首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
最近,赵越等人从现实主义原则和现代地质学理论,分析综合了东亚构造地质、古地磁、古生物地理、地质年代等方面的一些最新研究成果,提出东亚古亚洲洋构造系和古特提斯构造系向环太平洋主动陆缘的转变最终出现在中侏罗世,而不是印支期。  相似文献   

2.
本文论述了一组穿切青海各构造单元的,以隐蔽形式存在的南北向构造系。这组构造系以各构造单元中的“地质异常”有规律沿南北(经向)方向排列。形成于早古生代或更老,经长期发展、多期活动,应是初始地壳构造的继承。根据这组构造发现的启示,认为与其性质相似的还有东西向、北东向和北西向深层断裂系的存在。由南北、东西向深层断裂交切所形成的构造结,对岩浆岩、内生矿产(以及地震)产出有定位控制作用,形成构造—岩浆岩或构造—岩浆岩—成矿结。而由南北、东西向深层断裂交切所挟持的断块所形成的构造格,其中相对坳陷的格块对外生矿产的分布有控制作用  相似文献   

3.
320矿床位于东亚壳体中国东南地洼区赣湘桂地洼系的中南段,湘东地洼的南西部,受岩相古地理环境的控制且与区内地洼构造活动密切相关;特别是与多期次活动的湘东裂谷系的成生和发展紧密相联,在裂谷系发育过程中形成了一系列与裂谷构造有关的铀矿化,控制了以320矿床为主体的区带矿床的分布。  相似文献   

4.
论构造筛分   总被引:2,自引:2,他引:0  
该文系统论述复合构造的筛分方法和构造筛分的定义、内涵、基本原理、原则、定律和方法步骤,并结合我国区域地质才前人研究成果提出若干例证。该文是“论构造复合”的续篇,对我国及东亚-西太平洋复合构造域的复合构造体系的筛分作了若干说明。最后对星球级规模的全球复合构造体系的构造筛分也提出了一些设想。  相似文献   

5.
海南岛地壳演化的基本特征   总被引:3,自引:2,他引:3  
本文系采用历史分析法对海南岛的沉积建造、岩浆建造、变质作用、构造型相进行分析.可将其地壳演化划分为前地槽、地槽、烛台、地洼四个发展阶段;采用动力分析法把具有成生联系的构造成分归为一起。作者认为海南岛存在着古北东,古东西、北北东、南北构造系和环状构造系:用历史和动力综合分析法全面探讨海南岛地壳演化与构造格局变迁特点。可得出结论:其前地槽发展阶段受北东古构造系控制,于地槽发展阶段叠加了东西古构造系:地洼初动期北北东构造系又疊加在东西古构造系之上并产生复合;地洼激烈期北北东向构造系与东西构造系产生联合环状构造系:地洼余动期的东西构造系和南北构造系又先后叠加在环状构造系之上.海南岛地壳在长期复杂多阶段的演化过程中,曾几经左,右旋交替的剪切作用,最终导致形成海南岛环形块体.  相似文献   

6.
本文以地震信息为基础,应用多旋回先张后压中国含油气盆地构造演化史理论[1,2],系统阐述了渤海湾盆地海域古近系—新近系地质结构演化过程和形成机制。特别是应用高质量的勘探地震信息,将渤海湾盆地海域石油构造样式划分为透入、拆离、渗入式三大构造样式,13类亚构造样式。最后以复合构造样式和复式油气藏(田)的描述作为构造样式的结语。  相似文献   

7.
南海北部陆缘扩张型地洼盆地系既显示了裂谷构造的某些一般性特征,又以其位于大陆壳体与大洋壳体相互作用的东亚陆缘地带;具有复杂的动力场和应力场环境;张裂发生于华夏型地洼余动期;发育由陆变海、陆海相交替的沉积建造;出现由钙碱性岩系、双峰式岩系到拉斑玄武岩和碱性玄武岩系的岩浆演化序列;形成宽阔而弥散的拉伸变形带,具条块状分割的构造格局,总体表现为由大陆盆岭型构造带(地壳张裂)发展到陆缘海盆地系(岩石圈张裂)的演变过程;强烈而持久的地壳运动,发生多幕式拉伸-造盆作用,晚期并在局部出现挤压(反转)构造;以及含丰富油气等矿产资源而展示特色。比较学研究进一步表明,地洼区的裂谷构造可以分出两种基本类型:①华夏型,其中包括东亚陆缘式和里奥格兰德陆内式两种亚型,它们是在地洼型挤压造山阶段之后发生拉伸裂陷;②东非型,它们是在古老克拉通(地台)基础上发生张裂,形成裂谷型地洼区。  相似文献   

8.
桂西北盆-山构造系与大厂锡石多金属成矿作用   总被引:3,自引:1,他引:2  
通过对区域地形形态、地质构造格架、大厂矿田的矿床地质、地球化学特征的研究,阐明了大厂矿区所处的构造位置为一盆-山构造系。大厂锡石多金属硫化物矿床的生成、发展和演化是该盆一山构造系发展演化的产物,受盆-山构造系的控制。本矿床按矿体形态、矿床特征可以分为层状矿化和脉状矿化两大类。层状矿化是盆-山构造系形成早期同生沉积的,严格受地层层位和岩性的控制。脉状矿化是盆-山构造系发展演化的晚期不同阶段中受岩浆热液作用的叠加、改造而成,受构造和层位的双重控制。  相似文献   

9.
新疆西域系构造是建立在多岛洋盆的构造基础之上,沿着新疆地壳结构面的地球动力学运动轨迹发展,是具有继承性、新生性和走滑性的一组NWW—NW向的构造体系,广泛发育在新疆乃至中亚地区,它以弧形(环形)、,形、格状形式与先存构造碰接。构成岩体型、盆地型、断裂型三类成矿地质背景区域,制约着矿床的生成乃至大一超大型矿床的存在。  相似文献   

10.
杨宝忠  张新勇  侯红星  于博滨 《地球科学》2019,44(11):3871-3881
臼齿构造主要发育于中新元古代地层中,目前所报道的臼齿构造均由纯净的、基本等粒的微晶方解石(或白云石)构成.野外地质考察中,在北京南口长城系高于庄组第3段泥晶灰岩中发现了形态多样的臼齿状构造,野外观察和室内显微镜下分析,发现臼齿状构造与宿主岩石边界多呈圆弧状或港湾状,界线清晰.扫描电镜(SEM)和能谱分析(EDX)表明,"臼齿"成分主要以硅质为主,矿物成分为玉髓和自生石英.从臼齿状构造的形态和充填序列分析,发现南口臼齿状构造形成经历了裂缝形成、裂缝充填和后期破坏再充填等过程.认为臼齿状构造可能是多成因的结果,其中在半固结的条件下由地质事件引起的微裂隙系统可能是臼齿状构造形成的重要因素之一.   相似文献   

11.
This paper summarizes rook associations and spatial-Temporal variations of the early Mesozoic igneous rocks in the NE Asia, with the aim of revealing the initial subduction timing of the Paleo-Pacific Plate beneath the Eurasia, and the relationships between the early Mesozoic magmatisms and the Paleo-Asian tectonic system, Mongol-Okhotsk tectonic system, and amalgamation of the Yangtze and North China cratons. Dating results indicate that the early Mesozoic magmatisms in the NE Asia can be subdivided into three stages, i.e., Early-Middle Triassic, Late Triassic, and Early Jurassic. The early Mesozoic calc-Alkaline magmatisms within the Erguna Massif reveal southward subduction of the Mongol-Okhotsk oceanic plate. The Triassic alkaline and bimodal magmatisms within the northern margin of the North China Craton indicate an extensional environment related to the final closure of the Paleo-Asian Ocean. The Late Triassic A-Type rhyo- lites and bimodal magmatisms, together with the Late Triassic stable sedimentary rocks, in eastern Heilongjiang-Jilin provinces, reveal an extensional environment and passive continental margin setting, whereas the Early Jurassic calc-Alkaline magmatisms and its compositional variations, together with the coeval accretionary complex, reveal the onset of the Paleo- Pacific plate beneath the Euirasian continent.  相似文献   

12.
朱光  王薇  顾承串  张帅  刘程 《岩石学报》2016,32(4):935-949
郯庐断裂带晚中生代的演化历史是华北克拉通破坏过程的重要记录。中侏罗世末(燕山运动A幕),郯庐断裂带局部发生左行平移活动,而华北克拉通上出现了一系列北北东走向的缩短构造,指示了西太平洋伊泽奈崎板块俯冲的开始。晚侏罗世期间,郯庐断裂带没有发生活动,而华北克拉通出现局部伸展与岩浆活动及区域性隆升,应为弧后弱拉张背景。早白垩世初(燕山运动B幕),郯庐断裂带再次发生强烈的左行平移活动,华北克拉通北部与东部出现了一系列近南北向挤压产生的构造,应是鄂霍茨克洋最终关闭与伊泽奈崎板块高速俯冲双重作用的结果。随后的早白垩世期间,华北克拉通在弧后拉张背景下发生峰期破坏,郯庐断裂带呈现为强烈的伸展活动。早白垩世末的区域性挤压作用,结束了华北克拉通的峰期破坏,并使郯庐断裂带再次发生了一期左行平移活动。这期挤压作用出现在太平洋板块接替伊泽奈崎板块这一重大板块调整的背景之中。  相似文献   

13.
LA-ICP-MS zircon U–Pb ages and geochemical data are presented for the Mesozoic volcanic rocks in northeast China, with the aim of determining the tectonic settings of the volcanism and constraining the timing of the overprinting and transformations between the Paleo-Asian Ocean, Mongol–Okhotsk, and circum-Pacific tectonic regimes. The new ages, together with other available age data from the literature, indicate that Mesozoic volcanism in NE China can be subdivided into six episodes: Late Triassic (228–201 Ma), Early–Middle Jurassic (190–173 Ma), Middle–Late Jurassic (166–155 Ma), early Early Cretaceous (145–138 Ma), late Early Cretaceous (133–106 Ma), and Late Cretaceous (97–88 Ma). The Late Triassic volcanic rocks occur in the Lesser Xing’an–Zhangguangcai Ranges, where the volcanic rocks are bimodal, and in the eastern Heilongjiang–Jilin provinces where the volcanics are A-type rhyolites, implying that they formed in an extensional environment after the final closure of the Paleo-Asian Ocean. The Early–Middle Jurassic (190–173 Ma) volcanic rocks, both in the Erguna Massif and the eastern Heilongjiang–Jilin provinces, belong chemically to the calc-alkaline series, implying an active continental margin setting. The volcanics in the Erguna Massif are related to the subduction of the Mongol–Okhotsk oceanic plate beneath the Massif, and those in the eastern Jilin–Heilongjiang provinces are related to the subduction of the Paleo-Pacific Plate beneath the Eurasian continent. The coeval bimodal volcanic rocks in the Lesser Xing’an–Zhangguangcai Ranges were probably formed under an extensional environment similar to a backarc setting of double-direction subduction. Volcanic rocks of Middle–Late Jurassic (155–166 Ma) and early Early Cretaceous (145–138 Ma) age only occur in the Great Xing’an Range and the northern Hebei and western Liaoning provinces (limited to the west of the Songliao Basin), and they belong chemically to high-K calc-alkaline series and A-type rhyolites, respectively. Combined with the regional unconformity and thrust structures in the northern Hebei and western Liaoning provinces, we conclude that these volcanics formed during a collapse or delamination of a thickened continental crust related to the evolution of the Mongol–Okhotsk suture belt. The late Early Cretaceous volcanic rocks, widely distributed in NE China, belong chemically to a low- to medium-K calc-alkaline series in the eastern Heilongjiang–Jilin provinces (i.e., the Eurasian continental margin), and to a bimodal volcanic rock association within both the Songliao Basin and the Great Xing’an Range. The volcanics in the eastern Heilongjiang–Jilin provinces formed in an active continental margin setting related to the subduction of the Paleo-Pacific Plate beneath the Eurasian continent, and the bimodal volcanics formed under an extensional environment related either to a backarc setting or to delamination of a thickened crust, or both. Late Cretaceous volcanics, limited to the eastern Heilongjiang–Jilin provinces and the eastern North China Craton (NCC), consist of calc-alkaline rocks in the eastern Heilongjiang–Jilin provinces and alkaline basalts in the eastern NCC, suggesting that the former originated during subduction of the Paleo-Pacific Plate beneath the Eurasian continent, whereas the latter formed in an extensional environment similar to a backarc setting. Taking all this into account, we conclude that (1) the transformation from the Paleo-Asian Ocean regime to the circum-Pacific tectonic regime happened during the Late Triassic to Early Jurassic; (2) the effect of the Mongol–Okhotsk suture belt on NE China was mainly in the Early Jurassic, Middle–Late Jurassic, and early Early Cretaceous; and (3) the late Early Cretaceous and Late Cretaceous volcanics can be attributed to the subduction of the Paleo-Pacific Plate beneath the Eurasian continent.  相似文献   

14.
Abstract: This paper synthesizes the geotectonic background, genetic types and metallogenetic relations of the Mesozoic granitoids in the East China continental margin. By the Mesozoic, the Siberia Plate, North China Plate and South China Plate amalgamated together, resulting in formation of a unified Eurasia super–continent. Since the late Triassic to early Jurassic period, the territory of East China gradually became a Cordilleran style active continental margin. During the Jurassic to early Cretaceous (early to middle episodes of Yanshanian orogeny), the Paleo-Pacific plate strongly collided with and subducted under the Eurasia continent, reactivated the consolidated East China continental margin. The granitoids of both transformation series and syntexis series were generated. Many granitoid-related large and giant metal deposits were formed. Furthermore, the W, Sn, Be, Nb, Ta and U mineralizations are mostly associated with the transformation series; while the Fe, Cu, Mo and Au mineralizations are mostly associated with the syntexis series. The late Yanshanian orogeny (late Cretaceous) began a transition to the western Pacific style continental margin. A tensional environment resulted in development of alkaline granitoids and formation of continental red basins. The Cenozoic orogeny was characterized by a backarc spreading and rifting regime in this region.  相似文献   

15.
中、上扬子北部盆-山系统演化与动力学机制   总被引:5,自引:0,他引:5       下载免费PDF全文
中国南方中生代经历了中国大陆最终主体拼合的陆缘及其之后的陆内构造演化。晚古生代末期,在秦岭—大别山微板块与扬子板块之间存在向西张口的洋盆,即勉略古洋盆。中三叠世末期开始,扬子板块相对于华北板块发生自南东向北西的斜向俯冲碰撞作用,扬子北缘晚三叠世至中侏罗世发育陆缘前陆褶皱逆冲带与前陆盆地系统。晚侏罗世至早白垩世,中国东部的大地构造背景发生了重要的构造转变,中、上扬子地区处于三面围限会聚的大地构造背景。在这种大地构造格局下,中、上扬子地区晚侏罗世至早白垩世发育陆内联合、复合构造与具前渊沉降的克拉通内盆地系统。自中侏罗世末期开始,扬子北缘前陆带与雪峰山—幕阜山褶皱逆冲带经历了自东向西的会聚变形过程及盆地的自东向西的迁移过程和收缩过程。扬子北缘相对华北板块的斜向俯冲导致在中扬子北缘的深俯冲及超高压变质岩的形成。俯冲之后以郯庐断裂—襄广断裂围限的大别山超高压变质地块在晚侏罗世向南强逆冲,致使扬子北缘晚三叠世至中侏罗世前陆盆地被掩覆和改造。  相似文献   

16.
赵越  高海龙  张拴宏  刘健 《地质学报》2022,96(5):1510-1523
一百年前中国地质学会成立,先驱者们竖立起中国地质科学的旗帜,也是中国科学的第一面旗帜,从此中国地质科学发展进入快车道。燕山运动、中国北方〖XCD.TIF;%70%70,JZ〗科研究,长身贝研究、北京猿人头盖骨的发现是中国地质科学快速进入国际赛道的标志。经历了近百年的研究,北京西山及北京北山、冀北和辽西典型地区积累的证据和资料表明,翁文灏提出的燕山运动A期(幕)发生在160±3 Ma前;晚侏罗世早—中期记录了以髫髻山组和蓝旗组为代表的区域强烈火山喷发和广泛的岩浆侵入(中间期/幕);晚侏罗世晚期区域发育逆冲推覆构造;燕山期构造发展至早白垩世早期135 Ma,冀北张家口组和辽西义县组之下的不整合为燕山运动B期结束的代表。燕山运动是东亚大陆构造体制从古特提斯及古亚洲洋构造域转变为环太平洋活动大陆边缘构造域的产物。这是中国东部和东亚区域中生代独特的重大的地质构造事件。  相似文献   

17.
The East Asian geological setting has a long duration related to the superconvergence of the Paleo‐Asian, Tethyan and Paleo‐Pacific tectonic domains. The Triassic Indosinian Movement contributed to an unified passive continental margin in East Asia. The later ophiolites and I‐type granites associated with subduction of the Paleo‐Pacific Plate in the Late Triassic, suggest a transition from passive to active continental margins. With the presence of the ongoing westward migration of the Paleo‐Pacific Subduction Zone, the sinistral transpressional stress field could play an important role in the intraplate deformation in East Asia during the Late Triassic to Middle Jurassic, being characterized by the transition from the E‐W‐trending structural system controlled by the Tethys and Paleo‐Asian oceans to the NE‐trending structural system caused by the Paleo‐Pacific Ocean subduction. The continuously westward migration of the subduction zones resulted in the transpressional stress field in East Asia marked by the emergence of the Eastern North China Plateau and the formation of the Andean‐type active continental margin from late Late Jurassic to Early Cretaceous (160‐135 Ma), accompanied by the development of a small amount of adakites. In the Late Cretaceous (135‐90 Ma), due to the eastward retreat of the Paleo‐Pacific Subduction Zone, the regional stress field was replaced from sinistral transpression to transtension. Since a large amount of late‐stage adakites and metamorphic core complexes developed, the Andean‐type active continental margin was destroyed and the Eastern North China Plateau started to collapse. In the Late Cretaceous, the extension in East Asia gradually decreased the eastward retreat of the Paleo‐Pacific subduction zones. Futhermore, a significant topographic inversion had taken place during the Cenozoic that resulted from a rapid uplift of the Tibet Plateau resulting from the India‐Eurasian collision and the formation of the Bohai Bay Basin and other basins in the East Asian continental margin. The inversion caused a remarkable eastward migration of deformation, basin formation and magmatism. Meanwhile, the basins that mainly developed in the Paleogene resulted in a three‐step topography which typically appears to drop eastward in altitude. In the Neogene, the basins underwent a rapid subsidence in some depressions after basin‐controlled faulting, as well as the intracontinental extensional events in East Asia, and are likely to be a contribution to the uplift of the Tibetan Plateau.  相似文献   

18.
胶东和鲁西地区中生代成矿作用重大差异性的内在因素   总被引:8,自引:5,他引:8  
胶东和鲁西地区被沂沭断裂带所分隔 ,在中侏罗世末期 ,由于郯庐断裂带发生大规模左旋平移运动 ,二个地区最终拼合在一起。胶东和鲁西地区的金等多金属成矿作用发生在早白垩世 ,但其成矿作用的规模、矿床类型和成矿机制均存在很大的差别。研究表明 ,鲁西地区长期处于华北板块内部 ,而胶东地区则是长期处于华北板块的边缘地带 ,它曾经历了前寒武纪强烈的地质作用、早古生代洋—陆俯冲与碰撞造山作用、晚古生代缓慢隆起、印支晚期至燕山早期的陆—陆俯冲与强烈挤压以及燕山晚期岩石圈减薄与大规模构造 岩浆活动的复杂的构造环境和地质演化过程。因此可以认为 ,除上述综合地质构造作用因素外 ,中生代库拉—太平洋板块向欧亚大陆俯冲以及沂沭断裂带的强烈活动是直接导致早白垩世胶东地区产生突发性巨量成矿作用的重要的动力学条件  相似文献   

19.
With the aim of constraining the influence of the surrounding plates on the Late Paleozoic–Mesozoic paleogeographic and tectonic evolution of the southern North China Craton (NCC), we undertook new U–Pb and Hf isotope data for detrital zircons obtained from ten samples of upper Paleozoic to Mesozoic sediments in the Luoyang Basin and Dengfeng area. Samples of upper Paleozoic to Mesozoic strata were obtained from the Taiyuan, Xiashihezi, Shangshihezi, Shiqianfeng, Ermaying, Shangyoufangzhuang, Upper Jurassic unnamed, and Lower Cretaceous unnamed formations (from oldest to youngest). On the basis of the youngest zircon ages, combined with the age-diagnostic fossils, and volcanic interlayer, we propose that the Taiyuan Formation (youngest zircon age of 439 Ma) formed during the Late Carboniferous and Early Permian, the Xiashihezi Formation (276 Ma) during the Early Permian, the Shangshihezi (376 Ma) and Shiqianfeng (279 Ma) formations during the Middle–Late Permian, the Ermaying Group (232 Ma) and Shangyoufangzhuang Formation (230 and 210 Ma) during the Late Triassic, the Jurassic unnamed formation (154 Ma) during the Late Jurassic, and the Cretaceous unnamed formation (158 Ma) during the Early Cretaceous. These results, together with previously published data, indicate that: (1) Upper Carboniferous–Lower Permian sandstones were sourced from the Northern Qinling Orogen (NQO); (2) Lower Permian sandstones were formed mainly from material derived from the Yinshan–Yanshan Orogenic Belt (YYOB) on the northern margin of the NCC with only minor material from the NQO; (3) Middle–Upper Permian sandstones were derived primarily from the NQO, with only a small contribution from the YYOB; (4) Upper Triassic sandstones were sourced mainly from the YYOB and contain only minor amounts of material from the NQO; (5) Upper Jurassic sandstones were derived from material sourced from the NQO; and (6) Lower Cretaceous conglomerate was formed mainly from recycled earlier detritus.The provenance shift in the Upper Carboniferous–Mesozoic sediments within the study area indicates that the YYOB was strongly uplifted twice, first in relation to subduction of the Paleo-Asian Ocean Plate beneath the northern margin of the NCC during the Early Permian, and subsequently in relation to collision between the southern Mongolian Plate and the northern margin of the NCC during the Late Triassic. The three episodes of tectonic uplift of the NQO were probably related to collision between the North and South Qinling terranes, northward subduction of the Mianlue Ocean Plate, and collision between the Yangtze Craton and the southern margin of the NCC during the Late Carboniferous–Early Permian, Middle–Late Permian, and Late Jurassic, respectively. The southern margin of the central NCC was rapidly uplifted and eroded during the Early Cretaceous.  相似文献   

20.
The origin and continuity of Phanerozoic lithostratigraphic terranes in southern and Baja California remain an unsolved issue in Cordilleran tectonics. We present data from eight detrital zircon samples collected across the southern extent of the Peninsular Ranges that help constrain the provenance of detritus and the depositional ages of these basement units. Detrital zircon signatures from units in the eastern Peninsular Ranges correlate with Palaeozoic passive margin assemblages in the southwestern North American Cordillera. Units in the central belt, which consists of Triassic–Jurassic metasedimentary turbidite assemblages that probably deformed in an accretionary prism setting, and Cretaceous metasedimentary and metavolcanic units that represent the remnants of a continental margin arc, were derived from both proximal and more distal sources. The westernmost units, which are locally structurally interleaved with the Triassic through Cretaceous units of the central belt, are Cretaceous deposits that represent a series of collapsed basin complexes located within and flanking the Cretaceous Alisitos volcanic island arc. Cretaceous intra-arc units show little influx of cratonal material until approximately 110 Ma, whereas coeval sediments on the northern and eastern flanks of the Alisitos arc contain abundant cratonal detritus. Intra-arc strata younger than approximately 110 Ma contain large amounts of Proterozoic and older detrital zircons. These data suggest that basins associated with the Alisitos arc were either too distant or somehow shielded from North American detritus before 110 Ma. In the case of the former, increased influx of continental detritus after 110 Ma would support a tectonic model in which the arc was separated from North America by an ocean basin and, as the arc approached the continent, associated depositional centres were close enough to receive input from continental sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号