首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 406 毫秒
1.
鄂西弧形构造变形特征及成因机制   总被引:2,自引:0,他引:2       下载免费PDF全文
对川东-湘鄂西断褶带内鄂西地区的弧形构造,从构造剖面特征、叠加褶皱样式和断裂性质入手进行几何学和运动学分析。结果发现鄂西弧形构造具有多期变形特征:早期普遍为北东东向的直线型褶皱,随着弧形带扩展,在东、西两翼分别发育右行和左行的逆冲-走滑断裂,同时分别形成北北东向和北西西向的弧形褶皱。晚期弧形带中部发育北北东向构造并叠加改造了早期北东东和北西西向褶皱,同时在黄陵背斜以西还发育交切早期构造的北北西向仙女山右行走滑断裂。根据弧形带扩展的几何学-运动学分类原则,并结合前人的古地磁研究结果,推测鄂西弧形构造应属于构造弯曲形成的弯曲弧。区域滑脱层和黄陵隆起阻挡可能是控制弧形样式的主要原因。区域滑脱层控制了拆离滑脱褶皱的构造样式; 黄陵基底隆起的阻挡作用使弧形带东翼进一步弯曲变形,并导致了构造应力场方向发生改变,造成了晚期北北东向与早期北东东向构造的叠加。由此恢复的鄂西弧形构造变形过程对于揭示川东-湘鄂西断褶带构造演化具有重要的指示意义。  相似文献   

2.
纵弯叠加褶皱地区应力场研究-以川东北地区为例   总被引:7,自引:0,他引:7       下载免费PDF全文
黄继钧 《地质科学》2000,35(2):140-150
川东北地区主体构造为北西向大巴山弧形构造带和北东-北东东向川东弧形褶皱带,发育早期北东向纵弯褶皱和晚期北西向纵弯褶皱,两者构成明显的纵-纵复合叠加,形成典型的限制褶皱、横跨褶皱、斜跨褶皱和移褶等。早、晚两期褶皱和共轭“X”节理均反映出早期应力场为北西-南东向水平挤压,晚期应力场为北东-南西向挤压。  相似文献   

3.
塔里木盆地玉北构造带形成于加里东中晚期, 主要断裂以挤压逆冲为主, 早期形成断层传播褶皱样式, 断层总体终止于石炭系/奥陶系不整合面之下.该地区奥陶系碳酸盐岩储层易发育断层伴生裂缝和褶皱调节性裂缝, 主要分布在膝褶带和断层传播褶皱区.海西晚期玉北地区断裂重新活动, 仍以挤压为主形成三角剪切样式, 但断层位移量并不大, 该时期玉北构造带基本定型, 储层裂缝易发育在三角剪切变形区.喜马拉雅期玉北地区存在微弱构造变形, 玉北构造带主要受到构造的叠加改造.新生代青藏高原向东的扩张产生北东-南西向的构造应力场, 使得北东-南西向的玉北断裂带具有开启性, 对玉北地区油气调整和聚集会有一定的影响.  相似文献   

4.
吴航  邱楠生  常健  张纪新  王晔 《地球科学》2019,44(3):784-797
川东地区发育典型的"侏罗山式"褶皱构造带,以北东走向的齐岳山断裂为界,南东侧为隔槽式褶皱,北西侧为隔挡式褶皱.中生代川东地区经历了自南东向北西的陆内递进变形,受多套滑脱层(基底拆离面、下寒武统页岩、志留系泥页岩和三叠系膏盐)的共同控制.但是,关于川东褶皱带的形成机制及其整体和分段形成时间仍存在较大争议.应用构造物理模拟方法,再现了川东"侏罗山式"褶皱带的形成过程,并分析了先存断裂及其倾角对川东褶皱构造变形的影响.模拟结果表明,川东褶皱带是齐岳山断裂、华蓥山断裂、志留系滑脱层和基底拆离面组成的阶梯状体系在构造挤压下发生断层相关褶皱作用的结果.基底拆离面(深度约16 km)控制隔槽式褶皱的发育,志留系页岩主要控制隔挡式褶皱的形成.中生代(165~75 Ma)川东地区的构造缩短率约为32%.齐岳山断裂是隔槽式褶皱向隔挡式褶皱过渡的重要枢纽,是先存高角度断裂浅部向北西迁移后的产物.华蓥山断裂的倾角控制着隔挡式褶皱的波长,当倾角较陡时(45°)更有利于发育典型的隔挡式褶皱.   相似文献   

5.
前人对皖南-浙西地区古生代至早中生代盖层中发育的褶皱变形期次、特征和构造样式的认识尚存在较多分歧。本文通过区内盖层褶皱变形调查与解析,除印支早期褶皱和燕山期构造外,新识别出加里东期和印支晚期褶皱。加里东期褶皱样式主要表现为大型中常至开阔褶皱,且均为复式褶皱;次为小型紧闭褶皱,二者可能为从属性质。其构造线均呈近东西向或北东东向。印支早期褶皱样式主要为中常线形褶皱,其轴迹呈北东向;晚期表现为中常至开阔褶皱样式,轴迹呈北北西或近南北向。燕山期构造主要为盆地和断裂构造。早白垩世早期,表现为同沉积宽缓向斜,构造线呈近东西向;早白垩世之后,主要表现为断陷盆地和断裂构造,构造线呈北东或北北东向。各期褶皱叠加明显,形成"L"或"厂"字型组合特征,或形成构造穹窿-盆地组合。深入研究构造特征及演化规律,对区域构造格架建立具有重要意义。  相似文献   

6.
新疆库鲁克塔格地区构造应力场解析   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对库鲁克塔格地区的构造地质演化分析,将该地区震旦系以来较强构造变形的构造应力场分4个时期:早古生代、晚古生代、中生代和新生代。根据节理、褶皱和岩墙等应力感构造的测量分析,得出库鲁克塔格地区及其周缘的4个时期构造应力场的最大主压应力方向分别为北北东向、北西西-北西向、北东向和北北东-近南北向。基于对新近纪以来库鲁克塔格地区构造应力场的二维有限元模拟,进一步对该地区应力场的分布特征、边界几何形态对应力场的影响等问题进行了讨论与分析。  相似文献   

7.
中生代川东褶皱带发育着两种不同的褶皱组合型式,以NE向齐岳山断裂为界,东侧为隔槽褶皱,西侧为隔档褶皱,二者在成因上均与不同埋深的滑脱带密切相关。本文利用FLAC6.0软件模拟了川东褶皱带的两阶段形成过程:隔槽褶皱区和隔档褶皱区依次形成。在断坡倾角为30°的情形下,当滑脱带在隔档褶皱区和隔槽褶皱区分别处于寒武系和角度不整合面向下3~4 km的基底深处时,模拟得到的结果能很好地再现该褶皱带的总体形态特征。只有当连接两个褶皱区滑脱带的断坡具有≤30°的低倾角时,它才能高效地将水平位移传递到隔档褶皱区,意味着地表出露的高倾角齐岳山断裂基本上没有参与整个褶皱带的形成过程,是晚期或后期形成突破地表的。断弯褶皱的出现会造成被卷入的早期褶皱发生共轴叠加的递进变形。这样机械加厚的地壳在重力均衡作用下发生抬升,并遭受风化剥蚀直至准平原化,似乎就可以形成两褶皱区之间近数千米的整体剥蚀厚度差。  相似文献   

8.
张忠义 《地学前缘》2019,26(2):1-15
在大巴山西北侧镇巴县简池地区开展1∶10 000的地质填图和构造解析工作,重点研究露头和区域尺度上叠加褶皱变形的时空变化、成因,确定褶皱的构造属性及变形时限。研究表明未拆离的中上三叠统-中侏罗统沉积岩系中发育两组褶皱:(1)北东近东西向褶皱(F1),成组、分区断续相连,线性展布发育,代表了区域米仓山主背斜较陡倾南翼上的次级大型褶皱的枢纽带;(2)北西北北西向褶皱(F2),区域呈弧形展布,发育隔挡式褶皱组合型式,构成大巴山前陆坳陷带东部边缘的复式向斜。北西北北西向褶皱向西横跨在北东近东西向褶皱之上,形成露头尺度上的2类4种基本样式,发育大角度叠加交切的两组褶皱弯滑擦痕。北东近东西向褶皱减弱消失在同造山的上三叠统-中侏罗统(Ts1Ts4岩性段)中,上被中侏罗世晚期Ts5与Ts6岩性段包络覆盖,属中生代南秦岭碰撞造山相关的前陆生长褶皱,时限约为213~178 Ma,与米仓山构造形成晚期阶段的指向南的非共轴剪切变形有关。北西北北西向褶皱将研究区的中生代及之前岩系普遍卷入了变形,属晚中生代大巴山陆内造山带的前陆构造褶皱,时限约为160~120 Ma,区域褶皱变形长期保持稳定的总体近似纯剪的应变状态。尽管两期挤压收缩褶皱事件的时间间隔不长,但两组褶皱的样式、形成时间、构造属性与形成机制都存在巨大差异,表明区域构造环境和地壳变形机制的重大变动和转换。  相似文献   

9.
王辉 《中国煤炭地质》2011,(10):8-13,28
依据野外地表地质观测及地震、钻探最新的深部地质资料,结合对区域控煤构造认识,运用构造解析、构造应力场及地质力学分析等研究思路与方法,讨论了研究区控煤构造特征、构造样式以及成因。研究结果表明:研究区共有三类六种控煤构造样式,即挤压构造样式(宽缓褶皱、叠加褶皱)、走滑构造样式(反"S"型褶皱、"入"字型构造)及伸展构造样式(掀斜断块、堑垒构造),其中以伸展构造样式发育为主要特征;研究区由东南向西北,构造变形强度由强变弱,先后经历了印支期南北向挤压、燕山中期北西向挤压和喜马拉雅期北东向挤压-走滑与北西-南东向伸展断陷作用;晚期形成的正断层不仅破坏了煤层的连续性,而且成为奥灰水储集和运移的主要通道,增大了底板突水的可能性,使煤炭资源开发受到影响。  相似文献   

10.
鄂西利川地区位于湘鄂西构造带与川东构造带的过渡部位,叠加褶皱发育,地处两大构造带分界处的齐岳山高陡背斜带断裂发育。本文以利川地区褶皱和断裂为研究对象,在野外观测和分析的基础上,采用断层滑动数据反演方法,对构造应力场进行了恢复;结合区域构造演化历史,提出该区侏罗纪以来经历了五期构造应力作用,从早到晚分别为:北西-南东向挤压(J3-K1)、近东西向挤压(K1)、近南北向挤压(K1-K2)、北西-南东向引张(K2)和北东-南西向挤压(E3)。该区侏罗纪以来构造变形序列的建立,为深入认识齐岳山高陡背斜带地质灾害形成的地质背景提供了构造地质学证据。  相似文献   

11.
http://www.sciencedirect.com/science/article/pii/S1674987113000030   总被引:1,自引:0,他引:1  
The Dabashan orocline is situated in the northwestern margin of the central Yangtze block,central China.Previous studies have defined the orthogonal superposed folds growing in its central-western segment thereby confirming its two-stage tectonic evolution history.Geological mapping has revealed that more types of superposed folds have developed in the eastern segment of the orocline,which probably provides more clues for probing the structure and tectonic history of the Dabashan orocline.In this paper,based on geological mapping,structural measurements and analyses of deformation,we have identified three groups of folds with different trends (e.g.NW-,NE-and nearly E-trending folds) and three types of structural patterns of superposed folds in the eastern Dabashan foreland (e.g.syn-axial,oblique,and conjunctional superposed folds).In combination with geochronological data,we propose that the synaxial superposed folds are due to two stages of ~N-S shortening in the west and north of the Shennongjia massif,and that oblique superposed folds have been resulted from the superposition of the NW-and NE-trending folds onto the early ~ E-W folds in the east of the Shennongjia massif in the late Jurassic to early Cretaceous.The conjunctional folds are composed of the NW-and NE-trending folds,corresponding to the regional-scale dual-orocline in the eastern Sichuan as a result of the southwestward expansion of the Dabashan foreland during late Jurassic to early Cretaceous,coeval with the northwestward propagation of the Xuefengshan foreland.Integration of the structure and geochronology of the belt shows that the Dabashan orocline is a combined deformation belt primarily experiencing a twostage tectonic evolution history in Mesozoic,initiation of the Dabashan orocline as a foreland basin along the front of the Qinling orogen in late Triassic to early Jurassic due to collisional orogeny,and the final formation of the Dabashan orocline owing to the southwestward propagation of the Qinling orogen during late Jurassic to early Cretaceous intra-continental orogeny.Our studies provide some evidences for understanding the structure and deformation of the Dabashan orocline.  相似文献   

12.
综合造山带内的构造热年代学及盆地内部进行的磷灰石裂变径迹研究,提出了四川盆地西北部的三个背斜(潼梓关背斜、九龙山背斜和南阳坝背斜)主要是新生代构造变形的产物。野外观察发现汉中盆地是一个第四纪的拉分盆地,其主控断层具左行走滑性质。新生代青藏高原东缘大型地块向东挤出,遭遇强硬的四川克拉通阻挡之后,沿着龙门山形成了一个右行的走滑挤压带,并且影响到邻近的四川盆地,形成北东向背斜。这期构造变形往北延伸进入米仓山,形成具有逆冲性质的北东向断层。四川盆地北面也存在向东的挤出作用,这和汉中盆地主控断层的左行走滑性质是匹配的。四川盆地北面的地块挤出影响了米仓山前缘的四川盆地,由于龙门山和米仓山构造变形的叠加,使得最东面的南阳坝背斜相对于其它两个背斜在褶皱轴上发生了偏转。  相似文献   

13.
The Longmen Shan region includes, from west to east, the northeastern part of the Tibetan Plateau, the Sichuan Basin, and the eastern part of the eastern Sichuan fold-and-thrust belt. In the northeast, it merges with the Micang Shan, a part of the Qinling Mountains. The Longmen Shan region can be divided into two major tectonic elements: (1) an autochthon/parautochthon, which underlies the easternmost part of the Tibetan Plateau, the Sichuan Basin, and the eastern Sichuan fold-and-thrust belt; and (2) a complex allochthon, which underlies the eastern part of the Tibetan Plateau. The allochthon was emplaced toward the southeast during Late Triassic time, and it and the western part of the autochthon/parautochthon were modified by Cenozoic deformation.

The autochthon/parautochthon was formed from the western part of the Yangtze platform and consists of a Proterozoic basement covered by a thin, incomplete succession of Late Proterozoic to Middle Triassic shallow-marine and nonmarine sedimentary rocks interrupted by Permian extension and basic magmatism in the southwest. The platform is bounded by continental margins that formed in Silurian time to the west and in Late Proterozoic time to the north. Within the southwestern part of the platform is the narrow N-trending Kungdian high, a paleogeographic unit that was positive during part of Paleozoic time and whose crest is characterized by nonmarine Upper Triassic rocks unconformably overlying Proterozoic basement.

In the western part of the Longmen Shan region, the allochthon is composed mainly of a very thick succession of strongly folded Middle and Upper Triassic Songpan Ganzi flysch. Along the eastern side and at the base of the allochthon, pre-Upper Triassic rocks crop out, forming the only exposures of the western margin of the Yangtze platform. Here, Upper Proterozoic to Ordovician, mainly shallow-marine rocks unconformably overlie Yangtze-type Proterozic basement rocks, but in Silurian time a thick section of fine-grained clastic and carbonate rocks were deposited, marking the initial subsidence of the western Yangtze platform and formation of a continental margin. Similar deep-water rocks were deposited throughout Devonian to Middle Triassic time, when Songpan Ganzi flysch deposition began. Permian conglomerate and basic volcanic rocks in the southeastern part of the allochthon indicate a second period of extension along the continental margin. Evidence suggests that the deep-water region along and west of the Yangtze continental margin was underlain mostly by thin continental crust, but its westernmost part may have contained areas underlain by oceanic crust. In the northern part of the Longmen Shan allochthon, thick Devonian to Upper Triassic shallow-water deposits of the Xue Shan platform are flanked by deep-marine rocks and the platform is interpreted to be a fragment of the Qinling continental margin transported westward during early Mesozoic transpressive tectonism.

In the Longmen Shan region, the allochthon, carrying the western part of the Yangtze continental margin and Songpan Ganzi flysch, was emplaced to the southeast above rocks of the Yangtze platform autochthon. The eastern margin of the allochthon in the northern Longmen Shan is unconformably overlapped by both Lower and Middle Jurassic strata that are continuous with rocks of the autochthon. Folded rocks of the allochthon are unconformably overlapped by Lower and Middle Jurassic rocks in rare outcrops in the northern part of the region. They also are extensively intruded by a poorly dated, generally undeformed belt, of plutons whose ages (mostly K/Ar ages) range from Late Triassic to early Cenozoic, but most of the reliable ages are early Mesozoic. All evidence indicates that the major deformation within the allochthon is Late Triassic/Early Jurassic in age (Indosinian). The eastern front of the allochthon trends southwest across the present mountain front, so it lies along the mountain front in the northeast, but is located well to the west of the present mountain front on the south.

The Late Triassic deformation is characterized by upright to overturned folded and refolded Triassic flysch, with generally NW-trending axial traces in the western part of the region. Folds and thrust faults curve to the north when traced to the east, so that along the eastern front of the allochthon structures trend northeast, involve pre-Triassic rocks, and parallel the eastern boundary of the allochthon. The curvature of structural trends is interpreted as forming part of a left-lateral transpressive boundary developed during emplacement of the allochthon. Regionally, the Longmen Shan lies along a NE-trending transpressive margin of the Yangtze platform within a broad zone of generally N-S shortening. North of the Longmen Shan region, northward subduction led to collision of the South and North China continental fragments along the Qinling Mountains, but northwest of the Longmen Shan region, subduction led to shortening within the Songpan Ganzi flysch basin, forming a detached fold-and-thrust belt. South of the Longmen Shan region, the flysch basin is bounded by the Shaluli Shan/Chola Shan arc—an originally Sfacing arc that reversed polarity in Late Triassic time, leading to shortening along the southern margin of the Songpan Ganzi flysch belt. Shortening within the flysch belt was oblique to the Yangtze continental margin such that the allochthon in the Longmen Shan region was emplaced within a left-lateral transpressive environment. Possible clockwise rotation of the Yangtze platform (part of the South China continental fragment) also may have contributed to left-lateral transpression with SE-directed shortening. During left-lateral transpression, the Xue Shan platform was displaced southwestward from the Qinling orogen and incorporated into the Longmen Shan allochthon. Westward movement of the platform caused complex refolding in the northern part of the Longmen Shan region.

Emplacement of the allochthon flexurally loaded the western part of the Yangtze platform autochthon, forming a Late Triassic foredeep. Foredeep deposition, often involving thick conglomerate units derived from the west, continued from Middle Jurassic into Cretaceous time, although evidence for deformation of this age in the allochthon is generally lacking.

Folding in the eastern Sichuan fold-and-thrust belt along the eastern side of the Sichuan Basin can be dated as Late Jurassic or Early Cretaceous in age, but only in areas 100 km east of the westernmost folds. Folding and thrusting was related to convergent activity far to the east along the eastern margin of South China. The westernmost folds trend southwest and merge to the south with folds and locally form refolded folds that involve Upper Cretaceous and lower Cenozoic rocks. The boundary between Cenozoic and late Mesozoic folding on the eastern and southern margins of the Sichuan Basin remains poorly determined.

The present mountainous eastern margin of the Tibetan Plateau in the Longmen Shan region is a consequence of Cenozoic deformation. It rises within 100 km from 500–600 m in the Sichuan Basin to peaks in the west reaching 5500 m and 7500 m in the north and south, respectively. West of these high peaks is the eastern part of the Tibetan Plateau, an area of low relief at an elevations of about 4000 m.

Cenozoic deformation can be demonstrated in the autochthon of the southern Longmen Shan, where the stratigraphic sequence is without an angular unconformity from Paleozoic to Eocene or Oligocene time. During Cenozoic deformation, the western part of the Yangtze platform (part of the autochthon for Late Triassic deformation) was deformed into a N- to NE-trending foldandthrust belt. In its eastern part the fold-thrust belt is detached near the base of the platform succession and affects rocks within and along the western and southern margin of the Sichuan Basin, but to the west and south the detachment is within Proterozoic basement rocks. The westernmost structures of the fold-thrust belt form a belt of exposed basement massifs. During the middle and later part of the Cenozoic deformation, strike-slip faulting became important; the fold-thrust belt became partly right-lateral transpressive in the central and northeastern Longmen Shan. The southern part of the fold-thrust belt has a more complex evolution. Early Nto NE-trending folds and thrust faults are deformed by NW-trending basementinvolved folds and thrust faults that intersect with the NE-trending right-lateral strike-slip faults. Youngest structures in this southern area are dominated by left-lateral transpression related to movement on the Xianshuihe fault system.

The extent of Cenozoic deformation within the area underlain by the early Mesozoic allochthon remains unknown, because of the absence of rocks of the appropriate age to date Cenozoic deformation. Klippen of the allochthon were emplaced above the Cenozoic fold-andthrust belt in the central part of the eastern Longmen Shan, indicating that the allochthon was at least partly reactivated during Cenozoic time. Only in the Min Shan in the northern part of the allochthon is Cenozoic deformation demonstrated along two active zones of E-W shortening and associated left-slip. These structures trend obliquely across early Mesozoic structures and are probably related to shortening transferred from a major zone of active left-slip faulting that trends through the western Qinling Mountains. Active deformation is along the left-slip transpressive NW-trending Xianshuihe fault zone in the south, right-slip transpression along several major NE-trending faults in the central and northeastern Longmen Shan, and E-W shortening with minor left-slip movement along the Min Jiang and Huya fault zones in the north.

Our estimates of Cenozoic shortening along the eastern margin of the Tibetan Plateau appear to be inadequate to account for the thick crust and high elevation of the plateau. We suggest here that the thick crust and high elevation is caused by lateral flow of the middle and lower crust eastward from the central part of the plateau and only minor crustal shortening in the upper crust. Upper crustal structure is largely controlled in the Longmen Shan region by older crustal anisotropics; thus shortening and eastward movement of upper crustal material is characterized by irregular deformation localized along older structural boundaries.  相似文献   

14.
米仓山构造带被北东走向的龙门山陆内复合造山带及北北西走向的大巴山前陆冲断带夹持于其间,两个构造带平面上组成一个“八”字形构造,空间上为一个向北收敛,向南发散背倾型的Ⅰ型三角带构造.在两大构造带前展式扩展变形晚期的过程中,米仓山则起到调节这两大构造带构造平衡的作用,因此为一构造转换带.米仓山构造转换带由北向南可以分为基底...  相似文献   

15.
上扬子北部褶皱带的构造应力场演化规律   总被引:3,自引:1,他引:2  
胡召齐  朱光  张必龙  陈印  魏鑫  张力 《地质科学》2010,45(2):361-379
在对大量逆冲与平移断层运动学详细分析与观测的基础上,本文利用实测断层擦痕矢量数据组进行了区域应力场反演,根据对断层叠加关系的分析及叠加褶皱的验证,划分出上扬子北部经历过3期挤压构造应力场演化,从早到晚分别为:第1期北西—南东向挤压应力场,第2期近东西向挤压应力场和第3期北东—南西向挤压应力场。结合相关的地质现象,认为在这3期挤压应力场作用下分别形成了晚侏罗世末—早白垩世初的湘鄂西隔槽式褶皱带、早白垩世末—晚白垩世初的川东隔档式褶皱带和南大巴山弧形褶皱带。由此表明,上扬子北部褶皱带的形成顺序为湘鄂西隔槽式褶皱带→川东隔档式褶皱带→南大巴山弧形褶皱带。  相似文献   

16.
湘黔汞矿带旋扭构造动力作用与成矿规律   总被引:1,自引:0,他引:1  
湘西黔东地区,在古生代沉积盖层中,北北东向保靖-铜仁断裂带的东侧,发育一系列北东向平移逆冲压扭性断裂构造带,它们均具有相似的变形特征和动力学机制,构成一个大型压扭性旋扭构造系统。旋扭构造控制了湘黔汞矿带的分布,其中北东向断裂带控制了汞矿带内各矿田的展布,而由北东向断裂带所派生的次级张扭性断裂裂隙带,则控制了单个矿体或矿床的产出和定位,特大型和大型汞矿床均产于旋扭构造的应力强区内。  相似文献   

17.
麻扎塔格地区地层、地貌及构造变形特征的研究,对于认识塔里木盆地新生代构造演化过程、塔里木—西昆仑的盆山耦合关系、新构造运动对塔里木油气资源分布的影响以及塔克拉玛干沙漠的气候、环境变化都具有重要意义。本文通过卫星照片解译、野外变形观察、剖面实测、地球物理资料解释等手段,对该地区晚新生代的构造特征进行了研究,确定了麻扎塔格构造带为典型的逆冲—褶皱带,并探讨了麻扎塔格逆冲—褶皱带的构造指向、活动时限、隆升速率及缩短速率、东西方向的延伸等问题,取得如下认识:1)麻扎塔格逆冲—褶皱带为西昆仑山前陆褶皱冲断带的前缘部位,和田河气田就是处在逆冲前锋背斜顶部,晚新生代变形作用已明显地改造了塔里木盆地南部及中部的古生代和中生代构造,并促成了和田河气田的形成;2)麻扎塔格山在中新世末(约7 Ma)和中更新世(约780 ka B.P.)经历了两次构造隆升,后一次形成了麻扎塔格逆冲—褶皱带和麻扎塔格山现今的地貌特征;3)估算出麻扎塔格逆冲—褶皱带中更新世以来的隆升速率约为0.26~0.4 mm/a,缩短速率约为0.9 mm/a;4)认为麻扎塔格逆冲—褶皱带向西应与同属西昆仑山前褶皱—冲断带前缘的喀什背斜相连,东端的突然消失可能是由于东段和田河附近存在北东—南西向的走滑断层造成。  相似文献   

18.
中国和哈萨克斯坦阿尔泰大地构造及地壳演化   总被引:30,自引:1,他引:30  
中国和哈萨克斯坦阿尔泰位于西伯利亚板块西南边缘,阿尔泰褶皱系与斋桑-北准噶尔褶皱系的接合部位,分为霍尔宗-丘伊-哈纳斯、冲乎尔-青河、别洛乌巴-南阿尔泰、矿区阿尔泰和东卡尔巴-富蕴、二台6个构造建造带,14个构造建造亚带。区内地壳演化可分为太古宙-元古宙古陆壳形成阶段、早古生代被动陆缘壳壳增生阶段、晚古生代陆壳拉张破坏和挤压重建(增生)阶段及中-新生代相对稳定的大陆发展阶段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号