首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
本文以天湖东岩体为例,探讨中天山澄江期片麻状花岗岩的特征及其形成机制。岩相学、岩石化学、稀土元素、微量元素和同位素研究表明,天湖东岩体是岛弧钙碱性火山—沉积岩系经原地改造的产物,其Rb-Sr等时线年龄为707.7±4.9Ma。花岗岩形成作用的动力、热力来源可能与向塔里木大陆俯冲的天山岩石圈的拆沉有关。在造山过程晚期-期后的挤压向拉张转变过程中,拆沉导致的底侵和内侵引发了地壳岩石的脱水和熔融,所产生的熔体-流体上升并将较浅层次的变质岩改造为片麻状花岗岩。变质峰期以后形成的韧性剪切带为熔体-流体的运移提供了通道。  相似文献   

2.
东天山咸水泉片麻状花岗岩特征、年龄及成因   总被引:2,自引:7,他引:2  
野外地质关系及岩相学、地球化学、同位素和年代学研究表明,成水泉片麻状花岗岩是典型的原地改造型花岗岩,其原岩(即围岩)为糜棱岩化花岗闪长岩。本次锆石 LA-ICP-MS U-Pb 定年获得其原岩糜棱岩化花岗闪长岩~(206)Pb/~(238)U 加权平均年龄为369.9±5.6Ma(MSWD=36),片麻状花岗岩锆石核部年龄为367.9±5.4Ma(MSWD=2.2),此年龄与其原岩年龄在误差范围内一致,为片麻状花岗岩原地改造成因提供了年代学证据。此外,还获得其锆石热液增生边不一致线下交点年龄254±10Ma(MSWD=1.4),该年龄代表了片麻状花岗岩的形成时间。片糜状花岗岩在地球化学上继承了许多原岩的特征,同时又受到了深源流体-熔体的显著影响。将原岩糜棱岩化花岗闪长岩改造成片麻状花岗岩的流体-熔体具有富硅富钾和正ε_(Nd)(t)值的特征,表明这种流体-熔体可能主要地来自幔源岩浆内侵体,以及在内侵岩浆热量作用下的初生地壳岩石的变质和熔融。原岩糜棱岩化花岗闪长岩及其派生的片麻状花岗岩ε_(Nd)(t)值分别为 3.87及 3.05~ 6.09,表明糜棱岩化花岗闪长岩源自于年轻的陆壳,而片麻状花岗岩除继承了其原岩糜棱岩化花岗闪长岩的高ε_(Nd)(t)值这一特征外,还可能受到了深源流体-熔体中幔源组分的影响。咸水泉岩体的实例研究表明,原地改造型片麻状花岗岩不但可以形成于造山带的挤压-伸展转折阶段,还可以形成于碰撞后进一步伸展的时期,而经过强烈韧性剪切的岩石是转变为片麻状花岗岩的最有利原岩。东天山咸水泉、平顶山和天湖东等原地改造型片麻状花岗岩的形成均与内侵有关,因而片麻状花岗岩可被看作是内侵的重要产物。  相似文献   

3.
东天山黄山-镜儿泉地区位于康古尔弧后盆地闭合带东段,该盆地于石炭纪末因弧-陆碰撞而闭合.二叠纪时本区进入碰撞后伸展阶段,并形成了时代相近的、如下一组地质特征:1)20多个镁铁-超镁铁岩体(其中有一部分产有工业铜镍矿床);2)低压高温变质作用和混合岩化;3)形成深度较浅(8~12 km)的韧性剪切带;4)原地改造型片麻状花岗岩;5)块状过铝花岗岩;6)与过铝花岗岩有关的锂铍伟晶岩矿床.此外,黄山-镜儿泉位于一个被推测为巨大镁铁质岩体的区域布伽重力和航磁高值区的边部.该处在人工地震剖面上表现为一个波速为6.99 km/s的高速层,其厚约22 km.这些特征表明,该区在二叠纪时期是一个热穹窿,其面积约5000~8000 km18,而该热穹窿乃由地壳内部的一个幔源岩浆内侵体所引起.正是这个内侵体在黄山谎儿泉地区造成了地壳岩石的低压高温变质作用、混合岩化和部分熔融.在内侵体热量和流体的影响下,韧性剪切得以在壳内较浅层次发生.与内侵有关的变质-超变质作用所释放出的流体和熔体强烈改造韧性剪切和细粒化的地壳岩石,即形成了片麻状花岗岩.部分熔融所产生的过铝花岗岩形成了以锂、铍等稀有金属为特色的伟晶岩矿床.本区存在同时代的钙碱性-高钾钙碱性花岗岩,表明底侵与内侵曾在这里相伴发生.众多的锾铁-超镁铁岩是底侵和内侵岩浆在地壳浅部的显示.侵入岩的年龄数据似乎表明,本区直接来自幔源岩浆的镁铁-超镁铁岩就位最早,与底侵有关的钙碱性-高钾钙碱性花岗岩次之,而作为内侵产物的过铝花岗岩最晚.过铝花岗岩与镁铁-超镁铁岩之间的时差可能代表了从幔源岩浆结晶到由内侵产生的岩浆结晶之间的时差.康古尔断裂是一条超岩石圈断裂,在碰撞后伸展阶段为幔源岩浆提供了良好的上升通道,因此内侵很容易在此地此时发生.与底侵一样,内侵是壳幔相互作用和地壳垂向增生的重要方式,也是花岗岩浆生成的重要机制.区域重力和航磁异常、人工地震中部地壳高速层、时代相近的地表锾铁-超镁铁岩、低压高温变质岩、混合岩、浅层次韧性剪切带、原地改造成因片麻状花岗岩、异地过铝花岗岩和有关的稀有金属矿床,过铝花岗岩中的幔源岩石包体或幔源流体可以用作为内侵体的识辨标志.  相似文献   

4.
关于东天山花岗岩与陆壳垂向增生的若干认识   总被引:27,自引:25,他引:27  
东天山海西期主碰撞以后形成的花岗岩可分为三个阶段:挤压.伸展转折阶段(310~285Ma)、碰撞后伸展阶段(285-250Ma)和板内阶段(250-208Ma)。这三个阶段在岩石圈厚度、等温线形态和动力学状态等方面的差异,造成了不同阶段花岗岩岩体形态、岩石组合、岩相学和地球化学等方面的差异。除了底侵以外,幔源岩浆的内侵可以造成地壳不同层次岩石的部分熔融,也是花岗质岩浆生成的重要机制和地壳垂向增生的重要方式。东天山的片麻状花岗岩有一部分是变质交代成因的,这类花岗岩的形成与碰撞后幔源岩浆的底侵和内侵有关。变质峰期后韧性剪切带中构造细粒化的岩石是形成片麻状花岗岩的最有利部位。虽然这类花岗岩多数定位于地壳较深层次,但在内侵热量的影响下也可以定位于较浅层次。康古尔韧性剪切带的形成除了构造动力作用以外,还与地壳垂向增生,尤其是内侵有着密切联系,是构造动力、岩浆活动、变质作用和流体运移等复杂反馈的结果。博格达造山带碰撞前和碰撞后岩浆岩均具有正的εNd(t)值,表明该造山带地幔早在碰撞前就已亏损,而碰撞后的地幔则继承了碰撞前地幔的亏损特征。东天山在印支期有一次重要的地壳垂向增生事件,其岩浆活动和成矿作用与古特提期洋的俯冲和随后的碰撞密切有关,因此是东天山从中亚构造体制向特提斯体制转换的产物。  相似文献   

5.
文章对东天山大黑山地区眼球状花岗质片麻岩的特征及其成因进行探讨。通过野外地质调查和岩石学、矿物学、地球化学的研究,认为区内岩体为岛弧钙碱性火山-沉积岩系原地重熔改造的产物,这种原地花岗片麻岩的成岩过程主要为深源熔体和流体与原岩的相互作用,使原岩发生不同程度的部分熔融,因而其地球化学特征同时受到原岩和外来熔体-流体的控制。锆石U-Pb年龄为1 141 Ma,代表了重熔事件的时间。根据岩石地球化学及构造环境判别图解认为该岩体为碰撞造山后期-期后的产物。  相似文献   

6.
紫苏花岗岩成因及构造意义   总被引:2,自引:0,他引:2  
紫苏花岗岩主要以地壳增生作用、玄武岩底侵地壳熔融、构造增厚地壳熔融、地幔下陷增厚地壳熔融几种方式形成,但紫苏花岗岩化与深层次韧性构造变形具有密切的成因关系。无论是缺乏流体(脱水熔融)还是存在流体(富CO2)的热作用都表明,从地壳岩石形成紫苏花岗岩需要低H2O环境。熔融作用高级阶段导致紫苏花岗岩和紫苏花岗岩-花岗岩杂岩的产生,这些条件可能在玄武质岩浆侵入下地壳提供热源的带中最常见。A型紫苏花岗岩形成的重要因素是共生流体相的成分,通常与非造山和造山后构造背景相关。造山带紫苏花岗岩化与深层次韧性剪切变形,特别是与造山作用过程的减压抬升揭顶作用具有密切关系。  相似文献   

7.
饮马湾山岩体位于辽东半岛南部,侵位于辽南变质核杂岩之中。岩体主要由三种岩石组成,由外向里分别是片麻状花岗岩、斑状花岗岩和中细粒二长花岗岩类。其中片麻状花岗岩类主要岩石类型为石英二长闪长岩和花岗闪长岩,具有明显的片麻理构造,部分岩石具有明显的变形组构,其片麻理方向与变质核杂岩中拆离断层方向一致。似斑状花岗岩仅显示微弱片麻理,而细粒二长花岗岩则为明显的块状构造,表明该岩体为同伸展变形就位产物。锆石U-Pb同位素测定显示,该岩体不同岩相岩石具有大体一致的年龄,其形成于120~130Ma的早白垩世,而不是以前认为的三叠纪。该岩体岩石具有较大的地球化学成分变化范围,其中片麻状和似斑状岩石具有高Sr含量(>600ppm)、低Y、Yb含量、轻重稀土分馏强烈的特点;而细粒二长花岗岩则相对低Sr高Rb、低~(87)Rb/~(86)Sr比值。Sr-Nd同位素综合分析表明,饮马湾山花岗岩主要来源于下地壳,但较大的范围Mg~#、Sr、Nd同位素组成则表明可能有其它物质(如岩石圈地幔、新生地壳)参与成岩作用。上述研究充分地显示,我国东部早白垩世岩浆活动发育在伸展构造背景,并可能与岩石圈减薄存在密切的联系。  相似文献   

8.
罗定推覆构造及那蓬花岗岩均形成于海西-印支期。宏观和微观地质特征研究、岩组分析和三维有限应变分析表明,那蓬花岗岩及其围岩均经历了海西-印支期的逆冲推覆作用。那蓬花岗岩上段的片座状黑云母斜长花岗岩,形成于中深成岩环境,成岩时无明显侵位,成岩后又经受了同推覆期的强烈韧性剪切;下段的弱片麻状黑云母二长花岗岩,成岩时具有一定的垂向侵位特征,成岩后叠加了同推覆期的脆性剪切。  相似文献   

9.
花岗岩成因机制研究综述   总被引:7,自引:2,他引:7  
花岗岩的形成与原岩成分及热源有关,且受流体的影响。形成机制主要有俯冲作用、大陆地壳的增厚、板底垫托、拆沉作用、板块破碎、地幔柱、减压熔融作用、助熔作用等。在变形、浮力、重力等作用下,熔体从母岩中分离,分离受粘度、流体、变形、渗透性等因素的影响。花岗质岩浆的侵位机制虽然较多,但主要是剪切带及断裂为其提供了上升、侵位的通道和空间。  相似文献   

10.
法库地区十间房超单元花岗岩岩石成因及侵位机制探讨   总被引:2,自引:0,他引:2  
法库地区十间房片麻状二长花岗岩过去被认为是太古代或元古代混合岩和混合花岗岩,1:5万地质调查表明,该花岗岩是与印支一海西湖韧性剪切构造同期侵位的花岗岩,同位素年龄测试属中三叠世,该岩体属复式岩体,是上部地宙沉积物质局部熔融的花岗岩浆沿剪切带被动侵位的“S”型大型岩床。  相似文献   

11.
1 Introduction Voluminous literature has resulted from study of the geology and tectonic evironments of post-orogenic granitoids in eastern Tianshan (He et al., 1995; Han et al., 1997; Gu et al., 1999, 2001; Li et al., 2003; Chen et al., 2004). Previous contributions (Hu et al., 1997; Li et al., 2003) indicate that major events of continental collision in northern Xinjiang occurred around 300 Ma. Then, the tectonics converted from compression to extension, resulting in the uplifting of th…  相似文献   

12.
北山造山带位于中亚造山系中段,带内各古老陆块的前寒武纪演化历史是了解北山造山带形成和演化的关键问题.本文选取北山北带哈珠地区片麻状花岗岩进行了锆石U-Pb年代学和地球化学分析.结果显示哈珠地区片麻状花岗岩形成于885±4 Ma,首次揭示了北山北带存在新元古代岩浆活动.哈珠片麻状花岗岩主量元素具有高SiO2、低CaO、高K2O+Na2O的特征,铝饱和指数A/CNK>1,属过铝质高钾钙碱性花岗岩.稀土元素球粒陨石标准化曲线呈现出轻稀土富集,重稀土亏损,铕强烈负异常的右倾海燕型;微量元素显示岩石富集Rb、K、Th、U等大离子亲石元素,亏损Nb、Sr、P、Ti等高场强元素.岩石成因分析表明其为S型花岗岩,岩浆来源于变质杂砂岩部分熔融的源区,且初始熔融温度较高(777~798℃).构造环境判别图解显示其形成于碰撞后由挤压转向伸展的背景,为大陆碰撞的产物.通过与北山南带和东天山地块前寒武纪资料的对比,结果表明北山南带、北山北带和天山造山带中各古老陆块在前寒武纪可能具有一致的演化历史,其共同参与了新元古代Rodinia超大陆的聚合,构成了Rodinia超大陆的一部分.哈珠地区新元古代岩浆事件即为Rodinia超大陆聚合在北山地区的响应.   相似文献   

13.
The basement of the Zheltav sialic massif (Southern Kazakhstan) is composed of different metamorphic rocks united into the Anrakhai Complex. In the southeastern part of the massif, these rocks form a large antiform with the core represented by amphibole and clinopyroxene gneissic granite varieties. By their chemical composition, dominant amphibole (hastingsite) gneissic granites correspond to subalkaline granites, while their petroand geochemical properties make them close to A-type granites. The U–Pb geochronological study of accessory zircons yielded an age of 1841 ± 6 Ma, which corresponds to the crystallization age of melts parental for protoliths of amphibole gneissic granites of the Zheltav Massif. Thus, the structural–geological and geochronological data make it possible to define the Paleoproterozoic (Staterian) stage of anorogenic magmatism in the Precambrian history of the Zheltav Massif. The combined Sm–Nd isotopic—geochronological data and age estimates obtained for detrital zircons indicate the significant role of the Paleoproterozoic tectono-magmatic stage in the formation of the Precambrian continental crust of sialic massifs in Kazakhstan and northern Tien Shan.  相似文献   

14.
在天山造山带觉罗塔格山系东段的中天山地块内,新识别出一套侵位于长城系星星峡群变质岩中的片麻状花岗质岩体,岩石组合为片麻状闪长岩+片麻状花岗闪长岩+片麻状二长花岗岩+片麻状钾长花岗岩,锆石SHRIM PU-Pb测年表明这套侵入岩的结晶年龄为(1 453±15)~(1 458±40)Ma(207Pb/206Pb表面年龄),是中元古代晚期的产物。岩石学及地球化学特征显示为高钾钙碱性系列,具I型花岗岩组合特征,形成于板块汇聚的环境。这套花岗质侵入岩的厘定,对于可能存在于元古宙的天山洋的闭合事件,从岩浆作用上提供了重要信息,同时对中天山星星峡群的地层时代提供了一个很好的上限。另外,还发现了一颗形成年龄为(2 991±22)Ma的残留锆石,指示该区可能存在太古宙的古老基底。  相似文献   

15.
The Tormes dome consists of S-type granites that intruded into Ordovician augen gneisses and Neoproterozoic–Lower Cambrian metapelites/metagreywackes at different extents of migmatization. S-type granites are mainly equigranular two-mica granites, occurring as: (1) enclave-laden subvertical feeder dykes, (2) small external sill-like bodies with size and shape relations indicative for self-similar pluton growth, and (3) as large pluton bodies, emplaced at higher levels than the external ones. These magmas were highly mobile as it is inferred from the high contents of fluxing components, the disintegration and alignment of pelitic xenoliths in feeder dykes and at the bottom of some sill-like bodies. Field relations relate this 311?Ma magmatism (U–Pb monazite) to the regional shearing of the D3 Variscan event. Partial melting modeling and the relatively high estimated liquidus temperatures indicate biotite-dehydration partial melting (800–840°C and 400–650?MPa) rather than water-fluxed melting, implying that there was no partial melting triggered by externally derived fluids in the shear zones. Instead, the subvertical shear zones favored extraction of melts that formed during the regional migmatization event around 320?Ma. Nd isotope variation among the granites might reflect disequilibrium partial melting or different protoliths. Mass-balance and trace element partial melting modeling strongly suggest two kinds of fertile crustal protoliths: augen gneisses and metapelites. Slight compositional variation among the leucogranites does not reflect different extent of protolith melting but is related to a small amount of fractional crystallization (<13% for the equigranular granites), which is generally more pronounced in shallower batholitic leucogranites than in the small and homogeneous sill-like bodies. The lower extent of fractional crystallization and the higher-pressure emplacement conditions of the sill-like bodies support a more restricted movement through the crust than for batholitic leucogranites.  相似文献   

16.
The Archean granites exposed in the Mesorchean Rio Maria granite-greenstone terrane (RMGGT), southeastern Amazonian craton can be divided into three groups on the basis of petrographic and geochemical data. (1) Potassic leucogranites (Xinguara and Mata Surrão granites), composed dominantly of biotite monzogranites that have high SiO2, K2O, and Rb contents and show fractionated REE patterns with moderate to pronounced negative Eu anomalies. These granites share many features with the low-Ca granite group of the Yilgarn craton and CA2-type of Archean calc-alkaline granites. These granites result from the partial melting of rocks similar to the older TTG of the RMGGT. (2) Leucogranodiorite-granite group (Guarantã suite, Grotão granodiorite, and similar rocks), which is composed of Ba- and Sr-rich rocks which display fractionated REE patterns without significant Eu anomalies and show geochemical affinity with the high-Ca granite group or Transitional TTG of the Yilgarn craton and the CA1-type of Archean calc-alkaline granites. These rocks appear to have been originated from mixing between a Ba- and Sr-enriched granite magma and trondhjemitic liquids or alternatively product of interaction between fluids enriched in K, Sr, and Ba, derived from a metasomatized mantle with older TTG rocks. (3) Amphibole-biotite monzogranites (Rancho de Deus granite) associated with sanukitoid suites. These granites were probably generated by fractional crystallization and differentiation of sanukitoid magmas enriched in Ba and Sr.The emplacement of the granites of the RMGGT occurred during the Mesoarchean (2.87–2.86 Ga). They are approximately coeval with the sanukitoid suites (∼2.87 Ga) and post-dated the main timing of TTG suites formation (2.98–2.92 Ga). The crust of Rio Maria was probably still quite warm at the time when the granite magmas were produced. In these conditions, the underplating in the lower crust of large volumes of sanukitoid magmas may have also contributed with heat inducing the partial melting of crustal protoliths and opening the possibility of complex interactions between different kinds of magmas.  相似文献   

17.
平阳片麻状奥长花岗岩位于河北阜平县平阳镇一带,围岩为包括混合岩和片麻岩在内的变质表壳岩,层位上相当于阜平群的下部,产阳地区空间上存在高级变质作用、混合岩化作用和深熔作用的“三位一体”,因而由变质岩到花岗岩显示了系统的岩石学、岩相学以及产出关系上的渐变过渡特点,花岗岩中的变质表壳岩以及部分包体不仅在岩性上可和外围的同类岩石对比,而且也显示了明显的深熔作用改造的痕迹,有较为充分的语气表明平阳片麻状花岗岩总体上是原地深熔的奥长花岗岩,局部发生了一定尺度的位移。平阳地区变质表壳岩的深熔作用经历了以流体活动占主导地位、以矿物的溶解和重结晶为主要特点的早期阶段,演变为以部分矿物的熔融占主导地位的高级阶段,平阳片麻状奥长花岗岩的形成代表了阜平岩群变质表壳岩深熔作用的高级演化阶段,对于客观认识阜平岩群的组成和地质演化具有重大意义。  相似文献   

18.
The Proterozoic terrane of the Black Hills, South Dakota, includes the composite Harney Peak leucogranite and associated pegmatites that were emplaced into metamorphosed pelites and graywackes. Available dates indicate that granite generation post-dated regional metamorphism and deformation that have been attributed to collision of the Wyoming and Superior cratons at 1760 Ma. Previous radiogenic and stable isotope work indicates that the exposed metasedimentary rocks are equivalent to sources of the leucogranites. In this study, whole rock and mineral compositions of the metasedimentary rocks were used to calculate the likely average residue mineralogies and melt fractions that would be generated by muscovite dehydration melting of the rocks. These were then used to model observed trace element compositions of the granites using published mineral/melt distribution coefficients. Model trace element melt compositions using pelitic and graywacke protoliths yield similar results.

The models reproduce well the observed depletion of transition metals and Ba in the granites relative to metasedimentary protoliths. The depletion is due mainly to high proportion of biotite with variable amounts of K-feldspar in the model residue. Sr is also depleted in the granites compared to source rocks, but to a lesser relative extent than Ba. This is because of the low biotite/melt distribution coefficient for Sr and because high proportion of plagioclase in the residue is compensated by high Sr concentrations in protoliths. Rubidium, Cs and Ta behaved as slightly compatible to incompatible elements, and therefore, were not strongly fractionated during melting. Of the considered elements, only B appears to have been highly incompatible relative to residue during melting. The protoliths had sufficient B to allow tourmaline crystallization in those parts of the Harney Peak Granite in which Ti concentration was sufficiently low not to enhance crystallization of biotite.

The reproducibility of observed trace element concentrations in the Harney Peak Granite by the models supports the often made proposition that metapelites and metagraywackes are common sources for leucogranites. This argues against mass input from the mantle into metagraywacke and metapelitic crustal sources or melting of amphibolites to generate the post-collisional Harney Peak and other similar peraluminous granite suites.  相似文献   


19.
衡山复式花岗岩由南岳岩体和白石峰岩体组成,形成于西缘大断裂的剪切阶段,并与韧性变形变质岩、断裂混合岩构成了紧密共生的(两期)三位一体组合。研究表明,白石峰岩体是由早期眼球状混合岩高程度熔融而成的,南岳岩体则是高变质相韧性断层岩重熔的产物,二者均属断裂重熔。重熔过程是一种流体开放体系,重熔作用沿断裂呈线带状发生,与深部高温热流体沿断裂带的注入、聚集有关。断裂重熔是地洼花岗岩的形成方式之一,其实质是地洼块断(造山作用)重熔。  相似文献   

20.
南岭地区新元古代花岗岩表现出了一定的共性:片麻状构造和过铝质特征.南岭西段岩体可归属于S型花岗岩,主要源自基底变沉积岩石的部分熔融,成岩过程中有少量幔源组分的参与;东段岩体为铝质A型花岗岩,源自还原性的长英质火成岩,有变沉积物的参与.这些花岗岩可能形成于“短期的地幔柱活动+长时限的俯冲”的构造背景中.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号