首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Interstitial brines from the Temblor and the McAdams sandstones at Kettleman are essentially NaCaCl solutions with subsidiary SO4 and the total salinities are roughly 30,000 and 10,000 ppm, respectively. Activities of H+ and all other aqueous species have been calculated for 100°C (the in situ temperatures of the brines) from chemical analyses of the brines and 100-degree dissociation constants alone. The brine alkalinities measured at surface temperature appear to be too low when comparing them against alkalinities calculated from the measured pHs of the brines. Consequently, alkalinities calculated for 25°C were substituted for the measured ones in the calculation of the distribution of aqueous species at 100°C.Although the brines are nearly neutral (pH 6·3–d7·9) at surface temperature, their pHs calculated for 100°C range from 8·1 to 8·7 (± 0·35). These pHs and the 100-degree activities of the other aqueous species permit graphic representation of the brines on activity diagrams. Most brines fall at or near the boundaries between the stability fields of quartz, albite, microcline, mica, montmorillonite and anhydrite. Because these minerals are present as authigenic phases in the sandstones, the calculations suggest that the minerals are in stable equilibrium with the brines. By contrast, the calculations suggest that the brines are supersaturated by about three orders of magnitude with respect to calcite, also present in the sandstones. One possible explanation for this is kinetic inhibition of calcite crystallization by Mg2+ and SO42? ions in the brines. Phosphatic pellets, glauconite and probably dolomite, pyrite and some kaolinite are early authigenic minerals preserved in the sandstones and they are not now in equilibrium with the brines, which are supersaturated with respect to dolomite and pyrite. The chemical relationship between the brines and the diagenetic minerals laumontite and sphene, also present in the Temblor Formation, cannot be assessed reliably until the thermodynamic properties of laumontite and of aqueous titanium complexes are well known.  相似文献   

2.
Formation water samples from deep drillings in southern Israel fall into three regional groups, each of which shows distinct chemical and isotopic characteristics. Waters from the Mediterranean coastal plain appear to be of marine lagoonal origin; some of these brines are associated with occurrences of oil. In the mountain region the top part of the sedimentary sequence has been flushed by fresher waters, apparently during Pleistocene time. In Jurassic and deeper-lying formations one encounters concentrated brines of seawater origin, with low Na/Ca ratios, which have undergone a process of ultrafiltration. In the Rift Valley proper, magnesium-rich brines have invaded the deeper formations, and are evidently of continental lake origin.The absence of oil occurrences in association with the CaCl2 brines of the inland locations is interpreted as being due mainly to loss of oil as a result of the tectonic events associated with the formation of the Jordan Rift Valley.  相似文献   

3.
In the Western Canadian Sedimentary Basin, the petroleum industry handles two geochemically distinctive brines that are traceable in the environment: formation brines extracted along with hydrocarbons from the basin, and salt-dissolution brines, produced by dissolving deep halite formations to create caverns for petroleum product storage. The concentrations of the conservative ions chloride (Cl) and bromide (Br) in many formation brines plot closely to the seawater evaporation trajectory of previous studies. These brines contain Cl/Br mass ratios of around 300, while salt-dissolution brines are relatively Br depleted, having Cl/Br mass ratios in excess of 20,000. An oilfield site in central Alberta had experienced nearby releases of both salt-dissolution and formation brines. Geochemical mixing trends were defined by theoretically mixing samples of local salt-dissolution and formation brine sources with background shallow groundwater. Most site monitoring wells and local surface water samples plotted directly on a salt-dissolution brine dilution trend, while results from four monitoring wells, all located directly downgradient of formation brine spills, suggested the mixing of formation brines into shallow groundwater. This work indicates that there is a large-scale salt-dissolution brine plume beneath the site and reinforces the use of Cl and Br concentrations and mass ratios as environmental tracers.  相似文献   

4.
Twenty-four brine samples from the Heletz-Kokhav oilfield, Israel, have been analyzed for chemical composition and Li isotope ratios. The chemical composition of the brines, together with geological evidence, suggests derivation from (Messinian) seawater by evaporation that proceeded well into the gypsum stability field but failed to reach the stage of halite crystallization. The present salinity of the samples (18-47 g Cl/L) was achieved by dilution of the original evaporitic brine by local fresh waters. Like brines from other sedimentary basins, the Li/Cl ratios in the Heletz-Kokhav samples show a prominent Li enrichment (five-fold to eight-fold) relative to modern seawater. The isotopic ratios of Li, expressed in the δ 6Li notation, vary from −26.3 to −17.9‰, all values being significantly higher than that of modern seawater (−32‰) irrespective of their corresponding Li concentration (1.0-2.3 mg/L). The isotopic composition of Li and the Li/Cl ratio in the oilfield brines were acquired in two stages: (a) The original evaporated seawater gained isotopically light Li during the diagenetic interaction between the interstitial Messinian brine and the basin sediments. A parent brine with an elevated Li/Cl ratio was formed. The brine was later diluted in the oilfields. (b) The δ 6Li values of the final brines were determined during epigenetic interaction with the Heletz-Kokhav aquifer rocks. At the same time, the Li/Cl ratio inherited from stage (a) remained largely unchanged. This work represents the first use of lithium isotopic composition to elucidate the origin and evolution of formation waters in sedimentary basins.  相似文献   

5.
The chemical and isotopic compositions of groundwaters in the crystalline rocks of the Canadian Shield reflect different degrees of rock-water interactions. The chemistry of the shallow, geochemically immature groundwaters and especially of the major cations is controlled by local rock compositions, whereby dissolution reactions dominate. Conservative constituents, such as chloride and bromide, however, are not entirely a result of such reactions but appear to be readily added from leachable salts during the initial stages of the geochemical evolution of these waters. Their concentration changes little as major cations increase, until concentrations of Total Dissolved Solids (TDS) reach 3000 to 5000 mg 1?1. The isotopic composition of these shallow waters reflects local, present day precipitations.In contrast to the shallow groundwaters, the isotopic and chemical compositions of the deep, saline waters and brines are determined by extensive, low-temperature rock-water interactions. This is documented in major ion chemistries, 18O contents and strontium isotopic compositions. These data indicate that the deep brines have been contained in hydrologically isolated “pockets”. The almost total loss of primary compositions make discussions on the origin of these brines very speculative. However, all brines from across the Canadian Shield have a very similar chemical composition, which probably reflects a common geochemical history. The concentrations of some major and most minor elements in these fluids appear to be governed by reactions with secondary mineral assemblages.  相似文献   

6.
Highly concentrated NaCl brines are important geothermal fluids; chloride complexation of metals in such brines increases the solubility of minerals and plays a fundamental role in the genesis of hydrothermal ore deposits. There is experimental evidence that the molecular nature of the NaCl–water system changes over the pressure–temperature range of the Earth's crust. A transition of concentrated NaCl–H2O brines to a "hydrous molten salt" at high P and T has been argued to stabilize an aqueous fluid phase in the deep crust.  相似文献   

7.
Previous studies have shown that the ascending, oxidizing brines play a very important role in Kupferschiefer mineralization. Fractures could be the pathway of the brines. In order to clarify the influences of the brines on bulk organic matter, aromatic hydrocarbons and Kupferschiefer mineralization, one veinlet Kupferschiefer profile from the Lubin mine, southwestern Poland was studied with the microscopic, geochemical and Rock-Eval methods. The microscopic results indicate that organic matter of the veinlet sample consists dominantly of bitumen. Its extract content is higher than in other samples. The dominant aromatic compounds are naphthalene and alkylated naphthalenes (Na-PAH), which have migrated into the veinlet sample from other sediments. The content of phenanthrene and its methylated derivatives (Ph-PAH) is much lower than in other samples. The reason may be due to their heavier mass than Na-PAH. It is more difficult for Ph-PAH to migrate. The Na-PAH was probably removed from the shale by dist  相似文献   

8.
The geochemistry of 5 salt springs in the southwestern Mamfe Basin was investigated in order to infer the mineral content of their source and to relate the genesis of the springs to the local geology. Field observations revealed that, they are cold springs (23–28 °C), and are composed of secondary brines that are neutral to alkaline with pH values ranging from 7 to 8.7. Results of chemical analysis show that the springs contain major ions that form evaporite minerals, as well as chalcophile elements. The dominant cation is Na+ (>96%), and the dominant anion is Cl (>99%). Based on correlation coefficients between ions that form evaporites and field occurrence of efflorescences of halite, it is suggested that the ancient evaporites in the Mamfe Basin are composed entirely of carbonate and chloride salts. Meteoric and convective fluid flow processes are responsible for the dissolution of ancient evaporites and subsequent migration of brines to the surface from underground. The brines migrate through permeable strata with migration pathways resulting from a combination of fracture porosity created by post––Cretaceous tectonism and intergranular porosity enhanced by the chemically aggressive migrating brines.  相似文献   

9.
A comparative analysis of the chemical composition of underground brines in sections of the Tunguska and Olenek artesian basins is accomplished. The paper examines the equilibrium degree of brines with host rock minerals: carbonate (dolomite, calcite, magnesite, strontianite), sulfate (gypsum and celestine), chloride (halite, sylvite) and some aluminosilicates (anorthite, albite, illite, montmorillonites, kaolinite, muscovite, and others). Origin of brines is discussed based on results of the calculation of genetic coefficients. The paper presents a schematic generalization of data on the chemical composition, mineral concentration, genesis, and abundance of brines in the studied subjects.  相似文献   

10.
沉积盆地深层地下卤水资源量评价之若干探讨   总被引:1,自引:0,他引:1  
沉积盆地深层地下卤水(包括富钾卤水)处于深埋封闭和无补给状态; 卤水具有很高的测压水头, 天然条件下处于停滞状态, 不同储卤构造之间无水力联系; 具有多个平行叠置的储卤层, 不同储卤层之间无水力联系; 储卤层空隙性和渗透性差, 卤水主要富集于背斜、裂隙带和断层裂隙带; 卤水水化学和物理特性在短期内比较稳定; 卤水储存资源量较大, 在开采条件下卤水资源逐渐减少趋于衰竭。本文在分析总结沉积盆地深层地下卤水资源量评价的现状和卤水特征的基础上, 讨论和阐明深层地下卤水资源评价中的若干问题, 包括深层卤水资源量的类型和评价方法的选取、储卤层计算范围和边界的概化处理、渗透性分区和卤水密度影响的处理、测压水头的换算、钻井预测水头降深的确定等, 目的在于提高深层地下卤水资源量评价计算的精度。  相似文献   

11.
《Precambrian Research》2006,144(1-2):39-51
Data on chemical composition of brines in primary inclusions of marine halites and on mineralogy of marine evaporites and carbonates lead to the conclusion that during the Phanerozoic two long-term cycles of chemical composition of seawater existed. During each of those cycles, seawater dominantly a Na-K-Mg-Ca-Cl (Ca-rich) type changed to a Na-K-Mg-Cl-SO4 (SO4-rich) type. Recrystallised halite from the uppermost Neoproterozoic Salt Range Formation (ca. 545 Ma) in Pakistan, contains solitary inclusions indicating SO4-rich brines. This supports the concept derived from the study on primary fluid inclusions from the Neoproterozoic Ara Formation of Oman; SO4-rich seawater existed during latest Neoproterozoic time (ca. 545 Ma). In contrast, samples of recrystallised halite from the Bitter Springs Formation (840–830 Ma) in Australia contain inclusion brines that are entirely Ca-rich, indicating that basin brines and seawater were Ca-rich during deposition of central Australian evaporites. These combined data supported by the timing of aragonite and calcite seas suggest that during the Proterozoic, significant oscillations of the chemical composition of marine brines, and seawater, occurred, which are similar to those known to exist during the Phanerozoic. It is suggested that Ca-rich seawater dominated for a substantial period of time (more than 200 Ma), at 650 Ma, this was replaced by SO4-rich seawater, finally returning to Ca-rich seawater at 530 Ma.  相似文献   

12.
Major element chemistry, rare-earth element distribution, and H and O isotopes are conjointly used to study the sources of salinisation and interaquifer flow of saline groundwater in the North East German Basin. Chemical analyses from hydrocarbon exploration campaigns showed evidence of the existence of two different groups of brines: halite and halite Ca–Cl brines. Residual brines and leachates are identified by Br?/Cl? ratios. Most of the brines are dissolution brines of Permian evaporites. New analyses show that the pattern of rare-earth elements and yttrium (REY) are closely linked to H and O isotope distribution. Thermal brines from deep wells and artesian wells indicate isotopically evaporated brines, which chemically interacted with their aquifer environment. Isotopes and rare-earth element patterns prove that cross flow exists, especially in the post-Rupelian aquifer. However, even at depths exceeding 2,000 m, interaquifer flow takes place. The rare-earth element pattern and H and O isotopes identify locally ascending brines. A large-scale lateral groundwater flow has to be assumed because all pre-Rupelian aquifer systems to a depth of at least 500 m are isotopically characterised by Recent or Pleistocene recharge conditions.  相似文献   

13.
中国华南吉泰盆地在白垩纪?古近纪发育大量蒸发岩,其中含富锂卤水矿床,由于盆地深部构造特征认识不清,导致富锂卤水矿勘查评价明显滞后.基于盆地东北部泰和坳陷二维地震数据和钻孔资料,经过精细保幅处理和综合构造解释,总结了含富锂卤水矿断陷盆地的深部构造特征.地震剖面和构造属性表明,盆地深部发育错断白垩系的NE-SW走向、NW倾...  相似文献   

14.
A study of the influences of the basin brines on hydrocarbon generation of the Kupferschiefer in southwestern Poland has been carried out.The samples from the Konrad and Polkowics mines were analyzed by orgainc geochemical,microscopic and FTIR methods.The results indicate that organic matter of Kupferschiefer tends to decrease with the ascending,oxidizing brines,In the Konrad profile,the Kupferschiefer was strongly oxidized.The extract yields were depleted up to 50mg Ext/g Corg.Gas chromatography(GC) and gas chromatography-mass spctrometry(GC/MS) data indicate that the depletion occureed predominantly in saturated hydrocarbon compounds.The identified n-alkanes in smpale KD1 were depleted at least to 5000μg/g Corg.The aromatic compounds show a fidderent trend of variation.The concentrations of phenanthrene alkylphenanthrenes(Ph-PAH) and naphthalene alkylnaphthalenes(Na-PAH) show a decrease,whereas sulfur polyaromatic hydrocarbons(S-PAH)and oxygen polyaromatic hydrocarbons(O-PAH) show an incrase under the influences of oxidizing brines,In the Polkowice profile,organic matter under the influences of oxidizing fluids shows a simlar trend of varation as in the Konrad mine.Analyses of polar compounds shed light on the oxidation processes at the molecule level.The dominant products of oxidation are aliphatic acid.alcohol and ester.FTIR results indicate that the oxidation of organic matter led to a decrease in aliphatic CH3 and an increase in C-O,C=O bands.  相似文献   

15.
Ag-ores occur in a specific zone of the Bou Azzer Co–As deposit in the Precambrian basement of the Anti-Atlas belt (Morocco), especially in highly microfractured quartz-depleted diorite. They formed after the main Co–As stage of mineralization, but both ore stages (Co–As and Ag-ore) appear linked to similar immiscible fluids: an hyper-saline Na–Ca brine (5.5–22 wt.%. eq. NaCl and 13.5–18.5 wt.% eq. CaCl2, with Na/Ca ranging from 0.4 to 1.2 during Ag-mineralization) occurring as L + V ± halite fluid inclusions and CH4–(N2) gas dominated fluids. Pressure–temperature estimates for the Ag-stage range from 40 to 80 MPa and 150 to 200 °C e.g. at a temperature slightly lower than that of the preceding Co–As stage (200–220 °C).Chlorinity, cation (Na/Ca ca. 2.2) and halogen ratios (Cl/Br from 300 to 360) are typical of deep basinal brines, especially of surface-evaporated brines that have exceeded halite saturation. The primary brines were modified by fluid–rock interaction during burial and migration through the basement. Ag-deposition was probably favoured by dilution and cooling due to the mixing of brines with less saline fluids. Similarities between the Ag-brines from Bou Azzer, Zgounder and Imiter suggest a regional scale circulation of basinal brines during extension probably later than the Triassic, during the early stages of rifting of the Atlantic.  相似文献   

16.
Cation and anion concentrations and oxygen and hydrogen isotopic ratios of brines in the Asmari Formation (Oligocene–early Miocene) from the Marun oil field of southwest Iran were measured to identify the origin of these brines (e.g. salt dissolution vs. seawater evaporation) as well as the involvement of water–rock reaction processes in their evolution. Marun brines are characterized by having higher concentrations of calcium (11 000–20 000 mg/L), chlorine (120 000–160 000 mg/L) and bromide (600–1000 mg/L) compared to modern seawater. Samples are also enriched in 18O relative to seawater, fall to the right of the Global Meteoric Water Line and local rain water, and plot close to the halite brine trajectory on the δD versus δ18O diagram. Geochemical characteristics of Marun brines are inconsistent with a meteoric origin, but instead correspond to residual evaporated seawater modified by water–rock interaction, most significantly dolomitization. In addition, anhydrite precipitation or sulphate reduction appears to be important in chemical modification of the Marun brines, as indicated by lower sulphate contents relative to evaporated seawater. Extensive dolomitization, the presence of anhydrite nodules and high salinity fluid inclusions in the upper parts of the Asmari Formation fit a model whereby the Marun brines likely originated from the seepage reflux of concentrated seawater during the deposition of the overlying Gachsaran Formation evaporites in the Miocene. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
One of the most important processes leading to the deterioration of groundwater in Israel is the migration of brines penetrating into fresh groundwater bodies. Such manifestations occur at an ever increasing frequency and in unexpected locations. The hydrochemistry of these processes reveals the possibility of involvement of several types of brines. The distribution and the hydrostratigraphic sequence of the brines is correlated with the evolution of paleoenvironments during the geological history of the region. Several major phases of brine and evaporite formation are discerned: The earliest phase occurred in the Paleozoic–Early Mesozoic (Yam Suf–Ramon–Lower Arad Groups) during which brines were generated by dissolution of evaporites. The second major phase in the evolution of brines occurred during the Mio-Pliocene. In the western areas of the country, the brines were generated mainly by the post-Messinian ingression of seawater which dissolved evaporites and reacted with the invaded rock sequence. In the Rift and in adjoining areas, the dominant brine was the final product of the evaporation of an inland marine lagoon (the Sdom Sea) which penetrated into an environment prevalently built of previously formed rocks and, particularly of clastic beds filling at that time, the nascent rift. From this evaporating lagoon precipitated evaporates, the dissolution of which produced brines. A further step in the hydrochemical evolution in the Rift was the creation of the Lisan Lake, which became progressively saline, probably as the result of dissolution and flushing of salts derived from the previous hypersaline Sdom Sea. The contemporary phase in the Rift is characterized by an ongoing process of flushing-out of residual brines and dissolution of evaporites by currently recharged fresh water. Throughout the geological history of the area, four major periods of flushing stand out. These occurred between the Triassic and the Jurassic, at the end of the Jurassic, as the result of the Oligocene uplift and as part of the Messinian event. As the result of these processes, the rock-sequences were flushed off previously formed brines and evaporites and were “made ready” for following generations of liquids.  相似文献   

18.
Salts produced using brines of the Mamfe Basin were analysed by XRD for their mineral composition and ICP-MS for minor element composition. Halite (NaCl) and dolomite (CaMg (CO3)2) constitute the major minerals with minor impurities from Mo and Cd in the chlorides and Sc and Cu in the carbonates. The mineral composition is evidence of dissolution of evaporites with parent brine of marine origin. Other elements analysed are suggested to be adsorbed to these salts and result from water–rock interaction. The elements partitioned based on their correlation to other elements are suggested to derive from sulphates including barite for Ba, sulphides for Pb, Zn, silicates for Zr, Mn and oxides for V, Cr. The electrical conductance of the brines is related to the salt yield by the equation; M = 9 × 10− 4E− 3.27, and it can be used to estimate salt yield throughout the year. Over 1200 tons of salt consisting dominantly of grade I halite are lost annually as brines across the basin. Purification is required for some minor elements including Ba, Pb, Hg and Cd for use as a condiment. A genetic relation between the parent brine, sulphide minerals and organic matter-rich sediments is proposed.  相似文献   

19.
Ore mineralization is formed by postsedimentary (concentrated by evaporation to stage SW2) chloride brines metamorphosed in hydrogeochemical systems that are closed with respect to CO2, evolve according to “calcic” trend, and have high 2mCa2+ > mHCO 3 ? + 2mCO 3 2? ratios. In these situations at high R/W ratios (10–100) and temperatures (100–200°C), these brines concentrate ore elements (Zn, Pb, Fe, and Mn) that are geochemical analogues of Ca. The sulfide precipitation of these elements occurs under the effect of carbonate rocks at the abiogenic sulfate reduction of S(VI) of the original brines at low Eh values, which are created in carbonate rocks at higher (>100°C) temperatures. This origin of sulfide mineralization is intensified at decreasing R/W ratios during the dilution of the original brines by elision waters and an increase in the temperature. The hydrodynamics of these ore-forming brines is controlled by the elision hydrogeological regime, which is defined in hydrogeological structures by the geostatic pressure. The brines migrate into the zones of geochemical barriers during the relaxation of hydrogeological structures toward their equilibrium hydrostatic state. Hydrogeological structures, optimal for the precipitation of ore mineralization, are hydrodynamically active and able to maintain a steady (during 105-106 years) inflow of ore-forming brines into the zones of geochemical barriers and the maximum number of water-exchange cycles at these barriers. Modern analogues of these structures are miogeosyncline foredeeps with Cl-Na-Ca chloride brines with high concentrations of ore elements and overall flow rates ranging from 0.n to n m3/year. Stagnate hydrogeological platform structures in hydrostatic equilibrium cannot ensure water exchange needed for ore formation, and, hence, the brines of these structures are not able to deposit the ore elements contained in them, in spite of the high concentrations of these elements.  相似文献   

20.
Oil-field brines are the most favored ore-forming solutions for the sediment-hosted Mississippi Valley-type ore deposits. Detailed inorganic and organic chemical and isotope analyses of water and gas samples from six oil fields in central Mississippi, one of the very few areas with high metal brines, were conducted to study the inorganic and organic complexes responsible for the high concentrations of these metals. The samples were obtained from production zones consisting of sandstone and limestone that range in depth from 1900 to 4000 m (70–120°C) and in age from Late Cretaceous to Late Jurassic. Results show that the waters are dominantly bittern brines related to the Louann Salt. The brines have extremely high salinities that range from 160,000 to 320,000 mg/l total dissolved solids and are NaCaCl-type waters with very high concentrations of Ca (up to 48,000 mg/l) and other alkaline-earth metals, but with low concentrations of aliphatic acid anions. The concentrations of metals in many water samples are very high, reaching values of 70 mg/l for Pb, 245 mg/l for Zn, 465 mg/l for Fe and 210 mg/l for Mn. The samples with high metal contents have extremely low concentrations (<0.02 mg/l) of H2S. Samples obtained from the Smackover Formation (limestone) have low metal contents that are more typical of oil-field waters, but have very high concentrations (up to 85 mg/l) of H2S. Computations with the geochemical code SOLMINEQ.87 give the following results: (1) both Pb and Zn are present predominantly as aqueous chloride complexes (mainly as PbCl42− and ZnCl42−, respectively); (2) the concentrations of metals complexed with short-chained aliphatic acid anions and reduced S species are minor; (3) organic acid anions are important in controlling the concentrations of metals because they affect the pH and buffer capacity of the waters at subsurface conditions; and (4) galena and sphalerite solubilities control the concentrations of Pb and Zn in these waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号