首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 140 毫秒
1.
为了分析火山渣吸附去除地下水中大肠杆菌噬菌体作用特性,通过室内实验,考察火山渣吸附地下水中vB_EcoM-ep3大肠杆菌噬菌体效果,同时用等量沸石与石英砂做对照,进一步分析地下水中水化学因素(Fe2+、Fe3+、Mn2+ SO 4 2 - NH 4 + NO 3 - NO 2 -、Ca2+、Mg2+ CO 3 2 - HCO 3 -和pH值)对其吸附效果影响;通过微观检测技术,分析大肠杆菌噬菌体生物学特性和火山渣吸附前后微观结构变化。研究结果表明:火山渣吸附效率优于沸石和石英砂,最大饱和吸附量达到2.245×105 pfu/g;水化学因素对火山渣吸附效果影响存在差异性,其中Fe2+、Fe3+起到促进作用, SO 4 2 -、三氮和碱度起到抑制作用,低浓度Mn2+( C M n 2 +<10 mg/L)和Ca2+( C C a 2 +<100 mg/L)起到轻微促进作用,超过该浓度则表现为抑制作用;pH值对火山渣吸附效果影响较大,pH值越大,吸附效果越差。vB_EcoM-ep3大肠杆菌噬菌体头部为等边六角形,全身直径约为(53±2) nm,尾部长约为(107±3) nm,由尾管和尾丝组成,可伸缩。具有蜂窝状结构的火山渣吸附大肠杆菌噬菌体后表面孔隙大部分被填充。  相似文献   

2.
C、N、S、Fe是地下水中控制氧化-还原反应的主要元素,淤泥是黏土的演化初期,淤泥演化为黏土过程中会影响含水层水量水质,可能会造成地下水污染;其中的水岩相互作用可以概化为C-N-S-Fe-H2O体系的相互作用。淤泥演化过程的实质是淤泥在压力的作用下孔隙度不断变小,逐渐固结成岩;淤泥内部不断发生生物地球化学反应,C-N-S-Fe-H2O体系驱动各种物质的形态结构不断发生改变,其中加压速率和加压模式会影响淤泥里的C、N、S、Fe重要组分固液相的转化。本研究运用自主研发设计的增压装置,探究在3种加压速率(0.04 MPa/12 h、0.04 MPa/24 h、0.04 MPa/36 h)和加压模式(0.040.02 MPa/12 h、0.04 MPa/12 h、0.040.06 MPa/12 h)的情况下,固体介质中C、N、S、Fe向孔隙水释放的规律。结果表明:(1)匀速加压速率越慢,加压初期溶解性有机碳(DOC)、 SO 4 2 -释放速率越快, NO 3 -和Fe2+浓度变化增大;DOC、 SO 4 2 - NO 3 -、Fe2+释放总量越多。(2)不同的加压模式,加速加压(0.040.06 MPa/12 h)下 NO 3 -、Fe2+的浓度波动较大;DOC、 NO 3 - SO 4 2 -和Fe2+的总释放量为加速加压(0.040.06 MPa/12 h)大于匀速加压(0.04 MPa/12 h)。(3)加压过程中,DOC和 SO 4 2 -呈显著正相关,改变加压速率会改变DOC, NO 3 - SO 4 2 -和Fe2+的相关性。本研究表明改变加压速率和加压模式会对DOC、 NO 3 - SO 4 2 -和Fe2+的释放速率、释放总量和C、N、S、Fe的转化造成影响,其本质为氧化-还原反应和水岩相互作用的强弱发生了变化;本研究为地质演化过程中压力导致的主要元素变化提供了新的认识,认识到了隔水层会影响含水层的水质和水量,为原生劣质地下水的成因和地下水污染防治提供了新思路。  相似文献   

3.
梁凯旋  刘菲  张莉 《地学前缘》2022,29(3):207-216
高氯酸盐( ClO 4 -)是一种小分子量、有毒的无机络阴离子,普遍存在于环境中。由于其分子大小与碘离子相似,会干扰人体甲状腺的正常功能,因此其环境污染问题引起了广泛的关注。本文选取污染场地的天然河沙为试验材料,主要通过柱实验对地下水中 ClO 4 -自然衰减过程进行研究,考察了铁氧化物、 NO 3 - ClO 4 -自然衰减过程产生的影响。结果表明,高氯酸盐自然衰减过程主要由微生物驱动,天然河沙可去除2 mg/L的 ClO 4 -,但其过程缓慢且还原量有限,长期去除率不超过10%,其限制因素为缺乏电子供体;铁氧化物可以促进 ClO 4 -自然衰减,但当溶解性铁的浓度低于5.5 mg/L时,衰减过程开始受到影响;地下水中的 NO 3 -会抑制 ClO 4 -的降解,当 NO 3 -低至10 mg/L或以下时, ClO 4 -才开始明显降解。  相似文献   

4.
加油站地下水中石油烃污染是较为普遍的现象,本文对研究区位于不同水文地质条件的加油站地下水进行取样分析,分析加油站地下水中石油烃的污染特征和地下水化学类型特征,并运用因子分析、相关性分析和多元回归分析揭示加油站地下水中石油烃潜在的生物降解机制。研究结果表明,地下水化学类型主要可划分为Cl-Na型、HCO3-Na型、HCO3-Ca型和SO4-Na型4类。加油站地下水中石油烃的检出率为85.71%,检出浓度为0.020.35 mg/L。因子分析结果表明影响地下水化学组成的因素主要以水-岩相互作用和石油烃的生物降解为主。TPH与地下水化学指标间的相关关系表明:TPH与K+、Na+、Cl-、Mn、Mg2+ SO 4 2 -呈现负相关的关系,与pH值、 HCO 3 - NO 3 - NO 2 -、Ca2+、Fe不存在显著的相关关系。加油站地下水环境中可能存在嗜盐或耐盐微生物,导致随着盐度的升高,总石油烃(total petroleum hydrocarbon,TPH)生物降解率加快,TPH浓度呈现出降低的趋势。微生物利用电子受体( SO 4 2 -、Mn、 NO 3 -、Fe)降解TPH的过程中,电子受体的贡献率为:铁还原(64.88%)>锰还原(24.86%)>硫酸根还原(5.78%)>硝酸盐还原(4.46%),即加油站地下水中铁锰还原菌的石油烃生物降解为优势反应。  相似文献   

5.
铀矿开采过程中及井场退役后,含铀浸出液的扩散会对地下水造成一定影响,该影响范围和程度决定了铀的天然衰减特征。本文以北方某地浸铀矿区砂岩含水介质为研究对象,研究了溶液化学特征和黄铁矿含量对砂岩吸附和转化铀的影响。结果表明,砂岩颗粒对U(VI)的吸附基本在12 h可达平衡。线性等温吸附模型可以很好地描述吸附特征;砂岩颗粒对U(VI)的吸附率总体随着粒径增大而减小,当岩石粒径增大到0.200.25 mm时,吸附率趋于稳定。溶液pH值是影响吸附的主要因素,通过控制溶液中U(VI)的络合形态和岩石颗粒表面带电荷情况,在库仑力的作用下促进或者抑制吸附,在pH=6时,达到最佳吸附状态。共存离子对U(VI)吸附的抑制程度是: HCO 3 ->Ca2+>Mg2+> SO 4 2 - HCO 3 -主要通过与 UO 2 2 +络合形成带负电荷的络合阴离子抑制U(VI)吸附。近中性pH值试验条件下,黄铁矿含量的增加对U的去除起到显著的促进作用,这种促进作用体现在吸附和还原作用,被吸附的Fe2+在吸附剂表面通过电子转移还原吸附态的U(VI),还原产物是UO2+x,吸附和还原是个相互促进的过程;在弱碱性pH值试验条件下,黄铁矿对U(VI)去除的影响不明显,水解沉淀作用和较低的吸附率抑制了还原反应的发生。  相似文献   

6.
崔迪  杨冰  郭华明  连国玺  孙娟 《地学前缘》2022,29(3):217-226
地浸铀矿山退役后,含水层中残留的含铀浸出液随着地下水的运动向下游迁移扩散,存在对周边地下水污染的风险。本文设计了若干组批实验和柱实验,研究铀在北方某地浸铀矿山砂岩含水介质中的吸附和迁移行为。实验结果表明,砂岩对铀的吸附在12 h以内达到平衡,铀初始浓度越高,砂岩的铀吸附容量越大;砂岩对铀的吸附为吸热反应,温度升高有利于吸附反应的进行。溶液pH值和共存 HCO 3 -浓度会对铀的吸附作用产生强烈的影响:pH值在7左右时,铀的吸附量最高; HCO 3 -浓度越高,铀的吸附量越低。这些影响是通过改变溶液中铀的络合形态和砂岩矿物表面的电荷性质实现的。柱实验表明,pH值、铀浓度、流速和 HCO 3 -浓度是影响铀在饱和砂岩含水介质中迁移的重要因素。pH值≤7时,pH值越高,砂岩柱越不易被铀穿透;而铀浓度、流速、 HCO 3 -浓度越高,砂岩柱越易被铀穿透。两点非平衡模型可以很好地拟合不同条件下铀在砂岩柱中的迁移过程。批实验获得的分配系数是柱实验的1.16.6倍。通过对比实验条件、含水层特性和地下水化学特征,确定分配系数为48.1 mL/g时,较适合描述研究区内砂岩含水层中的铀迁移。上述认识为地浸铀矿山地下水铀的反应运移过程和天然自净化机理提供了理论依据。  相似文献   

7.
西藏是我国重要的生态安全屏障,拉萨地区地下水化学特征及形成机制研究,对揭示青藏高原现代表生过程变化机理具有重要作用,对服务国家生态安全建设具有重要意义。本文通过拉萨地区地下水调查、水样采集与分析,综合运用Gibbs模型模拟、水化学分析方法分析了地下水化学特征及水岩作用机理。结果表明:地下水电导率介于38.801 193.00 μS/cm,平均值为123.99 μS/cm,总溶解性固体(total dissolved solids,TDS)含量介于44.051 050.55 mg/L,平均值为150.75 mg/L,pH值大于7,属弱碱性水,地下水化学类型为HCO3-Ca型和Cl-Na型,其中Cl-Na型水为地下温泉水。地下水形成过程主要是碳酸盐岩和硅酸盐岩的溶解、阳离子交换等作用下的结果,且受到一定程度的人为因素影响;地下水中的Na+、K+和Cl-主要来自盐岩矿物的风化溶解,过量的Na+、K+来源于钠长石和钾长石等硅酸盐矿物的溶解, HCO 3 -、Ca2+、Mg2+ SO 4 2 -主要来自方解石、白云石、石膏以及其他含钙镁矿物的溶解。  相似文献   

8.
曹入文  周训  陈柄桦  李状 《地学前缘》2021,28(4):361-372
温泉的水化学和成因研究对地热资源的开发利用有重要意义。四川巴塘县茶洛温泉的分布受茶洛—松多断层带的控制,沿北东—南西向的河流两岸出露,附近出露三叠系灰岩、砾岩和燕山期花岗岩。在温泉区出露有近20个泉眼,对其中10个泉眼进行采样测试。受出露点冷水混入的影响,东北部的两个泉眼温度为45~51 ℃,中西部地区的泉眼温度为77~89 ℃,部分为沸泉泉眼;各泉眼流量为0.01~1.8 L/s;pH值为6.1~8.1,矿化度为0.39~1.06 g/L,F-含量为15~22 mg/L,偏硅酸含量为69~356 mg/L。泉水主要阳离子为Na+、K+和Ca2+,主要阴离子为 CO 3 2 - HCO 3 -、Cl- SO 4 2 -,水化学类型为HCO3-Na型。氢氧同位素数据表明,研究区地下热水来源于大气降水,补给高程约为4 400~4 800 m,补给区年均气温在-10 ℃左右。利用SiO2温标估算茶洛温泉热储层温度约为150~200 ℃,热水循环深度约为2 810~3 480 m。茶洛温泉为大气降水入渗后在地下深循环过程中被大地热流加热,再沿断层带在河谷涌出地表而形成的温泉。在河流西北岸分布有灰岩,地下水溶蚀形成空洞,来自浅处的冷水和来自深部的热水在空洞中混合并被加热至沸点,导致热水间歇性上升喷出地面,形成间歇喷泉。  相似文献   

9.
以河北北部承德地区的4处温泉,漠河沟温泉(A10)、三道营温泉(A11)、山湾子温泉(A12)和北大坝温泉(A13)为研究对象,根据2010年与2018年的温泉水样测试数据,分析温泉的水化学特征,并总结其成因模式。研究区出露地层主要有中新元古界、二叠系、三叠系、侏罗系、白垩系和新近系以及第四系,并伴随有大量侵入岩岩体。温泉的出露温度为36~75 ℃,pH值为7.2~8.2,TDS均小于1 g/L。研究区温泉阳离子均以Na+占绝对优势,毫克当量百分数在90%以上,阴离子主要以HC O 3 -和S O 4 2 -为主,4处温泉的水化学类型分别为SO4·HCO3-Na型、HCO3·SO4-Na型、HCO3-Na型和SO4·HCO3-Na型,且温泉的偏硅酸和F-含量高。研究区温泉稀土元素总含量(∑REEs)为0.030~15.525 μg/L,主要以碳酸盐络合物和F的络合物形式存在;地下热水的稀土元素球粒陨石标准化配分模式较为平缓,轻稀土元素略显富集。研究区温泉水补给主要源于大气降水,利用 SiO2 温标估算的温泉地下热储温度为85~125 ℃,地下热水经深循环后通过接触带、破碎带或导水断裂上升出露地表。  相似文献   

10.
掌握区域地下水质量及污染状况,对于地下水污染防治、地下水资源保护与管理具有重要作用,尤其是对西部内陆干旱区地下水资源尤为重要。本研究针对陕西铜川市地下水进行了系统采样,通过分析常规指标、无机毒理指标、微量有机指标,利用“层级阶梯评价方法”进行了地下水质量与污染评价。水质评价表明,2011年铜川市浅层水水质相对较差,可作为饮用水源或经适当处理后可做饮用水源的样品占样品总数的60%,不宜作为生活饮用水源的样品占40%。浅层水质量受天然背景和人类活动的共同影响,主要影响指标为总硬度、 NO 3 -、TDS、Mg2+ SO 4 2 -;深层水水质相对较好,所有采样点均可作为饮用水源。深层水主要受天然背景影响,主要影响指标为Fe。污染评价表明,浅层水污染等级为1级、2级、3级、4级的样品分别占样品总数的44%、16%、32%、8%,污染主要分布在金锁关以南至川口以北的漆水河河谷地带;而深层水污染等级全部为1级,尚未受到人类污染影响。相比其他评价方法,层级阶梯评价法在区分天然背景和污染对地下水水质影响方面具有明显优势,结合区域背景分析和现场调查认识,能够成为科学掌握地下水水质及污染状况的有效手段。  相似文献   

11.
于璐  郑天元  郑西来 《现代地质》2022,36(2):563-573
地下水硝酸盐污染已成为世界范围内最严重的环境地质问题之一。全面并准确识别硝酸盐污染源,对地下水的有效管理及污染防治具有重要的指导意义。从地下水硝酸盐来源、同位素检测方法、污染源同位素特征、定量解析模型构建、硝酸盐主要转化过程及同位素分馏效应等方面进行总结,比较不同解析方法在硝酸盐溯源中的应用与发展,建议采用多学科、多方法相结合的方式,提高对硝酸盐污染源的全面理解。同位素富集系数是定量解析硝酸盐污染源的重要参数,在源解析过程中探讨硝酸盐转化及同位素分馏机制,能够更好地诠释地下水硝酸盐来源和迁移转化过程,提高源解析的准确性,为地下水硝酸盐污染的准确溯源与有效防治提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号