首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The application of chemical and isotopic geothermometry to geothermal systems is reviewed, pointing out the uses and limitations of specific reactions in estimating deep temperatures from well, hot-spring and fumarole discharges.At present the most reliable indicators are: the silica-water equilibria; the Na/K ratio; the isotopic distributions Δ2H(H2“H2O), Δ2H(H2“CH4), Δ18O(H2O“HSO?4); and the gas reactions CO2 + 4H2 ? CH4 + 2H2O, and 2NH3 ? N2 + 3H2. Many other qualitative chemical indicators exist.  相似文献   

2.
Fugacities of H2, N2, O2, CH4, H2O, H2S, NH3, CO, and CO2 are calculated on the basis of the extrapolation of the caloric properties, and those of the compressibility of substances into the region of pressures up to 2 Mbar and of temperatures up to 4000K. Several equilibrium mineralogical reactions are calculated. The most probable sequence of decreasing the magnitudes of the equilibrium molar fractions (masses) of these gases in the lower mantle of the earth is predicted.  相似文献   

3.
Aqueous-carbonaceous and later pure aqueous fluid inclusions in quartz from a ferberite (Fe.95Mn.05 WO4) vein within the low-grade metamorphic aureole of the Borne granite (French Massif Central) have been studied by microthermometry and Raman spectrometry. The bulk V?-X properties of the aqueous-carbonaceous inclusions have been derived using the equation of state of Heyenet al. (1982) for the low-temperature CO2-CH4 system. A P-T path has been proposed for their trapping using the equations of state of Jacobs and Kerrick (1981a) for the H2O-CO2-CH4 system. Two main episodes were reconstructed for the history of the aqueous-carbonaceous fluid. (1) Primary H2O-CO2-CH4 vapourrich inclusions in quartz indicated the early circulation of a low-density fluid (65 mole% H2O-34 mole% CO2-1 mole% CH4 and traces of N2: d = 0.35 gcm?3) at around 550° ± 50°C and 700 ± 100 bar. Fluid cooled approximately isobarically to 450°-400°C and was progressively diluted by H2O with a concomitant increase in density. The fO2 of the H2OCO2-CH4 fluid, estimated from the equilibrium CO2 + 2H2O CH4 + 2O2, first ranged from 10?22 to 10?27 bar, close to the Q-F-M buffer. Within analytical errors, these values were consistent with the presence of graphite in equilibrium with the fluid. (2) A drop in PCO2, and therefore a drop in fO2, was recorded by the secondary liquid-rich inclusions in quartz. The inclusions, formed at and below 400°C, were composed of H2O and CH4 only, and fO2 at that stage was below that fixed by the graphite-fluid equilibrium. This second episode in the fluid-rock system could be explained by the drop of temperature below the blocking temperature of the graphite-fluid equilibrium. According to this interpretation, the blocking of the graphite-fluid equilibrium occurred at T ≥ 370°C and probably at 400°C on account of the pressure correction. Mass spectrometric data show that ferberite contains H2O, CO2 and CH4 in fluid inclusions, which lie in the gap of the V?-X properties of the aqueouscarbonaceous fluid in quartz. Deposition of ferberite probably occurred at around 400°C, the previously inferred blocking temperature, resulting from either the drop in PCO2, the drop fO2 and/or the related pH-increase.It is concluded that the existence of a blocking-temperature for the graphite-fluid chemical equilibrium may be a critical factor for maintaining a stable fluid pressure gradient in geothermal systems occurring under greenschist facies conditions in graphite-bearing rocks.  相似文献   

4.
《Applied Geochemistry》2001,16(7-8):895-910
Coalbed gases in the Lower Silesian Coal Basin (LSCB) of Poland are highly variable in both their molecular and stable isotope compositions. Geochemical indices and stable isotope ratios vary within the following ranges: hydrocarbon (CHC) index CHC=CH4/(C2H6+ C3H8) from 1.1 to 5825, wet gas (C2+) index C2+=(C2H6+ C3H8+ C4H10+ C5H12) / (CH4+ C2H6+ C3H8+ C4H10+ C5H12) 100 (%) from 0.0 to 48.3%, CO2–CH4 (CDMI) index CDMI=CO2/(CO2+ CH4) 100 (%) from 0.1 to 99.9%, δ13C(CH4) from −66.1 to −24.6‰, δD(CH4) from −266 to −117‰, δ13C(C2H6) from −27.8 to −22.8‰, and δ13C(CO2) from −26.6 to 16.8‰. Isotopic studies reveal the presence of 3 genetic types of natural gases: thermogenic (CH4, higher gaseous hydrocarbons, and CO2), endogenic CO2, and microbial CH4 and CO2. Thermogenic gases resulted from coalification processes, which were probably completed by Late Carboniferous and Early Permian time. Endogenic CO2 migrated along the deep-seated faults from upper mantle and/or magma chambers. Minor volumes of microbial CH4 and CO2 occur at shallow depths close to the abandoned mine workings. “Late-stage” microbial processes have commenced in the Upper Cretaceous and are probably active at present. However, depth-related isotopic fractionation which has resulted from physical and physicochemical (e.g. diffusion and adsorption/desorption) processes during gas migration cannot be neglected. The strongest rock and gas outbursts occur only in those parts of coal deposits of the LSCB which are dominated by large amounts of endogenic CO2.  相似文献   

5.
The dominant reaction determining the chemistry of fluids in a geothermal system of the New Zealand type consists of the conversion of primary plagioclase by CO2 to calcite and clays with log pco2 = 15.26 ? 7850/(t + 273.2), temperature t in °C. Subsequent reactions involving secondary minerals control relative CO2-H2S-contents. The distribution of mineral phases throughout a geothermal system reflects the stepwise conversion of thermodynamically unstable primary phases through a series of intermediate, metastable phases to a thermodynamically stable, secondary assemblage. The relative stabilities of these phases was evaluated on the basis of their solubilities, the least soluble aluminiumsilicate representing the thermodynamically most stable phase under a given set of conditions. Observed assemblages of secondary minerals in geothermal systems represent indicators allowing mineral/fluidinteraction conditions to be evaluated on the basis of multi-component mineral stability diagrams.  相似文献   

6.
OmniStar小型气体质谱仪用于车载实验室,可根据野外情况采取灵活的采样方式,实现对H2、He、CH4、N2、O2、Ar、CO2以及C3H8、C4H10的现场分析。对浓度为100×10-6的H2、He、CH4、N2、O2、Ar、CO2混合标气进行100次连续测定,得到的各组分的精密度(RSD)均优于1%,H2、He、Ar、CO2准确度(RE)分别为3.74、0.94、1.83、10.5;对室内空气进行连续3 500次测定,得到的H2、He、CO2的精密度分别为2.25%、5.55%、4.06%,N2、O2、Ar的精密度优于1%;对CH4、C2H6、C3H8、C4H10混合标准气体进行连续13次测量,得到的C3H8、C4H10的精密度(RSD)优于1%,测量的平均值与标准值完全吻合,能够满足野外现场分析需求。在内蒙古西乌旗及新疆金窝子地区应用该仪器,采用采样袋取气、螺旋钻及井孔原位在线测定等方式得到样品数据,并发现两区域内部分采样点的CO2、H2及He异常。  相似文献   

7.
The chemical composition of the gases emitted from a hornito close to the active lava lake of Erta'Ale, Ethiopia, as derived from chemical analyses on 18 samples collected on 23 January 1974, was found to be (in mol-%): H2O: 79.4, CO2: 10.4, total S: 7.36, HCl: 0.42, H2: 1.49, N2: 0.18, Ar: 0.001, CO: 0.46, and COS: 0.009. Thermodynamic considerations, based on the equilibria CO2 + H2 ? CO + H2O and CO2 + 3H2 + SO2 ? COS + 3H2O show that the analytical values represent the equilibrium composition of a gas mixture at the measured temperature of around 1130°C under close to the surface pressure conditions. Comparison of the Erta'Ale gas emissions with those from other volcanoes suggests a close similarity in their chemical composition. This similarity is considered to be due to common processes governing the release of gaseous species from a magma.  相似文献   

8.
The chemical composition of gas mixtures emerging in thermal areas can be used to evaluate the deep thermal temperatures. Chemical analyses of the gas compositions for 34 thermal systems were considered and an empirical relationship developed between the relative concentrations of H2S, H2, CH4 and CO2 and the reservoir temperature. The evaluated temperatures can be expressed by: t°C = 24775α + β + 36.05 ?273 where α = 2 logCH4CO2 ?log H2CO2?3 log H2SCO2 (concentrations in % by volume) and β = 7 logPco2  相似文献   

9.
At pressures which are expected in the earth's crust, the high temperature border of the lawsonite stability field is marked by reaction lawsonite = zoisite + kyanite/andalusite + pyrophyllite + H2O. (1a) The equilibrium data of reaction (1a) have been experimentally determined, and the equilibrium curve is characterized by the following P, T-data: 4 kb; 360±20° C; 5 kb; 375 ±20° C; 7kb;410±20° C. In the P, T diagram the equilibrium curve of reaction lawsonite + quartz = zoisite + pyrophyllite + H2O (6) is very close to the curve of reaction (1a); the distance is smaller than the error stated for curve (1a), i.e. below ±20° C. The stability fields of lawsonite and anorthite + H2O are not adjacent fields in the P, T diagram. This means that no stable reaction of lawsonite to anorthite + H2O can exist. Thus, the CaAl-silicate formed by the decomposition of lawsonite is always zoisite. Further, as shown by experimental determination of reaction calcite + pyrophyllite + H2O = lawsonite + quartz + CO2, (7) lawsonite can coexist with a gas phase only if the CO2 content of the gas phase does not exceed 3±2 Mol-%. This means, for metamorphism of lawsonite glaucophane rocks, that the fluid phase that was present during metamorphism has been quite rich in H2O. Ernst (1971, in press) who applied a different, indirect investigation method when studying the composition of the fluid-attending Franciscan and Sanbagawa metamorphism has come to the result that during metamorphism of lawsonite-glaucophane rocks the fluid phase did not contain more than 1–3 Mol-% of CO2.  相似文献   

10.
Carbon and hydrogen isotopic compositions of New Zealand geothermal gases   总被引:1,自引:0,他引:1  
Carbon and hydrogen isotopic compositions are reported for methane, hydrogen and carbon dioxide from four New Zealand geothermal areas: Ngawha, Wairakei, Broadlands and Tikitere. Carbon-13 contents are between ?24.4 and ?29.5%. (PDB) for methane, and between ?3.2 and ?9.1%. for carbon dioxide. Deuterium contents are between ?142 and ?197%. (SMOW) for methane and between ?310 and ?600%. for hydrogen. The different areas have different isotopic compositions with some general relationships to reservoir temperature.The isotopic exchange of hydrogen with water indicates acceptable reservoir temperatures of 180–260°C from most spring samples but often higher than measured temperatures in well samples. Indicated temperatures assuming 13C equilibria between CH4 and CO2 are 100–200°C higher than measured maxima. This difference may be due to partial isotopic equilibration or may reflect the origin of the methane. Present evidence cannot identify whether the methane is primordial, or from decomposing sediments or from reduction of magmatic CO2. The isotopic equilibria between CH4, CO2, H2 and H2O are reviewed and a new semi-empirical temperature scale proposed for deuterium exchange between methane and water.  相似文献   

11.
Niutuozhen geothermal field is located in the Jizhong graben, belonging to the northern part of Bohai Bay Basin in North China. Chemical and isotopic analyses were carried out on 14 samples of the geothermal fluids discharged from Neogene Minghuazhen (Nm), Guantao (Ng), and Jixianian Wumishan (Jxw) formations. The δ2H and δ18O in water, δ13C in CH4, δ13C in CO2, and 3He/4He ratio in the gases were analyzed in combination with chemical analyses on the fluids in the Niutuozhen geothermal field. The chemical and isotopic compositions indicate a meteoric origin of the thermal waters. The reservoir temperatures estimated by chemical geothermometry are in the range between 60 and 108 °C. The results show that the gases are made up mainly by N2 (18.20–97.42 vol%), CH4 (0.02–60.95 vol%), and CO2 (0.17–25.14 vol%), with relatively high He composition (up to 0.52 vol%). The chemical and isotopic compositions of the gas samples suggest the meteoric origin of N2, predominant crustal origins of CH4, CO2, and He. The mantle-derived He contributions are calculated to be from 5 to 8% based on a crust–mantle binary mixing model. The deep temperatures in the Jxw reservoir were evaluated based on gas isotope geothermometry to be in the range from 141 to 165 °C. The mantle-derived heat fraction in the surface heat flow is estimated to be in the range of 48–51% based on 3He/4He ratios.  相似文献   

12.
Remineralization Ratios in the Subtropical North Pacific Gyre   总被引:2,自引:0,他引:2  
Based on a new mixing model of two end-members, the water column remineralization ratios of P/N/Corg - O2 = 1/13 ± 1/135 ± 18/170 ± 9 are obtained for the Hawaii Ocean Time-series (HOT) data set at station ALOHA. The traditional Redfield ratios of P/N/Corg/–O2 = 1/16/106/138 have standard deviations of more than 50%, when they are based on the average composition of phytoplankton. Apparently, the remineralization processes in the water column have smoothed out the observed large variability of plankton compositions. A new molar formula for the remineralized plankton may be written as 135H280O105N13P or C25(CH2O)101(CH4)9(NH3)13(H3PO4). Oxidation of this formula results inC25(CH2O)101(CH4)9(NH3)13(H3PO4) + 170O2 135CO2 + 132H2O + 13NO3 - + H2PO4 - + 14H+.For comparison, remineralization using Redfield's formula gives:(CH2O)106(NH3)16(H3PO4) + 138O2 106CO2 + 122H2O + 16NO3 -+ H2PO4 - + 17H+  相似文献   

13.
A new microscope vacuum heating stage and gas analyzer has been developed for measurement of H2O, CO2, SO2, and noncondensable gas (H2, CO, N2, Ar, CH4, etc.) evolved from samples, particularly natural glass, at temperatures up to 1280°C. The gas evolved upon heating to 1280δC is collected in a liquid nitrogen cold trap. Gas components are identified by the characteristic vapor pressure and temperature ranges over which solid and vapor are in equilibrium during sublimation of individual components. The masses of CO2, SO2, and H2O derived from samples and blanks are calculated using the ideal gas law, the molecular weights of the components, and the gauge constant (i.e. the ratio of the number of moles of a gas to its partial pressure in the constant volume). Results obtained by repeated determinations of H2O, CO2, and SO2 evolved from a submarine basaltic glass from Kilauea volcano, Hawaii, (average sample mass = 3 × 10?3 g) gave probable errors for the determinations of H2O (0.23%), CO2 (0.025%), and S (0.071%) equal to 4, 10, and 8% respectively, of the concentrations. Determinations of H2O in smaller samples of H2O-poor basaltic pumice show a linear proportionality (0.063%) between the measured H2O and the sample mass over the range 0.1 × 10?6 to 1.7 × 10?6 g H2O. Comparisons of H2O determinations by this technique with those obtained by Penfield, gas chromatic, microcoulometric, and vacuum fusion techniques used elsewhere show reasonably good agreement. Determinations of SO2 by this technique agree reasonably well X-ray fluorescence and electron microprobe determinations of sulfur. Determinations of CO2 by the present technique are reproducible but cannot be compared directly to measurements made in other labs because of differences in samples analyzed. The principle advantages of this analytical technique are the very small sample required, the simultaneous determination of H2O, CO2, SO2 and noncondensable gas, the avoidance of calibration procedures dependent on chemical standards, and the visual observations that can be made during sample outgassing.  相似文献   

14.
The occurrence of talc and tremolite in a temperature gradient was investigated in siliceous calcite-dolomite sediments exposed along a strip in the southeastern part of the Damara Orogen. Five bivariant reactions may lead to the formation of talc and tremolite:
  1. 3 dolomite+4 quartz+1 H2O ? 1 talc+3 calcite+3 CO2
  2. 5 talc+6 calcite+4 quartz ? 1 tremolite+6 CO2+2 H2O
  3. 2 talc+3 calcite ? 1 tremolite+1 dolomite+1 CO2+1 H2O
  4. 5 dolomite+8 quartz+1 H2O ? 1 tremolite+3 calcite+7 CO2
  5. 2 dolomite+1 talc+4 quartz ? 1 tremolite+4 CO2.
The common paragenesis of four mineral assemblages tc+cc+dol+qtz1 and tre+tc+ cc+qtz with increasing temperature over an extended area show that the reactions must have taken place along the equilibrium curve or when fluid pressure is not constant along the equilibrium plane of reactions (1) or (2). The described occurrence of the five mineral assemblage tre+tc+cc+dol+qtz can be stable only on the isobaric intersection point, or when P f is variable on the univariant intersection curve of the equilibrium planes of all five reactions. The genetic relations of the described parageneses are illustrated with the help of a phase diagram. Minimum P-T conditions which prevailed during metamorphism in this part of the Damara Orogen have been estimated to be about 590° C and 5 kb.  相似文献   

15.
常用气体地热温度计的应用及效果评价   总被引:1,自引:0,他引:1       下载免费PDF全文
赵平 《地质科学》1993,28(2):167-176
基于冰岛部分地热田的实际资料,选择有代表性的、不同温度的地热田,应用CO2、H2S、H2、CO2/H2和H2S/H2气体地热温度计计算热储温度,深入探讨了影响温度计准确性的各种因素,提出CO2和H2S温度计具有良好的实用价值。在热储温度T<200℃时,CO2温度计的预测温度略低;在200℃<T<300℃范围时,H2S温度计标定不够准确。并对现有的其它气体地热温度计进行了简要评价。  相似文献   

16.
The Huntly coalfield has significant coal deposits that contain biogenically-sourced methane. The coals are subbituminous in rank and Eocene in age and have been previously characterised with relatively low to moderate measured gas (CH4) contents (2–4 m3/ton). The CO2 holding capacity is relatively high (18.0 m3/ton) compared with that of CH4 (2.6 m3/ton) and N2 (0.7 m3/ton) at the same pressure (4 MPa; all as received basis). The geothermal gradient is also quite high at 55 °C/km.A study has been conducted which simulates enhancement of methane recovery (ECBM) from these deposits using a new version of the TOUGH2 (version 2) reservoir simulator (ECBM-TOUGH2) that can handle non-isothermal, multi-phase flows of mixtures of water, CH4, CO2 and N2. The initial phase of the simulation is CH4 production for the first 5 years of the field history. The model indicates that methane production can be significantly improved (from less than 80% recovery to nearly 90%) through injection of CO2. However, although an increase in the rate of CO2 injection increases the amount of CO2 sequestered, the methane recovery (because of earlier breakthrough with increasing injection rate) decreases. Modeling of pure N2 injection produced little enhanced CH4 production. The injection of a hypothetical flue gas mixture (CO2 and N2) also produced little increase in CH4 production. This is related to the low adsorption capacity of the Huntly coal to N2 which results in almost instantaneous breakthrough into the production well.  相似文献   

17.
The chemical and isotopic composition of fumarolic gases emitted from Nisyros Volcano, Greece, and of a single gas sample from Vesuvio, Italy, was investigated in order to determine the origin of methane (CH4) within two subduction-related magmatic-hydrothermal environments.Apparent temperatures derived from carbon isotope partitioning between CH4 and CO2 of around 340°C for Nisyros and 470°C for Vesuvio correlate well with aquifer temperatures as measured directly and/or inferred from compositional data using the H2O-H2-CO2-CO-CH4 geothermometer. Thermodynamic modeling reveals chemical equilibrium between CH4, CO2 and H2O implying that carbon isotope partitioning between CO2 and CH4 in both systems is controlled by aquifer temperature.N2/3He and CH4/3He ratios of Nisyros fumarolic gases are unusually low for subduction zone gases and correspond to those of midoceanic ridge environments. Accordingly, CH4 may have been primarily generated through the reduction of CO2 by H2 in the absence of any organic matter following a Fischer-Tropsch-type reaction. However, primary occurrence of minor amounts of thermogenic CH4 and subsequent re-equilibration with co-existing CO2 cannot be ruled out entirely. CO2/3He ratios and δ13CCO2 values imply that the evolved CO2 either derives from a metasomatized mantle or is a mixture between two components, one outgassing from an unaltered mantle and the other released by thermal breakdown of marine carbonates. The latter may contain traces of organic matter possibly decomposing to CH4 during thermometamorphism.  相似文献   

18.
Carbon stable-isotope compositions of coexisting carbon dioxide and methane from geothermal springs across the Central Andes of northern Chile and Bolivia are reported. A total of 60 samples were analyzed for δ13CCO2 and, of these, 10 were selected for δ13CCH4 analyses. The Central Andes are characterized by an active volcanic arc and an unusually thick (up to 75 km) continental crust behind the arc, beneath the high plateau region of the Altiplano. Furthermore, helium-isotope evidence suggests active mantle degassing in a 350-km-wide zone beneath the thick continental crust in the Central Andes (Hoke et al., 1994).

The present results show a wide range of δ13CCO2 (-14.9 to -0.6‰) and a surprisingly heavy δ13CCH4 (?20.9 to ?12.3‰). The difference between δ13CCO2 and δ13CCH4 13CCO2-CH4 ) for individual samples varies between 1.5‰ and 13.5‰. The δ13CCO2 results show wide and overlapping ranges in the samples collected from the Precordillera, the Volcanic Arc (or Western Cordillera), the Altiplano, and the Eastern Cordillera. The widest ranges occur in the Eastern Cordillera (?15.0 to ?4.8‰) and the Altiplano (?20 to ?6‰). The δ13CCO2 results for geothermal samples from the Volcanic Arc range between ?8.0‰ (Surire) and ?0.6‰ (Abra de Nappa), whereas δ13CCO2 measured in gases collected from geothermal springs in the Precordillera range from ?10 to ?5‰.

The relationships between 3He/4He, δ13CCO2 , and δ13CCH4 are used to distinguish between crustal and mantle origins. The wide (21‰) range in the is interpreted to reflect contributions from different CO2 sources that include organic and inorganic crustal and mantle carbon. Assuming isotopic equilibrium between coexisting methane and carbon dioxide, Δ13CCO2-CH4 suggests very high equilibrium temperatures, in excess of 530°C, for some geothermal systems that also are characterized by a high (up to 63%) mantle-derived helium component.

δ13CCH4 results suggest that methane has not formed by bacteriogenic processes or by thermal decomposition of organic matter, but rather abiogenically through the high-temperature reaction between H2 and CO2. The δ13CCH4 results for the samples from the Volcanic Arc and from two CO2-rich geothermal springs in the Altiplano (Coipasa-2 and Belen de Andamarca) are similar to those reported from hydrothermal fluids emitted from the East Pacific Rise (Welhan, 1988) and White Island, New Zealand (Hulston and McCabe, 1962), suggesting a mantle-derived carbon component in the methane.  相似文献   

19.
Luna 16 and Luna 20 samples were analyzed for volatilizable species using vacuum pyrolysis to 1400°C. The major gaseous products evolved (ranging from 10–650 μg/g) were H2O, CO, CO2, N2 and CH4. Minor components (all < 10 μg/g) included NH3, HCN, NO, SO2, H2S, C2H2, C2H4, C2H6, C3H6 and higher hydrocarbons, benzene, toluene, and the polymeric contaminants Teflon® and silicone oil. The total carbon and nitrogen contents (μg/g) for these sieved samples (< 125 μm) were: Luna 16—C 418, N 134 and Luna 20—C 380, N 80.  相似文献   

20.
ABSTRACT The metasedimentary sequence of the Deep Freeze Range (northern Victoria Land, Antarctica) experienced high-T/low-F metamorphism during the Cambro-Ordovician Ross orogeny. The reaction Bt + Sil + Qtz = Grt + Crd + Kfs + melt was responsible for the formation of migmatites. Peak conditions were c. 700–750° C, c. 3.5–5 kbar and xH2Oc. 0.5). Distribution of fluid inclusions is controlled by host rock type: (1) CO2-H2O fluid inclusions occur only in graphite-free leucosomes; (2) CO2–CH4± H2O fluid inclusions are the most common type in leucosomes, and in graphite-bearing mesosomes and gneiss; and (3) CO2–N2–CH4 fluid inclusions are observed only in the gneiss, and subordinately in mesosomes. CO2–H2O mixtures (41% CO2, 58% H2O, 1% Nad mol.%) are interpreted as remnants of a synmig-matization fluid; their composition and density are compatible P–T–aH2O conditions of migmatization (c. 750° C, c. 4 kbar, xH2Oc. 0.5). CO2-H2O fluid in graphite-free leucosomes cannot originate via partial melting of graphite-bearing mesosomes in a closed system; this would have produced a mixed CO2–CH4 fluid in the leucosomes by a reaction such as Bt + Sil + Qtz + C ± H2O = Grt + Crd + Kfs + L + CO2+ CH4. We conclude that an externally derived oxidizing CO2-H2O fluid was present in the middle crust and initiated anatexis. High-density CO2-rich fluid with traces of CH4 characterizes the retrograde evolution of these rocks at high temperatures and support isobaric cooling (P–T anticlockwise path). In unmigmatized gneiss, mixed CO2–N2–CH4 fluid yields isochores compatible with peak metamorphic conditions (c. 700–750° C, c. 4–4.5 kbar); they may represent a peak metamorphic fluid that pre-dated the migmatization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号