首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
锚固技术在土遗址稳定性控制领域已得到了广泛应用,然而锚固浆液的缺乏成为制约土遗址锚固技术和理论发展的关键问题之一。对质量浓度分别为0.5%、1.0%、1.5%的SH与黏土、粉煤灰拌和组成SH混合浆液试块进行物理、力学、声波特性测试以及基于该类型混合浆液分别同木锚杆、玻璃纤维锚杆、钢筋锚杆组成的不同锚固系统的原位锚固、拉拔测试和杆体-浆体界面应力-应变监测。获取了3种锚固系统的破坏模式、锚固性能和杆体-浆体界面应力-应变的时空分布规律。试验结果表明:SH锚固浆液拥有良好的物理、力学性能,与土遗址构筑材料性能兼容;基于SH锚固浆液全长灌浆的3种锚固系统的锚固性能优良;木锚杆锚固系统锚固性能在SH浓度为1.0%时达到最优,而玻璃纤维和钢筋锚杆锚固系统锚固性能良好度随着SH的浓度升高而升高。研究结果为以SH为主材的改性浆液在土遗址锚固领域中的应用提供了依据和参考。  相似文献   

2.
基于PS溶液的楠竹锚杆锚固系统在夯筑土遗址加固中得到了成功的应用,然而其锚固机理研究还未开展。运用室内物理模型试验,针对该锚固系统开展了拉拔测试与杆体-浆体界面应变监测,研究了该锚固系统的锚固性能与破坏模式、杆体-浆体界面剪应变分布与传递特征。试验结果表明基于PS-F浆液锚固系统和基于PS-(C+F)浆液锚固系统均为杆体-浆体界面失效模式,极限锚固力分别为10~15kN和8~16kN;锚固系统均具有较强的延性;在荷载进程中杆体-浆体界面的应变分布具有单峰值及双峰值特点,荷载增加时界面应力向锚固末端传递、压应力出现在锚固段末端及峰值局部出现在末端等特征。研究结论表明,锚固系统的力学性能适用于夯筑土遗址加固,但在杆材耐久性和完整性保证方面还需要进一步探究。  相似文献   

3.
张景科  谌文武  李最雄  郭志谦  王楠 《岩土力学》2014,35(11):3139-3147
加钢筋体复合锚杆在土遗址载体锚固得到了较为成功的应用,但研究该类型锚杆机制刚刚起步。选择交河故城开展了夹? 22 mm钢筋复合体锚杆现场锚固测试,包括锚固性能测试和锚杆各界面层应变监测。锚固性能试验表明,3 m长复合锚杆极限锚固力可达190 kN,而且杆体表现出较强塑性变形。锚杆各界面层应变监测结果表明,钢筋-复合材料界面层轴向应变远大于其他界面层,锚固失效在该层;由于杆体的非均直性,楠竹-复合材料界面表现出轴向应变的非规律性,局部出现受压状态;楠竹-浆体界面剪应变与荷载变化一致,在较高荷载下出现剪应变向锚固末端的传递特征;鉴于杆体的多圈层构造,受力过程中出现明显的横向传递和剪胀特征。其研究成果可为复合锚杆的优化与工艺完善奠定基础。  相似文献   

4.
崔凯  黄井镜  谌文武  王东华  韩宁 《岩土力学》2019,40(6):2183-2191
锚固浆液的兼容性不理想、类型发展的滞后性成为制约土遗址锚固技术发展的关键问题。为了丰富锚固浆液类型和提高其兼容性,研究以传统材料生石灰为掺料,通过其与质量浓度为1.5%的SH黏结剂、黏土和粉煤灰拌和组成的SH-(CaO+C+F)锚固浆液进行流动性测试以及结石体进行物理、力学特性测试,确定了水灰比为0.5的浆液作为优选浆液。并以该型锚固浆液与2种不同材质的锚杆,在3种长度为变量的条件下组成的6种锚固系统开展原位试验。原位试验以获取6种锚固系统的破坏模式、极限荷载与极限荷载?位移特征以及锚固段应力沿锚固深度分布特征为目的,并对其进行分析与讨论。最后,通过对锚固力学机制的分析,对比并评价了该型锚固浆液的兼容性和锚固性能。该研究结果为土遗址锚固浆液的多样性选择提供了参考。  相似文献   

5.
为揭示GFRP锚杆在土遗址加固中的性能,进而克服现有竹、木、复合锚杆锚固的局限性,拓展该新型材料在古遗址加固中的应用,选择直径22mm和25mm的GFRP锚杆开展了现场锚固测试试验。通过单级和循环两种加载模式,获取了两种杆体的破坏模式与极限锚固力; 在杆体砂浆界面布设应变片,获取了受荷过程中界面监测点剪应变的变化特征与分布规律。结果表明:两种锚固系统均失效于砂浆土体界面,22mm GFRP杆体极限锚固力50kN,而25mm GFRP杆体超过120kN; 从加载端到末端监测界面剪应变呈衰减分布,在较大荷载下由于加载方向与杆体轴向微弱偏离导致局部出现受压现象,试验过程中监测界面未出现脱黏现象。研究表明GFRP锚杆可以部分替代复合锚杆,在土遗址载体加固中具有良好的应用前景。  相似文献   

6.
白晓宇  张明义  匡政  王永洪  闫楠  朱磊 《岩土力学》2018,39(10):3891-3899
光纤测试技术是将光纤布拉格光栅(FBG)传感器用光纤连成一串,通过构建多点光栅测试系统实现传感,它具有精度高、抗干扰能力强、空间分辨率高和连续数据采集等特点。将光纤光栅传感技术应用到原型玻璃纤维增强复合材料(GFRP)抗浮锚杆受力测试中,同步测试了锚杆杆体-锚固体界面、锚固体-周围岩土体界面以及锚固体内的应变,实现GFRP抗浮锚杆多界面全长受力测试。测试结果表明,光纤光栅传感技术能准确记录拉拔过程中GFRP抗浮锚杆各界面的应变变化,揭示锚杆杆体-锚固体界面、锚固体内、锚固体-周围岩土体界面的轴向应力和剪应力分别随荷载水平和锚固深度变化的分布规律,但不同界面处荷载的传递深度和剪应力沿深度的影响范围有所差异。该测试技术和传感器埋设工艺有众多优势,在岩土工程科学研究与工程应用领域具有广阔的前景。  相似文献   

7.
岩石锚杆锚固段荷载分布试验研究   总被引:3,自引:2,他引:1  
张幼振  石智军  张晶 《岩土力学》2010,31(Z2):184-188
岩石锚杆锚固段荷载分布规律是岩土锚固技术的关键问题之一。在拉拔试验锚杆杆体测点应变数值采集的基础上,利用复合幂函数和高斯函数对实测数据进行曲线拟合,获得了临界破坏状态下的锚固段轴力及剪应力分布情况。试验结果表明:岩石锚杆锚固段剪应力的分布集中在锚固段的前部;高斯函数可以较好地描述临界破坏状态下锚杆杆体的轴力分布;界面破坏出现在界面峰值抗剪强度远大于界面所能提供的黏结强度情况下。研究结果为锚杆的设计与计算提供了理论依据。  相似文献   

8.
中等应变率下锚固系统的力学响应是地震作用下支护结构安全性分析与评价的关键问题,特别是锚固界面通常为锚固系统中的薄弱环节,其在动态荷载下的力学特性至关重要。开展不同剪切速率条件下锚杆杆体–砂浆界面的直剪试验,详细分析不同法向应力下剪切速率对峰值剪应力、抗剪强度参数以及法向变形性能的影响。试验结果表明,在中等应变率条件下,随剪切速率增大,锚杆杆体–砂浆界面峰值剪应力总体表现为先迅速增加后基本保持不变的趋势;黏聚力和剪胀量均呈现出先增加后减小的变化趋势。试验成果可为中等应变率下锚固系统动力响应分析提供基础数据。  相似文献   

9.
《岩土力学》2019,(12):4627-4636
裂隙注浆是目前土遗址裂隙加固领域的通用手段,浆液的膨胀性和结石体与遗址土体的力学兼容性成为注浆措施能否充分发挥封堵和黏结作用的关键。研究通过对9种不同配合比及水灰比的SH-(Ca O+F+C)浆液进行膨胀性与流动性测试,最终遴选出配合比CaO:F:C=3:2:5的3种不同水灰比浆液作为优选浆液,并通过对优选浆液连续间隔龄期结石体的强度测试确定了最佳养护龄期。而后通过热膨胀和不固结不排水三轴试验,得到了浆液结石体和遗址土体的线胀系数以及浆液结石体、浆液结石体-重塑遗址土和重塑遗址土3类试样的破坏模式、应力-应变关系曲线、抗剪强度参数与弹性模量。结果表明:浆液结石体和遗址土体的线胀系数数量级别相同,3组优选水灰比浆液结石体和重塑遗址土体力学行为一致,其中配合比为CaO:F:C=3:2:5、水灰比为0.50的浆液结石体与重塑遗址土力学兼容性最佳。  相似文献   

10.
张明义  寇海磊  白晓宇 《岩土力学》2014,35(4):1069-1076
抗浮锚杆作为一种竖向锚固技术在我国许多地区广泛应用,锚杆作为抗浮结构的核心其性能受到极大关注。但因钢材易腐蚀,传统金属锚杆的耐久性受到质疑,特别是地铁等地下工程存在杂散电流,限制了金属抗浮锚杆的应用。玻璃纤维增强聚合物(GFRP)抗浮锚杆是一种由树脂基体和玻璃纤维复合而成的新材料,与金属锚杆相比,它具有耐腐蚀、抗拉强度高、自重轻等优良特性。通过植入式裸光纤传感测试技术对GFRP抗浮锚杆的界面应力分布、荷载传递规律及破坏机制进行了研究,论证了GFRP抗浮锚杆使用的适宜性。试验表明,GFRP抗浮锚杆破坏以杆体基体材料剪切破坏为主,?28 mm锚杆极限抗拔力为250 kN,能够满足工程需要;杆体轴力沿深度方向逐渐递减,并且超过一定长度后杆体不再受力。结果显示,中风化岩地区,当锚固段长度为3.956.95 m时,轴力影响深度范围约为3.7 m,说明GFRP抗浮锚杆同样存在临界锚固深度问题。锚杆界面剪应力呈不均匀分布,剪应力峰值随荷载的增加逐渐向下转移,同时0值点也向杆体深部转移。研究成果可为GFRP抗浮锚杆应用于工程实际提供依据。  相似文献   

11.
我国有着大面积的钙华地区,国内外学者对钙华的形成及影响因素进行了大量的研究,但针对钙华地区地质裂缝生态修复材料及工艺还鲜有研究。文章以九寨沟风景区震后地质裂缝为研究对象,结合水文条件及钙华颗粒的性质,在传统糯米灰浆的基础上,通过掺入不同比例的原料、改性剂及一定级配的钙华颗粒,研制出一种性能优良的灌浆材料,并对其流动性、凝结时间、抗压强度及抗折强度进行测试。室内试验表明:该材料具有流动性好、凝结时间可控、强度高、可水下浇筑等特点;空气中养护试样的各项指标均优于水中养护的试样。优选裂缝修复配合比为:糯米浆0.6~0.64份、石膏1.19份、石灰0.29份、钙华颗粒1份、改性剂1# 0.07份、改性剂2# 1.19%份,浆液可泵期63~86 min,初凝时间74~98 min,终凝时间92~125 min。改性糯米灰浆在九寨沟修复裂缝、加固崖体现场修复试验中取得了良好的效果,将流水漏失量由原来的50%降低至3%,较好的恢复了瀑布景观。应用表明改性糯米灰浆与钙华颗粒具有较好的相容性,可改善钙华颗粒的原生孔隙结构,促进钙华景观的生长。  相似文献   

12.
黄土的水敏性是影响黄土地区土遗址保护与修复的重要因素,陕北革命遗址中以黄土窑洞为主的遗址由于黄土水敏性导致了窑洞墙面的脱落、粉化及渗水等病害,利用改性糯米灰浆固化黄土作为墙面修复材料,其改善水敏性的微观机理研究将成为一个重要方面。吸水率为评价固化黄土内部物质成分变化引起孔隙结构改变的重要指标,通过不同胶固比的固化土的吸水率变化,结合XRD、SEM对改性糯米灰浆固化黄土的微观作用机理进行分析。研究结果表明:胶固比为0.45的固化土,经过28 d养护后,饱和吸水率下降到18.71%,且XRD分析同样发现0.45胶固比的固化土中方解石含量增长最为明显。微观镜像中,改性糯米灰浆中的石膏和方解石晶体对孔隙进行了填充,改变了黄土原有的孔隙结构,并增强了土颗粒间的粘结。改性糯米灰浆的固化作用,使黄土原有孔隙结构和物质成分发生改变,改善了黄土的水敏性,其应用于黄土窑洞墙面的修复,将会减少由于水敏性导致的墙面病害。  相似文献   

13.
中国西北气候干旱,自然环境恶劣,表层严重风化使该地区土遗址逐渐消失殆尽。基于此,本文以糯米浆和SH作为注浆浆材在现场加固土遗址顶部薄弱风化层,通过微型贯入仪、红外热成像仪、声波仪等仪器及模拟雨淋试验检测加固后的力学强度特征及耐久性能。并在室内制作重塑样测量单轴抗压强度、波速、崩解速率与现场实验结果对比。结果表明,SH加固后的土遗址表面抗压强度、抗水侵蚀能力均优于糯米浆的加固效果。当注浆孔径为25mm时,各浓度浆液渗透半径最大。用2%SH浆液加固后,抗压强度提高了2.6倍,抗崩解能力提高了1.63倍,因此2%SH浆液可以作为防风化加固材料最佳选择。  相似文献   

14.
冻融循环作用下节理岩体锚固性能退化机理和模式   总被引:2,自引:0,他引:2  
岩土锚固的长期性能和耐久性是当前岩土工程界普遍关注的热点问题,也是影响锚固工程长期安全性的关键问题之一。节理岩体存在不同尺度、程度的损伤和缺陷,为地下水的存储和运移提供场所和通道。当达到孔隙水和裂隙水的冻结温度时,岩体中产生冻胀,并伴随着水分迁移,影响锚固系统的锚固性能,在冻融循环作用下,引起锚固系统长期性能和耐久性的退化。依据孔隙介质的冻结理论,建立了砂浆、岩石、砂浆-钢筋和砂浆岩石接触面静水压力学模型,分析其冻结机理。在总结岩石冻融损伤劣化研究成果基础上,深入系统地分析了节理岩体锚固系统的冻融损伤劣化机理及其影响因素,并建立冻融循环作用下节理岩体锚固性能退化的6种模式及其数学模型。  相似文献   

15.
锚固岩质边坡具有良好的抗震效果,为深入了解其地震动响应机制,系统梳理了地震荷载下锚固岩质边坡动力响应的国内外研究文献,论述了地震作用下岩质边坡-锚固结构体系动力特性、锚固岩质边坡动力稳定性及其动力响应影响因素.基于现有研究成果,未来可进一步分析强震或频发微震等不同地震荷载形式下的锚固岩质边坡动力演化模式;借助基于演化模式的锚固岩质边坡地质力学模型,明晰地震荷载传递规律、锚固结构力学演化特征与锚固岩质边坡动力响应特性,综合揭示岩质边坡-锚固结构体系地震动耦联作用机理;开展具有大塑性变形能力的新型抗震锚固结构设计关键技术的创新、集成与标准化,并建立新型抗震锚固结构关键技术应用示范区.   相似文献   

16.
围岩作用下锚杆砂浆锈胀开裂过程分析   总被引:1,自引:0,他引:1  
徐洪  张永兴  王桂林 《岩土力学》2010,31(4):1193-1198
从砂浆锚杆锚固体自身的特点出发,借鉴钢筋混凝土结构锈胀开裂研究成果,对锚杆砂浆锈胀开裂过程进行了分析。考虑锚杆锈蚀体积膨胀过程,以填充系数表示砂浆开裂过程中锚杆锈蚀产物的损失,建立了锚杆锈蚀后砂浆内部位移模型,以弹性力学为基础,引入围岩参数影响系数概念,对锚杆锈蚀导致砂浆保护层开裂过程以及围岩参数对开裂过程的影响程度等进行了分析研究,并采用有限元分析方法对其进行了验证。理论分析结果表明,因锚杆锈蚀而导致的砂浆保护层开裂以及裂纹的扩展情况均与围岩特性密切相关,砂浆开裂后裂纹会经历一段稳定扩展过程,裂纹的最大稳定扩展半径随围岩参数影响系数的增加而增大,在合适的围岩参数条件下,裂纹可以一直稳定扩展致整个砂浆保护层外壁。有限元分析结论与理论结果一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号