2 The pyroxene contains exceptionally low Ca (< 0.1–0.2 wt%) and there is an indication of an inverse relation between Fe and Ca.Modal analyses and density measurements were made on all available specimens and bulk compositions were calculated. The ‘average’ pallasite contains 65 vol. % olivine and 50.5 wt % total Fe. Many of the densities of pallasites cluster around that calculated for close-packed olivine.Pallasites are exotic cumulates. Their textures resemble terrestrial cumulates, as does the presence of olivine and chromite. The metal texture resembles a solidified intercumulus liquid. Those pallasites containing olivine in excess of close-packing were subjected to adcumulus growth, thereby also explaining the widespread mutual borders.There is abundant evidence of deformation. For olivines this includes their fragmental shape and kink banding. Troilite formed a eutectic-like melt with kamacite: pieces of spalled olivine and schreibersite were injected into and captured by this melt. Troilite polycrystallinity resulted from the deformation. This deformation occurred while the pallasites were still deeply buried, resulting in incipient spheroidization of olivine fragments, including the formation of elongate, rounded crystals. A later, lower temperature deformation disrupted plessite.Pallasites formed in multiple parent bodies by processes that recurred in several places within the solar system, as shown by the mineralogical and textural similarities between pallasites that differ in their isotopic and trace element compositions. Type IIIB irons still seem the most likely associated meteorites.Two new pallasites, Dora and Rawlinna, are described briefly.  相似文献   

11.
The solvus in the system CO2-H2O-2.6 wt% NaCl-equivalent was determined by measuring temperature of homogenization in fluid inclusions which contained variable CO2H2O but the same amount of salt dissolved in the aqueous phase at room temperature. The critical point of the solvus is at 340 ± 5°C, at pressures between 1 and 2 kbar; this is about 65°C higher than for the pure CO2-H2O system. The solvus is assymetrical, with a steeper H2O-rich limb and with the critical point at mole fraction of water between 0.65 and 0.8.  相似文献   

12.
The diffusivities of network-forming cations (Si4+, Al3+, Ge4+ and Ga3+) in melts of the jadeitic composition NaAl(Si, Ge)2O6 and Na(Al, Ga)Si2O6 have been measured at pressures between 6 and 20 kbar at 1400°C. The rates of interdiffusion of Si4+-Ge4+ and Al3+-Ge3+ increase with increasing pressure at constant temperature. The results are consistent with the ion-dynamics computer simulations of Jadeite melt by Angellet al. (1982, 1983). The coefficient measured for the Si4+-Ge4+ interdiffusion is between 8 × 10?10 and 2.5 × 10?8cm2sec at 6 kbar, depending on the composition of the melt, whereas at 20 kbar it is between 7 × 10?9 and 2 × 10?7cm2sec. The effect of pressure is greater for more Si-rich compositions (i.e., closer to NaAlSi2O6 composition). The coefficient measured for the Al3+-Ga3+ inter- diffusion is between 9 × 10?10 and 3 × 10?9 cm2/sec at 6 kbar and between 3 × 10?9 and 1 × 10?8cm2sec at 20 kbar. The rate of increase in diffusivity with pressure of Al3+-Ga3+ (a factor of 3–4) is smaller than that of Si4+-Ge4+ (a factor of 7–17).The Si4+-Ge4+ interdiffusion in melts of Na2O · 4(Si, Ge)O2 composition has also been measured at 8 and 15 kbar for comparison. The effect of pressure on the diffusivity in this melt is significantly smaller than that for the jadeitic melts. The increase in diffusivity of the network-forming cations in jadeitic melts with increasing pressure may be related to the decrease in viscosity of the same melt. The present results, as well as the ion-dynamics simulations, suggest that the homogenization of partial melts and mixing of magmas would be more efficient at greater depths.  相似文献   

13.
In this study kamacite was experimentally grown in taenite grains of Fe-Ni-P alloys containing between 5 and 10 wt% Ni and 0 and 1.0 wt% P. Both isothermal heat treatments and non-isothermal heat treatments at cooling rates of 2 to 5°C/day were carried out. Analytical electron microscopy was used to examine the orientation and chemical composition of the kamacite and the surrounding taenite matrix. The kamacite so produced is spindle or rod shaped and has a Widmanstätten pattern orientation. The presence of heterogeneous sites such as phosphides is necessary for the nucleation of the intergranular kamacite. During kamacite growth both Ni and P partition between kamacite and taenite with chemical equilibrium at the two phase interface. The growth kinetics are limited by the diffusion of Ni in taenite. Additional diffusion experiments showed that the volume diffusion coefficient of Ni in taenite is raised by a factor of 10 at 750°C in the presence of only 0.15 wt% P.A numerical model to simulate the growth of kamacite in Fe-Ni-P alloys, based on our experimental results, was developed and applied to estimate the cooling rates of the iron meteorites. The cooling rates predicted by the new model are two orders of magnitude greater than those of previous studies. For example the cooling rates of chemical groups I, IIIAB and IVA are 400–4000°C/106years, 150–1400°C/ 106 years and 750–6000°C/106years respectively. Previous models gave 1–4°C/106 years, 1–10°C/106 years and 3–200°C/106 years. Such fast cooling rates can be interpreted to indicate that meteorite parent bodies need only be a few kilometers in diameter or that iron meteorites can be formed near the surface of larger asteroidal bodies.  相似文献   

14.
 Melting relations on the enstatite−diopside (En, Mg2Si2O6−Di, CaMgSi2O6) join, including the compositions of crystalline phases and melts coexisting along the solidi, were experimentally determined in the pressure range 70–224 kbar with a split-sphere anvil apparatus (USSA-2000). Melting is peritectic in enstatite-rich compositions at 70–124 kbar (1840–2100° C) and eutectic at higher pressures, while the diopside-rich clinopyroxene melts azeotropically at 70–165 kbar and up to 300° C lower temperatures than the eutectic. Orthopyroxene is replaced with enstatite-rich clinopyroxene at 120 kbar and 2090°C. First garnet with 17 mol% Di forms on the solidus at 158 kbar and 2100° C. Two garnets coexist on the solidus at 165–183 kbar and 2100° C, garnet coexists with CaSiO3 perovskite at 183–224 kbar (2100–2230° C) and two coexisting perovskites are stable at higher pressures. The melting curve of diopside was determined at 80–170 kbar; the slope becomes negative at 140 kbar and 2155° C. At 170 kbar and 2100° C, diopside with 96% Di breaks down to garnet with 89% Di and CaSiO3 perovskite. The new data were used to calculate an improved temperature-pressure phase diagram for the CMAS system, which can be useful for estimating the mineralogy of the Earth's upper mantle. Received: 15 October 1994 / Accepted: 15 October 1995  相似文献   

15.
The highly unequilibrated LL3 chondrites Krymka and Chainpur preserve a relatively unaltered record of formation in the solar nebula in the texture and chemistry of their opaque mineral assemblages. A moderate degree of diversity among these meteorites and Bishunpur is apparently associated with formation under differing conditions.Spheroidal kamacite, some Cr-bearing, is present in chondrule interiors. Fine-grained metal within the Fe-rich opaque matrix of Krymka consists exclusively of taenite and minor tetrataenite; kamacite occurs inside metal-sulfide nodules. These nodules are surrounded by an inner layer of FeO-rich, fine-grained silicate material (FeO/(FeO + MgO) > 80%) and an outer troilite-rich layer, and contain variable amounts of a hydrated Fe-oxide phase. It appears that the nodules were melted, often incompletely, possibly during the chondrule formation process. Some nodule metal is Si- and Cr-bearing, indicating little reaction with nebular H2O. Nodules are much less common in Chainpur than in Krymka and rare in Bishunpur.Most metal-poor chondrules in Krymka, Bishunpur and Chainpur appear to have formed from precursors that had acquired significant amounts of FeO as a result of reaction with the nebular gas down to low temperatures; metal-rich chondrules seem to have derived from aggregates of coarse, high-temperature Fe-poor silicates. Low Ni concentrations (34–41 mg/g) in chondrule kamacite may largely result from dilution by Fe reduced from the silicates during chondrule formation.The opaque silicate matrix of Krymka is considerably more oxidized than that of Bishunpur and Chainpur, it contains no kamacite and its composition is very uniform. This may either reflect the growth of silicate grains during incipient recrystallization in the matrices of Bishunpur and Chainpur or, more likely, a lower mean grain size of the Krymka matrix components, possibly indicating later formation of the Krymka parent planetesimal.  相似文献   

16.
Samples of single crystal calcic plagioclase (labradorite, An63, from Chihuahua, Mexico) have been shock-loaded to pressures up to 496 kbar. Optical and electron microscopic studies of the recovered samples show the effects of increasing shock pressures on this mineral. At pressures up to 287 kbar, the recovered specimens are still essentially crystalline, with only a trace amount of optically unresolvable glass present at 287 kbar. Samples recovered after shock-loading to pressures between 300 and 400 kbar are almost 100% diaplectic glasses; that is formed by shock transformation presumably in the solid-state. Above about 400 kbar, glasses with refractive indices similar to thermally fused glass were produced. The general behavior of the index of refraction with shock pressures agrees closely with previous work, however, the absence of planar features is striking. At pressures less than 300 kbar, the most prominent physical feature is the pervasive irregular fracturing caused by the shock crushing, although some (001) and (010) cleavages are observed. No fine-scale shock deformation structures, i.e. planar features, were noted in any of the specimens. We conclude, in contrast to previous studies of shocked rocks that planar features are not necessarily definitive shock indicators, in contrast to diaplectic glass (e.g., maskelynite) and high-pressure phases, but are rather likely indicative of the local heterogeneous dynamic stress experienced by plagioclase grains within shocked rocks.  相似文献   

17.
The stability of synthetic armalcolite of composition (Fe0.5Mg0.5Ti2O5 was studied as a function of total pressure up to 15 kbar and 1200°C and also as a function of oxygen fugacity (?O2) at 1200°C and 1 atm total pressure. The high pressure experiments were carried out in a piston-cylinder apparatus using silver-palladium containers. At 1200°C, armalcolite is stable as a single phase at 10 kbar. With increasing pressure, it breaks down (dTdP = 20°C/kbar), to rutile, a more magnesian armalcolite, and ilmenite solid solution. At 14 kbar, this three-phase assemblage gives way (dTdP = 30°C/kbar) to a two-phase assemblage of rutile plus ilmenite solid solution.A zirconian-armalcolite was synthesized and analyzed; 4 wt % ZrO2 appears to saturate armalcolite at 1200°C and 1 atm. The breakdown of Zr-armalcolite occurs at pressures of 1–2 kbar less than those required for the breakdown of Zr-free armalcolite. The zirconium partitions approximately equally between rutile and ilmenite phases.The stability of armalcolite as a function of ?O2 was determined thermogravimetrically at 1200°C and 1 atm by weighing sintered pellets in a controlled atmosphere furnace. Armalcolite, (Fe0.5Mg0.5)-Ti2O5, is stable over a range ?O2 from about 10?9.5to 10?10.5 atm. Below this range to at least 10?12.8 atm, ilmenite plus a reduced armalcolite are formed. These products were observed optically and by Mössbauer spectroscopy, and no metallic iron was detected; therefore, some of the titanium must have been reduced to Ti3+. This reduction may provide yet another mechanism to explain the common association of ilmenite rims around lunar armalcolites.  相似文献   

18.
A new technique is described in which the natural thermoluminescence (TL) in chondritic meteorites is normalized to the TL sensitivity of each meteorite. The relationship between the normalized TL level and a meteorite's terrestrial age is examined. The average normalized TL level measured in 45 ordinary chondrites of known terrestrial age decreases with increasing terrestrial age. There is a factor of ten variation in the TL levels of fresh falls which is primarily due to differences in orbital temperatures (Melcher, 1981). Nevertheless, it is possible to distinguish between recent falls and meteorites greater than a few hundred years old if they have been stored at the same temperature. The decay characteristics of the TL are studied by means of initial rise experiments and isothermal decay experiments at elevated temperatures. The TL levels of 11 Antarctic meteorites are compared with the results of 14C, 26Al and 36Cl studies of the terrestrial ages of these objects. There is a rough correlation between the low temperature TL levels and the radionuclide activities. Since the TL method is quick and requires as little as 10mg of material, it is most valuable as a rapid screening process to select samples appropriate for study by other techniques.  相似文献   

19.
Reported in this paper are structural and compositional data as the basis for the classification of 35 iron meteorites. The Xingjiang iron meteorite, previously labelled IIIAB, is reclassified as IIIE on the basis of its lower Ga/Ni and Ge/Ni ratios, its wider and swollen kamacite bands and the ubiquitous presence of haxonite, (Fe, Ni)23C. IIICD Dongling appears not to be a new meteorite, but to be paired with Nandan. Four Antarctic iron meteorites IAB Allan Hills A77250, A77263, A77289 and A77290 are classified as paired meteorites based on their similarities in structure, and the concentrations of Cr, Co, Ni, Cu, Ga, Ge, As, Sb, W, Re, Ir and Au. It is found that Cu shares certain properties with Ga and Ge, which makes it an excellent taxonomic parameter. BecauseK Cu is near unity, Cu displays a small range of variation within most magmatic groups (less than a factor of 2.2) and, because of its high volatility, large variations can be noticed among groups.  相似文献   

20.
Abundances of cosmic ray-produced noble gases and 26Al, including some new measurements, have been compiled for some 23 stone meteorites with exposure ages of < 3 × 106 yr. Concentrations of cosmogenic He, Ne, and Ar in these meteorites have been corrected for differences in target element abundances by normalization to L-chondrite chemistry. Combined noble gas measurements in depth samples of the Keyes and St. Séverin chondrites are utilized to derive equations for normalizing the production rates of cosmogenic 3He, 21Ne, and 38Ar in chondrites to an adopted ‘average’ shielding: 22Ne21Ne = 1.114. The measured unsaturated 26Al concentrations and the calculated equilibrium 26Al for these meteorites are combined to estimate exposure ages. These exposure ages are statistically compared with chemistry- and shielding-corrected concentrations of cosmogenic He, Ne, and Ar to derive absolute production rates for these nuclides. For L-chondrites, at ‘average’ shielding, these production rates (in 10?8 cm3/g 106 yr) are: 3He = 2.45,21Ne = 0.47, and 38Ar = 0.069, which are ~ 25% higher than production rates used in the past. From these production rates and relative chemical correction factors, production rates for other classes of stone meteorites are derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号