首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The lithosphere of northeastern China is composed of the Erguna, Xingan, Songnen, Jiamusi blocks and Mesozoic Wandashan accretionary complex from west to east. Nd isotope model ages indicate that the Xingan and Songnen blocks have the same Nd model ages ranging from 500 to 1 000 Ma. These are obviously younger than those of the Jiamusi block (1 500–2 000 Ma) and the Erguna block (1 500–1 700 Ma), reflecting the different evolutions of individual blocks in the early times. Geochemical tracing analysis shows that the Nd model ages of Paleozoic supercrustal rocks in the four blocks are dominantly Mesoproterozoic, while those of Mesozoic granites are mainly Neoproterozoic. It is shown that the crust ages of the region are characterized by being younger in the lower part and older in the upper part. The Os isotope analysis also indicates that the lithosphere mantle of the region is characteristic of a younger age. The P-wave velocities of the region show more complicated structures in lithosphere and asthenosphere. First of all, notably different from traditional concept of the seismic lithosphere, the low velocity zone of the lithosphere beneath the region has no persistent and continuous top interface which is highly varied in depth and intersected with the high velocity layers, forming sharp velocity discontinuities beneath major tectonic belts, even up to the Moho beneath some tectonic units. But the bottom interface of the low velocity zone is relatively persistent, occurring at a depth of 230–240 km. Another feature is that the lithosphere is characterized by an “overpass type” velocity structure vertically, in which the contoured velocity is distributed in the NE trending within the crust, in a nearly NS trending in the lithosphere mantle from a depth of 45 to 90 km, in a nearly EW trending in the upper part of the asthenosphere from 90 to 170 km and in a ring-like distribution with a diameter of about 300 km in the lower part of the asthenosphere from 170 to 240 km. The P-wave velocity is progressively increasing from 240 to 400 km.  相似文献   

2.
本文按统一比例尺编制了印度-青藏地区1°×1°重力异常图和地形高程图,并用滑动平均方法得到了本区5°×5°重力异常图。用地改后的1°×1°重力异常,采用组合体模型人一机联作选择法,计算了横跨印度-青藏-蒙古长达4680km的岩石圈剖面,还给出了一个楔形体重力正演公式。基本结果有:(1)MBT、MCT的倾角为10°±5°,ITS、NS、KS的倾角为75°±5°;(2)地壳滑脱面的深度在青藏之下约20km,向高喜马拉雅、MCT、MBT抬升至15km;(3)青藏高原南、北边缘均为岩石圈结构的斜坡带,界面倾角由上向下而增大。在大、小喜马拉雅之下,壳内界面(Ⅰ、Ⅱ)的倾角约12°,Moho倾角为18°,岩石圈底面倾角约36°。在祁连山带所有界面倾角都小于喜马拉雅带,其中壳内界面倾角仅约1°,Moho倾角约2°,岩石圈底面倾角约12°;(4)岩石圈厚度由印度、蒙古向高喜马拉雅和祁连山带逐渐增加,与青藏岩石圈的边缘上翘形成主动俯冲和相对逆冲势态。印度岩石圈厚度(或上地幔顶部低密层埋深)不超过50km,蒙古高原(南)厚约70km,到高喜马拉雅和祁连山下分别增加至145和122km,青藏中心地带(怒江两侧)岩石圈厚135km,向南,北边缘各减小到120和90~102km,在高喜马拉雅和祁连山下面形成25和10km的断差;(5)在青藏Moho之下厚5km的高密薄层和软流层之间有一密  相似文献   

3.
《Gondwana Research》2013,23(3-4):1060-1067
Convergence between the Indian plate and the Eurasian plate has resulted in the uplift of the Tibetan Plateau, and understanding the associated dynamical processes requires investigation of the structures of the crust and the lithosphere of the Tibetan Plateau. Yunnan is located in the southwest edge of the plateau and adjacent to Myanmar to the west. Previous observations have confirmed that there is a sharp transition in mantle anisotropy in this area, as well as clockwise rotations of the surface velocity, surface strain, and fault orientation. We use S receiver functions from 54 permanent broad-band stations to investigate the structures of the crust and the lithosphere beneath Yunnan. The depth of the Moho is found to range from 36 to 40 km beneath southern Yunnan and from 55 to 60 km beneath northwestern Yunnan, with a dramatic variation across latitude 25–26°N. The depth of the lithosphere–asthenosphere boundary (LAB) ranges from 180 km to less than 70 km, also varying abruptly across latitude 25–26°N, which is consistent with the sudden change of the fast S-wave direction (from NW–SE to E–W across 26–28°N). In the north of the transition belt, the lithosphere is driven by asthenospheric flow from Tibet, and the crust and the upper mantle are mechanically coupled and moving southward. Because the northeastward movement of the crust in the Burma micro-plate is absorbed by the right-lateral Sagaing Fault, the crust in Yunnan keeps the original southward movement. However, in the south of the transition belt, the northeastward mantle flow from Myanmar and the southward mantle flow from Tibet interact and evolve into an eastward flow (by momentum conservation) as shown by the structure of the LAB. This resulting mantle flow has a direction different from that of the crustal movement. It is concluded that the Sagaing Fault causes the west boundary condition of the crust to be different from that of the lithospheric mantle, thus leading to crust–mantle decoupling in Yunnan.  相似文献   

4.
A passive seismic experiment across the Longmenshan (LMS) fault belt had been conducted between August 2006 and July 2007 for the understanding of geodynamic process between the Eastern Tibet and Sichuan basin. We herein collected 3677 first P arrival times with high precision from seismograms of 288 teleseismic events so as to reconstruct the upper mantle velocity structure. Our results show that the depth of the Lithosphere–asthenosphere boundary (LAB) changes from 70 km beneath Eastern Tibet to about 110 km beneath Longquanshan, Sichuan Basin, which is consistent with the receiver function imaging results. The very thin mantle part of the lithosphere beneath Eastern Tibet may suggest the lithosphere delamination due to strong interaction between the Tibetan eastward escaping flow and the rigid resisting Sichuan basin, which can be further supported by the existences of two high-velocity anomalies beneath LAB in our imaging result. We also find there are two related low-velocity anomalies beneath the LMS fault belt, which may indicate magmatic upwelling from lithosphere delamination and account for the origin of tremendous energy needed by the devastating Wenchuan earthquake.  相似文献   

5.
We constructed the S-wave velocity structure of the crust and uppermost mantle (10–100 km) beneath the North China based on the teleseismic data recorded by 187 portable broadband stations deployed in this region. The traditional two-step inversion scheme was adopted. Firstly, we measured the interstation fundamental Rayleigh wave phase velocity of 10–60 s and imaged the phase velocity distributions using the Tarantola inversion method. Secondly, we inverted the 1-D S-wave velocity structure with a grid spacing of 0.25° × 0.25° and constructed the 3-D S-wave velocity structure of the North China. The 3-D S-wave velocity model provides valuable information about the destruction mechanism and geodynamics of the North China Craton (NCC). The S-wave velocity structures in the northwestern and southwestern sides of the North–South Gravity Lineament (NSGL) are obviously different. The southeastern side is high velocity (high-V) while the northeastern side is low velocity (low-V) at the depth of 60–80 km. The upwelling asthenosphere above the stagnated Pacific plate may cause the destruction of the Eastern Block and form the NSGL. A prominent low-V anomaly exists around Datong from 50 to 100 km, which may due to the upwelling asthenosphere originating from the mantle transition zone beneath the Western Block. The upwelling asthenosphere beneath the Datong may also contribute to the destruction of the Eastern Block. The Zhangjiakou-Penglai fault zone (ZPFZ) may cut through the lithosphere and act as a channel of the upwelling asthenosphere. A noticeable low-V zone also exists in the lower crust and upper mantle lid (30–50 km) beneath the Beijing–Tianjin–Tangshan (BTT) region, which may be caused by the upwelling asthenosphere through the ZPFZ.  相似文献   

6.
青藏高原东缘地壳上地幔结构及其动力学意义   总被引:3,自引:0,他引:3       下载免费PDF全文
张忠杰  陈赘  田小波 《地质科学》2009,44(4):1136-1150
本文综述了我们在青藏高原东缘实施的垂直切过龙门山断裂带宽频带地震探测的研究成果,揭示了研究区复杂的地壳上地幔结构,结果表明松潘-甘孜地块与四川盆地西缘莫霍面深度为58 km与40 km±,在龙门山断裂带下方存在约15 km的莫霍面错断; 松潘-甘孜与龙门山断裂带域地壳纵横波速度比Vp/Vs比值远大于173,预示着粘性下地壳流或基性/超基性物质的存在。探讨了研究区强烈的盆山之间以及深部不同层圈之间的相互作用,推断四川盆地对青藏高原东缘软流圈驱动的物质东向逃逸阻挡作用可能深达整个上地幔。  相似文献   

7.
陆陆碰撞过程是板块构造缺失的链条。印度板块与亚洲板块的碰撞造就了喜马拉雅造山带和青藏高原的主体。然而,人们对印度板块在大陆碰撞过程中的行为尚不了解。如大陆碰撞及其碰撞后的大陆俯冲是如何进行的、印度板块是俯冲在青藏高原之下还是回转至板块上部(喜马拉雅造山带内)以及两者比例如何,这些仍是亟待解决的问题。印度板块低角度沿喜马拉雅主逆冲断裂(MHT)俯冲在低喜马拉雅和高喜马拉雅之下已经被反射地震图像很好地揭示。然而,关于MHT如何向北延伸,前人的研究仅获得了分辨率较低的接收函数图像。因而,MHT和雅鲁藏布江缝合带之间印度板块的俯冲行为仍是一个谜。喜马拉雅造山楔增生机制,也就是印度地壳前缘的变形机制,反映出物质被临界锥形逆冲断层作用转移到板块上部,或是以韧性管道流的样式向南溢出。在本次研究中,我们给出在喜马拉雅造山带西部地区横过雅鲁藏布江缝合带的沿东经81.5°展布的高分辨率深地震反射剖面,精细揭示了地壳尺度结构构造。剖面显示,MHT以大约20°的倾斜角度延伸至大约60 km深度,接近埋深为70~75 km的Moho面。越过雅鲁藏布江缝合带运移到北面的印度地壳厚度已经不足15 km。深地震反射剖面还显示中地壳逆冲构造反射发育。我们认为,伴随着印度板块俯冲,地壳尺度的多重构造叠置作用使物质自MHT下部的板块向其上部板块转移,这一过程使印度地壳厚度减薄了,同时加厚了喜马拉雅地壳。  相似文献   

8.
http://www.sciencedirect.com/science/article/pii/S1674987110000071   总被引:2,自引:1,他引:1  
<正>The lithospheric structure of China and its adjacent area is very complex and is marked by several prominent characteristics.Firstly,China's continental crust is thick in the west but thins to the east,and thick in the south but thins to the north.Secondly,the continental crust of the Qinghai—Tibet Plateau has an average thickness of 60—65 km with a maximum thickness of 80 km,whereas in eastern China the average thickness is 30—35 km,with a minimum thickness of only 5 km in the center of the South China Sea.The average thickness of continental crust in China is 47.6 km,which greatly exceeds the global average thickness of 39.2 km.Thirdly,as with the crust,the lithosphere of China and its adjacent areas shows a general pattern of thicker in the west and south,and thinner in the east and north.The lithosphere of the Qinghai—Tibet Plateau and northwestern China has an average thickness of 165 km, with a maximum thickness of 180—200 km in the central and eastern parts of the Tarim Basin,Pamir, and Changdu areas.In contrast,the vast areas to the east of the Da Hinggan Ling—Taihang—Wuling Mountains,including the marginal seas,are characterized by lithospheric thicknesses of only 50—85 km.Fourthly,in western China the lithosphere and asthenosphere behave as a "layered structure", reflecting their dynamic background of plate collision and convergence.The lithosphere and asthenosphere in eastern China display a "block mosaic structure",where the lithosphere is thin and the asthenosphere is very thick,a pattern reflecting the consequences of crustal extension and an upsurge of asthenospheric materials.The latter is responsible for a huge low velocity anomaly at a depth of 85—250 km beneath East Asia and the western Pacific Ocean.Finally,in China there is an age structure of "older in the upper layers and younger in the lower layers" between both the upper and lower crusts and between the crust and the lithospheric mantle.  相似文献   

9.
中国岩石圈的基本特征   总被引:11,自引:2,他引:9  
李廷栋 《地学前缘》2010,17(3):1-13
中国及邻区岩石圈结构构造十分复杂,并具有若干明显的特点:中国大陆地壳西厚东薄、南厚北薄,青藏高原地壳平均厚度为60~65 km,最厚达80 km;东部地区一般为30~35 km,南中国海中央海盆平均只有5 km;中国大陆地壳平均厚度为476 km,大大超过全球地壳392 km的平均厚度。中国大陆及邻区岩石圈亦呈西厚东薄、南厚北薄的变化趋势,青藏高原及西北地区岩石圈平均厚度为165 km,塔里木盆地中东部、帕米尔与昌都地区岩石圈厚度可达180~200 km。大兴安岭-太行山-武陵山以东,包括边缘海为岩石圈减薄区,厚度为50~85 km。西部岩石圈、软流圈“层状结构”明显,反映了板块碰撞汇聚的动力学环境;东部岩石圈、软流圈呈“块状镶嵌结构”,岩石圈薄,软流圈厚,反映了地壳拉张、软流圈物质上涌的特点,并在东亚及西太平洋地区85~250 km深处形成一巨型低速异常体。中国东部上、下地壳及地壳、岩石圈地幔之间普遍存在“上老下新”年龄结构。  相似文献   

10.
THE HIGH RESOLUTION SEISMIC TOMOGRAPHIC IMAGE IN QINGHAI—TIBET PLATEAU AND ITS DYNAMIC IMPLICATIONSeasthenospherehadbe  相似文献   

11.
东昆仑大地震的深部构造背景   总被引:4,自引:1,他引:3  
本文以深地震测深剖面资料揭示的地壳结构形态为切入点 ,探讨东昆仑 8.1级大地震的深部构造背景。沱沱河—小柴旦长 5 0 0km的剖面范围内发现两处大的莫霍面错断 ,分别位于东昆仑 柴达木结合带之下和金沙江断裂之下。青藏高原北部的地壳厚度 6 1~ 75km :莫霍面具有一致南倾 ,逐步加深的产状及弱反射性特征 ;下地壳明显增厚 ,但速度未见明显降低 ;上地壳发育逆冲、走滑断裂 ;地壳中部存在低速层。北邻的柴达木盆地地壳相对刚性 ,厚 5 2± 2km。东昆仑及邻区的壳幔结构有利于强地震孕育。在印度板块向北推挤和柴达木地块的向南插入的区域挤压应力场中 ,青藏高原北部较弱的下地壳缩短增厚 ,变形过程中的蠕滑引起地壳浅部的应力放大。但NE向主压应力的作用不是大地震形成的唯一要素 ,与青藏高原北部各地体侧向运动有关。侧向运动速率和幅度的差异使应力在各地体的边界断裂积累并使其复活。而低速层对形成孕育大地震需要的“立交桥式”的局部应力环境是必不可少的条件。  相似文献   

12.
The large hydrocarbon basin of South Caspian is filled with sediments reaching a thickness of 20–25 km. The sediments overlie a 10–18 km thick high-velocity basement which is often interpreted as oceanic crust. This interpretation is, however, inconsistent with rapid major subsidence in Pliocene-Pleistocene time and deposition of 10 km of sediments because the subsidence of crust produced in spreading ridges normally occurs at decreasing rates. Furthermore, filling a basin upon a 10–18 km thick oceanic crust would require twice less sediments. Subsidence as in the South Caspian, of ≥20 km, can be provided by phase change of gabbro to dense eclogite in a 25–30 km thick lower crust. Eclogites which are denser than the mantle and have nearly mantle P velocities but a chemistry of continental crust may occur beneath the Moho in the South Caspian where consolidated crust totals a thickness of 40–50 km. The high subsidence rates in the Pliocene-Pleistocene may be attributed to the effect of active fluids infiltrated from the asthenosphere to catalyze the gabbro-eclogite transition. Subsidence of this kind is typical of large petroleum provinces. According to some interpretations, historic seismicity with 30–70 km focal depths in a 100 km wide zone (beneath the Apsheron-Balkhan sill and north of it) has been associated with the initiation of subduction under the Middle Caspian. The consolidated lithosphere of deep continental sedimentary basins being denser than the asthenosphere, can, in principle, subduct into the latter, while the overlying sediments can be delaminated and folded. Yet, subduction in the South Caspian basin is incompatible with the only 5–10 km shortening of sediments in the Apsheron-Balkhan sill and south of it and with the patterns of earthquake foci that show no alignment like in a Benioff zone and have mostly extension mechanisms.  相似文献   

13.
1.Introduction  Thethermalstateandrheologyoftheuppermantleareofgreatimportanceinunderstandingthestructureanddynamicsofthelithosphere,andevenforits3dimensionalor4dimensionalmapping(O’ReillyandGriffin,1985;O’Reillyetal.,1996;Xuetal.1995;Xuetal.,199…  相似文献   

14.
地球中的流体和穿越层圈构造   总被引:2,自引:2,他引:0  
卢焕章 《地质力学学报》2019,25(6):1003-1012
地球中的流体是当前科学研究的重点。从地球科学的角度来说,流体应包括气体、液体(水和石油)、熔体和地球中受应力作用而移动的物体。在半经为6378 km的固体地球中可分为7个层圈。目前对地球内部流体的了解很少,为探索流体在各层圈中的成分,物理化学性质和分布,以现阶段对地球层圈和流体研究程度来看,其重点应放在地球中穿越层圈的构造部分和地壳。地球中穿越层圈的构造主要有三个:板块构造的俯冲带是由上到下的穿越层圈构造,向下俯冲的大洋岩石圈可以抵达地幔过渡带;大洋中脊的扩张引起的由下而上的穿越层圈构造,使岩石圈和地幔的熔流体从下向上运移;地幔柱引起的由下而上的穿越层圈构造,使地幔的熔流体从下向上迁移。通过对三个穿越层圈构造和地壳中流体的研究,可以得出地壳、岩石圈、上地幔、过渡带、下地幔和核幔边界层流体的种类和成分、流动和演化。这是至今为至能鉴定到地球中深部流体的方法。这四个方面的研究是当前地球中流体科学研究的重点,并对开展深部找矿有实际意义。   相似文献   

15.
As evidenced by plentiful data, most of the large recent positive topographic features formed as a result of a dramatically accelerated crustal uplift in the Pliocene–Quaternary after a relatively stable period (~100 Myr in most of the regions). The methods used are illustrated by the well-studied large neotectonic crustal uplifts on the Tibetan Plateau and in the Himalayas. Farther north, neotectonic uplifts with amplitudes of several hundred meters to several kilometers spread over a vast area from Central and Northeast China in the south to the Taimyr Peninsula and Northeastern Asia in the north. They are often attributed to the India–Asia plate collision which began ~50 Ma.Most of the uplifts in these regions have formed only during the last few Myr, unaccompanied by significant crustal shortening. Therefore, the large neotectonic crustal uplifts can be explained by a decrease in the lithospheric density. One of the causes was the rapid convective replacement of the lower part of the denser mantle lithosphere by the asthenosphere or mantle plume. This became possible owing to a drastic weakening of the mantle lithosphere under the influence of asthenospheric fluids. In some areas, a considerable asthenospheric top uplift is evidenced by seismic tomography data.The lower mantle lithosphere (~50–100 km thick) was replaced by the asthenosphere underneath the neotectonic crustal uplifts of ~1.0 km in Central Asia. Areas with a thick lithosphere were affected by relatively small neotectonic uplifts, strongly nonuniform in space. They point to metamorphism with mafic-rock expansion in the lower crust upon the infiltration of an asthenospheric fluid. The large crustal uplifts which formed on the continents in the Pliocene and Pleistocene indicate large-scale quasi-synchronic supply of the mantle fluid to their lithosphere.  相似文献   

16.
A two‐dimensional thermorheological model of the Central Alps along a north–south transect is presented. Thermophysical and rheological parameters of the various lithological units are chosen from seismic and gravity information. The inferred temperature distribution matches surface heat flow and results in Moho temperatures between 500 and 800 °C. Both European and Adriatic lithospheres have a ‘jelly‐sandwich’ structure, with a 15–20 km thick brittle upper crust overlying a ductile lower crust and a mantle lid whose uppermost part is brittle. The total strength of the lithosphere is of the order of 0.5–1.0 × 1013 N m−1 if the upper mantle is dry, or slightly less if the upper mantle is wet. In both cases, the higher values correspond to the Adriatic indenter.  相似文献   

17.
在印度洋板块与欧亚板块碰撞、挤压作用下,促使深部物质重新分异、调整和运移,并导致了地壳的短缩增厚,而且造成了高原的整体隆升和深部壳、幔物质的侧向流展。基于青藏高原腹地和周边地域地壳与上地幔的成层速度结构,特别是其特异层序的展布研究表明,青藏高原地壳巨厚,但岩石圈却相对较薄;地壳中于深20±5km处存在一低速层,层速度为5.7±0.1km/s,厚度为8±2km;上地幔软流圈顶部深度为110±10km;下地壳与上地幔盖层物质以地壳低速层为上滑移面,以岩石圈漂曳的上地幔软流圈顶面为下滑移面,在印度洋板块N-NNE向力源作用下在同步运移,即形成了青藏高原腹地和周边地域特异的大陆地球动力学环境。  相似文献   

18.
An analysis is presented of the mechanisms of tectonic evolution of the southern part of the Urals between 48N and 60N in the Carboniferous–Triassic. A low tectonic activity was typical of the area in the Early Carboniferous — after closure of the Uralian ocean in the Late Devonian. A nappe, ≥10–15 km thick, overrode a shallow-water shelf on the margin of the East European platform in the early Late Carboniferous. It is commonly supposed that strong shortening and thickening of continental crust result in mountain building. However, no high mountains were formed, and the nappe surface reached the altitude of only ≤0.5 km. No high topography was formed after another collisional events at the end of the Late Carboniferous, in the second half of the Early Permian, and at the start of the Middle Triassic. A low magnitude of the crustal uplift in the regions of collision indicates a synchronous density increase from rapid metamorphism in mafic rocks in the lower crust. This required infiltration of volatiles from the asthenosphere as a catalyst. A layer of dense mafic rocks, 20 km thick, still exists at the base of the Uralian crust. It maintains the crust, up to 60 km thick, at a mean altitude 0.5 km. The mountains, 1.5 km high, were formed in the Late Permian and Early Triassic when there was no collision. Their moderate height precluded asthenospheric upwelling to the base of the crust, which at that time was 65–70 km thick. The mountains could be formed due to delamination of the lower part of mantle root with blocks of dense eclogite and/or retrogression in a presence of fluids of eclogites in the lower crust into less dense facies.

The formation of foreland basins is commonly attributed to deflection of the elastic lithosphere under surface and subsurface loads in thrust belts. Most of tectonic subsidence on the Uralian foreland occurred in a form of short impulses, a few million years long each. They took place at the beginning and at the end of the Late Carboniferous, and in the Late Permian. Rapid crustal subsidence occurred when there was no collision in the Urals. Furthermore, the basin deepened away from thrust belt. These features preclude deflection of the elastic lithosphere as a subsidence mechanism. To ensure the subsidence, a rapid density increase was necessary. It took place due to metamorphism in the lower crust under infiltration of volatiles.

The absence of flexural reaction on the Uralian foreland on collision in thrust belt together with narrow-wavelength basement deformations under the nappe indicate a high degree of weakening of the lithosphere. Such deformations took also place on the Uralian foreland at the epochs of rapid subsidences when there was no collision in thrust belt. Weakening of the lithosphere can be explained by infiltration of volatiles into this layer from the asthenosphere and rapid metamorphism in the mafic lower crust. Lithospheric weakening allowed the formation of the Uralian thrust belt under convergent motions of the plates which were separated by weak areas.  相似文献   


19.
Laboratory and numerical experiments and boundary layer analysis of the entrainment of buoyant asthenosphere by subducting oceanic lithosphere implies that slab entrainment is likely to be relatively inefficient at removing a buoyant and lower viscosity asthenosphere layer. Asthenosphere would instead be mostly removed by accretion into and eventual subduction of the overlying oceanic lithosphere. The lower (hot) side of a subducting slab entrains by the formation of a ∼10–30 km‐thick downdragged layer, whose thickness depends upon the subduction rate and the density contrast and viscosity of the asthenosphere, while the upper (cold) side of the slab may entrain as much by thermal ‘freezing’ onto the slab as by mechanical downdragging. This analysis also implies that proper treatment of slab entrainment in future numerical mantle flow experiments will require the resolution of ∼10–30 km‐thick entrainment boundary layers.  相似文献   

20.
The presented model of the Late Cenozoic geodynamic evolution of the central Andes and the complex tectonic, geological, and geophysical model of the Earth’s crust and upper mantle along the Central Andean Transect, which crosses the Andean subduction zone along 21°S, are based on the integration of voluminous and diverse data. The onset of the recent evolution of the central Andes is dated at the late Oligocene (27 Ma ago), when the local fluid-induced rheological attenuation of the continental lithosphere occurred far back of the subduction zone. Tectonic deformation started to develop in thick-skinned style above the attenuated domain in the upper mantle and then in the Earth’s crust, creating the bivergent system of the present-day Eastern Cordillera. The destruction of the continental lithosphere is correlated with ore mineralization in the Bolivian tin belt, which presumably started at 16° S and spread to the north and to the south. Approximately 19 Ma ago, the gently dipping Subandean Thrust Fault was formed beneath the Eastern Cordillera, along which the South American Platform began to thrust under the Andes with rapid thickening of the crust in the eastern Andean Orogen owing to its doubling. The style of deformation in the upper crust above the Subandean Thrust Fault changed from thick- to thin-skinned, and the deformation front migrated to the east inland, forming the Subandean system of folds and thrust faults verging largely eastward. The thickening of the crust was accompanied by flows at the lower and/or middle crustal levels, delamination, and collapse of fragments of the lower crust and lithospheric mantle beneath the Eastern Cordillera and Altiplano-Puna Plateau. As the thickness of the middle and lower crustal layers reached a critical thickness about 10 Ma ago, the viscoplastic flow in the meridional direction became more intense. Extension of the upper brittle crust was realized mainly in gliding and rotation of blocks along a rhombic fault system. Some blocks sank, creating sedimentary basins. The rate of southward migration estimated from the age of these basins is 26 km/Ma. Tectonic deformation was accompanied by diverse magmatic activity (ignimbrite complexes, basaltic flows, shoshonitic volcanism, etc.) within the tract from the Western Cordillera to the western edge of the Eastern Cordillera 27–5 Ma ago with a peak at 7 Ma; after this, it began to recede westward; by 5 Ma ago, the magmatic activity reached only the western part of the Altiplano-Puna Plateau, and it has been concentrated in the volcanic arc of the Western Cordillera during the last 2 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号