首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbonate cements in late Dinantian (Asbian and Brigantian) limestones of the Derbyshire carbonate platform record a diagenetic history starting with early vadose meteoric cementation and finishing with burial and localized mineral and oil emplacement. The sequence is documented using cement petrography, cathodoluminescence, trace element geochemistry and C and O isotopes. The earliest cements (Pre-Zone 1) are locally developed non-luminescent brown sparry calcite below intrastratal palaeokarsts and calcretes. They contain negligible Fe, Mn and Sr but up to 1000 ppm Mg. Their isotopic compositions centre around δ18O =?8.5‰, δ13C=?5.0‰. Calcretes contain less 13C. Subsequent cements are widespread as inclusion-free, low-Mg, low-Fe crinoid overgrowths and are described as having a‘dead-bright-dull’cathodoluminescence. The‘dead’cements (Zone 1) are mostly non-luminescent but contain dissolution hiatuses overlain by finely detailed bright subzones that correlate over several kilometres. Across‘dead'/bright subzones there is a clear trend in Mg (500–900 ppm), Mn (100–450 ppm) and Fe (80-230 ppm). Zone 1 cements have isotopic compositions centred around δ18O =?8.0‰ and δ13C=?2.5‰. Zone 2 cement is bright, thin and complexly subzoned. It is geochemically similar to bright subzones of Zone 1 cements. Dull Zone 3 cement pre-dates pressure dissolution and fills 70% or more of the pore space. It generally contains little Mn, Fe and Sr but can have more than 1000 ppm Mg, increasing stratigraphically upwards. The δ18O compositions range from ?5.5 to ?15‰ and the δ13C range is ?1 to + 3.20/00. Zone 4 fills veins and stylolite seams in addition to pores. It is synchronous with Pb, Ba, F ore mineralization and oil migration. Zone 4 is ferroan with around 500 ppm Fe, up to 2500 ppm Mg and up to 1500 ppm Mn. Isotopic compositions range widely; δ15O =?2.7 to ?9‰ and δ13C=?3.8 to+2.50‰. Unaltered marine brachiopods suggest a Dinantian seawater composition around δ15O = 0‰ (SMOW), but vital isotopic effects probably mask the original δ13C (PDB) value. Pre-Zone 1 calcites are meteoric vadose cements with light soil-derived δ13C and light meteoric δ18O. An unusually fractionated‘pluvial’δ15O(SMOW) value of around — 6‰ is indicated for local Dinantian meteoric water. Calcrete δ18O values are heavier through evaporation. Zone 1 textures and geochemistry indicate a meteoric phreatic environment. Fe and Mn trends in the bright subzones indicate stagnation, and precipitation occurred in increments from widespread cyclically developed shallow meteoric water bodies. Meteoric alteration of the rock body was pervasive by the end of Zone 1 with a general resetting of isotopic values. Zone 3 is volumetrically important and external sources of water and carbonate are required. Emplacement was during the Namurian-early Westphalian by meteoric water sourced at a karst landscape on the uplifted eastern edge of the Derbyshire-East Midland shelf. The light δ18O values mainly reflect burial temperatures and an unusually high local heat flow, but an input of highly fractionated hinterland-derived meteoric water at the unconformity is also likely. Relatively heavy δ13C values reflect the less-altered state of the source carbonate and aquifer. Zone 4 is partly vein fed and spans burial down to 2000 m and the onset of tectonism. Light organic-matter-derived δ13C and heavy δ18O values suggest basin-derived formation water. Combined with textural evidence of geopressures, this relates to local high-temperature ore mineralization and oil migration. Low water-to-rock ratios with host-rock buffering probably affected the final isotopic compositions of Zone 4, masking extremes both of temperature and organic-matter-derived CO2.  相似文献   

2.
Upper Visean limestones in the Campine Basin of northern Belgium are intensively fractured. The largest and most common fractures are cemented by non-ferroan, dull brown-orange luminescent blocky calcite. First melting temperatures of fluid inclusions in these calcites are around -57°C, suggesting that precipitation of the cements occurred from NaCl-CaCl2-MgCl2 fluids. The final melting temperatures (Tmice) are between -5 and -33°C. The broad range in the Tmice data can be explained by the mixing of high salinity fluids with meteoric waters, but other hypotheses may also be valid. Homogenization temperatures from blocky calcite cements in the shelf limestones are interpreted to have formed between 45 and 75°C. In carbonates which were deposited close to and at the shelf margin, precipitation temperatures were possibly in the range 70-85°C and 72-93°C, respectively. On the shelf, the calcites have a δ18O around -9.3‰ PDB and they are interpreted to have grown in a fluid with a δ18O between −3.5 and +1.0‰ SMOW. At the shelf margin, blocky calcites (δ18O∼ - 13.5‰ PDB) could have precipitated from a fluid with a δ18O betweenn -4.0 and -1.1‰ SMOW. The highest oxygen isotopic compositions are comparable to those of Late Carboniferous marine fluids (δ18O= - 1‰ SMOW). The lowest values are more positive than a previously reported composition for Carboniferous meteoric waters (δ18O= -7‰ SMOW). Precipitation is likely to have occurred in marine-derived fluids, which mixed with meteoric waters sourced from near the Brabant Massif. Fluids with a similar negative oxygen isotopic composition and high salinity are actually present in Palaeozoic formations. The higher temperature range in the limestones near the shelf margin is explained by the upward migration of fluids from the ‘basinal’ area along fractures and faults into the shelf.  相似文献   

3.
In the Muskeg Trough of northcentral Alberta the Gilwood Member contains widespread carbonate deposits that formed within terrigenous mudstone and sandstone hosts. Stratigraphic, depositional and petrographic relationships indicate that these carbonates represent calcretes and dolocretes. Calcretes, observed best with cathodoluminescence, display microcrystalline alpha fabrics, circumgranular cracks, root networks, displacive growth fabrics, elongate channel voids and rare coloform growths with flower spar. Similarly, dolocretes have microcrystalline alpha fabrics, brecciation, gradational contacts with host mudstones, extensive layered nodular horizons and are associated with anhydrite and pyrite. δ13C values range between ?7‰ to +1‰ and –6‰ to +3‰ for calcretes and dolocretes, respectively. Oxygen isotopes are more variable and differ with host lithologies. δ18O of calcretes ranges between ?11‰ to ?8‰ for sandstones and ?8‰ to ?3‰ for mudstones, whereas δ18O of dolocretes ranges between ?3‰ to 1‰ for marine mudstones and ?6‰ to ?2‰ for pedogenic mudstones. Regional mapping indicates that calcretes thicken towards the deepest parts of the Muskeg Trough. Widespread dolocretes extend beyond the eastern and western limits of Muskeg Trough and are useful marker intervals for regional correlations. Dolocretes of restricted lateral extent are found within gleyed palaeosol mudstones next to calcretized channel sandstones. Calcrete isotopic values are interpreted as indicative of carbonate precipitation from waters with meteoric water input. However, the higher δ18O values in dolocretes are indicative of a contribution from an isotopically heavier source such as seawater. Stratigraphically, calcretes are most common along the western and northern edges of Muskeg Trough; thus, calcrete accumulation was further controlled by meteoric water in-flow from the highland to the west and sluggish groundwater flow in Muskeg Trough. In contrast, regionally widespread dolocrete horizons appear to have formed from mixing of fresh waters derived from the highland to the west and seawaters introduced from the east. Regionally restricted dolocretes which are found next to channel sandstones formed from groundwater out-flow from the permeable channel sandstones which resulted in calcretization in channel proximal mudstones and dolomitization in channel distal mudstones.  相似文献   

4.
Plio‐Pleistocene speleothems from australopithecine‐bearing caves of South Africa have the potential to yield paleoenvironmental and geochronological information using isotope geochemistry. Prior to such studies it is important to assess the preservation of geochemical signals within the calcitic and aragonitic speleothems, given the tendency of aragonitic speleothems to recrystallize to calcite. This study documents the geochemical suitability of speleothems from the principal hominin‐bearing deposits of South Africa. We use petrography, together with stable isotope and trace element analysis, to identify the occurrence of primary aragonite, primary calcite, and secondary calcite. This study highlights the presence of diagenetic alteration at many of the sites, often observed as interbedded primary and secondary fabrics. Trace element and stable isotopic values distinguish primary calcite from secondary calcite and offer insights into geochemical aspects of the past cave environment. δ13C values of the primary and secondary calcites range from +6 to −9‰ and δ18O values range from −4 to −6‰. The data are thus typical of meteoric calcites with highly variable δ13C and relatively invariant δ18O. High carbon isotope values in these deposits are associated with the effects of recrystallization and rapid outgassing of CO2 during precipitation. Mg/Ca and Sr/Ca ratios differ between primary and secondary calcite speleothems, aiding their identification. Carbon and oxygen isotope values in primary calcite reflect the proportion of C3 and C4 vegetation in the local environment and the oxygen isotope composition of rainfall. Primary calcite speleothems preserve the pristine geochemical signals vital for ongoing paleoenvironmental and geochronological research. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
In the last ten years, with important discoveries from oil and gas exploration in the Dabashan foreland depression belt in the borderland between Shanxi and Sichuan provinces, the relationship between the formation and evolution of, and hydrocarbon accumulation in, this foreland thrust belt from the viewpoint of basin and oil and gas exploration has been studied. At the same time, there has been little research on the origin of fluids within the belt. Based on geochemical system analysis including Z values denoting salinity and research on δ13C, δ18O and 87Sr/86Sr isotopes in the host rocks and veins, the origin of paleofluids in the foreland thrust belt is considered. There are four principal kinds of paleofluid, including deep mantle-derived, sedimentary, mixed and meteoric. For the deep mantle-derived fluid, the δ13C is generally less than ?5.0‰PDB, δ18O less than -10.0‰PDB, Z value less than 110 and 87Sr/86Sr less than 0.70600; the sedimentary fluid is mainly marine carbonate-derived, with the δ13C generally more than ?2.0‰PDB, δ18O less than ?10.0‰PDB, Z value more than 120 and 87Sr/86Sr ranging from 0.70800 to 0.71000; the mixed fluid consists mainly of marine carbonate fluid (including possibly a little mantle-derived fluid or meteoric water), with the δ13C generally ranging from ?2.0‰ to ?8.0‰PDB, δ18O from ?10.0‰ to ?18.0‰ PDB, Z value from 105 to 120 and 87Sr/86Sr from 0.70800 to 0.71000; the atmospheric fluid consists mainly of meteoric water, with the δ13C generally ranging from 0.0‰ to ?10.0‰PDB, δ18O less than ?8.0‰PDB, Z value less than 110 and 87Sr/86Sr more than 0.71000. The Chengkou fault belt encompasses the most complex origins, including all four types of paleofluid; the Zhenba and Pingba fault belts and stable areas contain a simple paleofluid mainly of sedimentary type; the Jimingsi fault belt contains mainly sedimentary and mixed fluids, both consisting of sedimentary fluid and meteoric water. Jurassic rocks of the foreland depression belt contain mainly meteoric fluid.  相似文献   

6.
Carbonate concretions in the Lower Carboniferous Caton Shale Formation contain diagenetic pyrite, calcite and barite in the concretion matrix or in different generations of septarian fissures. Pyrite was formed by sulphate reduction throughout the sediment before concretionary growth, then continued to form mainly in the concretion centres. The septarian calcites show a continuous isotopic trend from δ13C=?28·7‰ PDB and δ18O=?1·6‰ PDB through to δ13C=?6·9‰ PDB and δ18O=?14·6‰ PDB. This trend arises from (1) a carbonate source initially from sulphate reduction, to which was added increasing contributions of methanogenic carbonate; and (2) burial/temperature effects or the addition of isotopically light oxygen from meteoric water. The concretionary matrix carbonates must have at least partially predated the earliest septarian cements, and thus used the same carbonate sources. Consequently, their isotopic composition (δ13C=?12·0 to ?10·1‰ PDB and δ18O=?5·7 to ?5·6‰ PDB) can only result from mixing a carbonate cement derived from sulphate reduction with cements containing increasing proportions of carbonate from methanogenesis and, directly or indirectly, also from skeletal carbonate. Concretionary growth was therefore pervasive, with cements being added progressively throughout the concretion body during growth. The concretions contain barite in the concretion matrix and in septarian fissures. Barite in the earlier matrix phase has an isotopic composition (δ34S=+24·8‰ CDT and δ18O=+16·4‰ SMOW), indicating formation from near‐surface, sulphate‐depleted porewaters. Barites in the later septarian phase have unusual isotopic compositions (δ34S=+6 to +11‰ CDT and δ18O=+8 to +11‰ SMOW), which require the late addition of isotopically light sulphate to the porewaters, either from anoxic sulphide oxidation (using ferric iron) or from sulphate dissolved in meteoric water. Carbon isotope and biomarker data indicate that oil trapped within septarian fissures was derived from the maturation of kerogen in the enclosing sediments.  相似文献   

7.
The Pennsylvanian phylloid algal mounds exposed in the Cervatina Limestone of the Cantabrian Zone (NW Spain) developed during the highstands of high-frequency shallowing-upward cycles and lack evidence of subaerial exposure at their tops. Mound core facies are composed of massive bafflestones with variable amounts of calcite cements and anchicodiacean phylloid algae with cyathiform thalli preserved in growth position. Through standard petrographic, isotopic (δ18O and δ13C), major and trace element (Ca, Mg, Fe, Mn, Sr) and cathodoluminescence analyses, five calcite cement phases (cement 1 (C1)–cement 5 (C5)) have been identified filling primary and secondary pores. Early marine diagenesis is represented by micritization and non-luminescent to mottled-dull luminescent high-Mg calcite fibrous marine cement (C1). A dissolution phase then occurred and created vuggy and moldic pores. Based on the absence of field or petrographical or geochemical evidence of exposure, it is inferred that dissolution occurred in near-surface undersaturated marine waters with respect to aragonite related to progressive organic matter oxidation. Secondary porosity was subsequently filled by dull-bright-dull bladed high-Mg calcite (C2), which precipitated in the early shallow burial from marine-derived pore waters. Remaining porosity was occluded by shallow-burial precipitates consisting of non-luminescent scalenohedral low-Mg calcite (C3) followed by non-ferroan dull luminescent calcite spar (C4). Latter phases of calcite spar exhibiting non- and dull luminescence (C5) are associated with burial calcite veins. Low δ18O values (around ?8‰), moderately depleted δ13C values (around 0.5‰) and the homogeneity of trace element contents of carbonate matrix, cements and vein-filling calcites suggest burial isotopic re-equilibration and recrystallization, probably in Early Permian times during post-thrusting orocline formation.  相似文献   

8.
MUCHEZ  NIELSEN  SINTUBIN  & LAGROU 《Sedimentology》1998,45(5):845-854
Two calcite cements, filling karst cavities and replacing Lower Carboniferous limestones at the Variscan Front Thrust, were precipitated after mid-Jurassic Cimmerian uplift and subsequent erosion but before late Cretaceous strike-slip movement. The first calcite (stage A) is nonferroan and crystals are coated by hematite and/or goethite. These minerals also occur as inclusions along growth zones. The calcite lattice contains < 0·07 mol.% Fe, but Mn concentrations can be as high as 0·72 mol.% in bright yellow luminescent zones. Primary, originally one-phase, all-liquid, aqueous inclusions have a final melting temperature between ?0·2° and +0·2 °C, indicating a meteoric origin of the ambient water. The δ13C and δ18O values of the calcites are between ?7·3‰ and ?6·3‰, ?7·8‰ and ?5·5‰ on the Vienna PeeDee Belemnite (VPDB) scale, respectively. The second calcite (stage B) consists of ferroan (0·13–0·84 mol.% Fe) blocky crystals with Mn concentrations between 0·34 and 0·87 mol.%. Primary, single-phase aqueous fluid inclusions indicate precipitation from a meteoric fluid below 50 °C . The δ13C values of stage B calcites vary between ?7·3‰ and ?2·1‰ VPDB and the δ18O values between ?7·9‰ and ?7·2‰ VPDB. A precipitation temperature below 50 °C for the stage A calcites and the presence of iron oxide/hydroxide inclusions in the crystals indicate near-surface precipitation conditions. Within this setting, the geochemistry of the nonferroan stage A calcites reflects precipitation under oxic to suboxic conditions. The ferroan stage B calcites precipitated in a reducing environment. The evolution from the stage A to stage B calcites and the associated geochemical changes are interpreted to be related to the change from semiarid to humid conditions in western Europe during late Jurassic–Cretaceous times. A change in humidity can explain the evolution of groundwater from oxic/suboxic to reducing conditions during calcite precipitation. The typically higher δ13C values of the stage B compared to the stage A calcites can be explained by a smaller contribution of carbon derived from soil-zone processes than from carbonate dissolution in the groundwater under humid conditions. The small shift to lower δ18O between stage A and B calcites may be caused by a higher precipitation temperature or a decrease in the δ18O value of the meteoric water. This decrease could have been caused by a change in the source of the air masses or by an increase in the amount of rainfall during the early mid-Cretaceous. Although the latter interpretation is preferred, it cannot be proven.  相似文献   

9.
Detailed information on semi‐arid, palustrine carbonate–calcrete lithofacies associations in a sheetwash‐dominated regolith setting is sparse. This is addressed by studying the Lower Limestone of the Lameta Beds, a well‐exposed Maastrichtian regolith in central India. The general vertical lithofacies assemblage for this unit comprises: (a) basal calcareous siltstones and marls with charophytes, ostracods and gastropods; (b) buff micritic limestones associated in their upper parts with calcretized fissure‐fill sandstones; (c) sheetwash as fissure‐fill diamictites and thin pebbly sheets, locally developed over a few metres; and (d) sandy, nodular, brecciated and pisolitic calcretes at the top. The sequence is ‘regressive’, with upsection filling of topographic lows by increased sheetwash. Lateral lithofacies change is marked, but there are no permanent open‐water lake deposits. In topographic lows close to the water table, marshy palustrine or groundwater calcretes formed, whereas on better drained highs, brecciation and calcretization occurred. Prolonged exposure is implied, suggesting that shrinkage was the main cause of brecciation. Evidence for rhizobrecciation and other biological calcrete fabrics is sparse, contrasting with the emphasis on root‐related brecciation in many studies of palustrine lithofacies. Stable isotope (δ18O and δ13C) values are consistent with the palustrine limestones being fed from meteoric‐derived groundwater with a strong input of soil‐zone carbon. There is overlap of both δ18O and δ13C values from the various palustrine and calcrete fabrics co‐occurring at outcrop. This suggests that, in groundwater‐supported wetlands, conversion from palustrine carbonate to calcrete need not show isotopic expression, as the groundwater source and input of soil‐zone carbon are essentially unchanged. Cretaceous–Tertiary δ18O and δ13C values from palustrine lithofacies and associated calcretes appear to be strongly influenced by the inherited values from lakes and wetlands. Hydrologically closed lakes and marine‐influenced water bodies tend to result in low negative palustrine δ18O and δ13C values. During brecciation and calcretization, the degree of isotopic inheritance depends on whether or not alteration occurs in waters that are different from those of the original water body or wetland. Marked biological activity (e.g. rhizobrecciation or root mat development) during calcretization may lower δ13C values where C3 plants are abundant but, in shrinkage‐dominated systems, δ13C values will be largely inherited from the palustrine limestones.  相似文献   

10.
Zoned calcites were found in the phragmacone chambers of three Sonniniid ammonites from marine Middle Jurassic sandstones (Isle of Skye, U.K.). Each ammonite has a unique sequence of up to nine zones of calcite which fill or partially fill the chambers. Zones are defined by changes in the density of minute opaque inclusions and variation in trace-element composition. Proximal (early) calcites have undulose extinction and some exhibit the specific fabrics of fascicular-optic and radiaxial fibrous calcites. Microdolomite inclusions are found in one specimen. Early calcites, interpreted as replacements after a single isopachous fringe of acicular carbonate (probably high magnesium calcite), are succeeded by blocky ferroan calcite cement. In one specimen there are two distinct generations of calcite, in the others there is a continuous mosaic incorporating both early calcites and late cement. Isotopic composition of the early calcite zones demonstrates the initial importance of organic derived carbon (δ13C =— 26‰, δ18O ‰ O). Further cementation and mineralogical stabilization took place at increased temperatures and probably after modification of the pore water isotopic composition (calcites with δ13C =— O‰, δ18O~— 10‰). The distinctive fabrics and zonal patterns probably developed during the replacement of the precursor cement and are not primary growth features. Reversals in isotopic and trace element trends are believed to be related to the rate of neomorphic crystal growth and hence to the degree of exchange with external pore waters. Further increase in temperature, probably during Tertiary igneous activity, gave rise to the extremely light δ18O values of the late cements in the ammonite which had previously had least contact with external waters (cements with δ13C ~ O, δ18O ~— 20‰).  相似文献   

11.
Magnesite forms a series of 1‐ to 15‐m‐thick beds within the ≈2·0 Ga (Palaeoproterozoic) Tulomozerskaya Formation, NW Fennoscandian Shield, Russia. Drillcore material together with natural exposures reveal that the 680‐m‐thick formation is composed of a stromatolite–dolomite–‘red bed’ sequence formed in a complex combination of shallow‐marine and non‐marine, evaporitic environments. Dolomite‐collapse breccia, stromatolitic and micritic dolostones and sparry allochemical dolostones are the principal rocks hosting the magnesite beds. All dolomite lithologies are marked by δ13C values from +7·1‰ to +11·6‰ (V‐PDB) and δ18O ranging from 17·4‰ to 26·3‰ (V‐SMOW). Magnesite occurs in different forms: finely laminated micritic; stromatolitic magnesite; and structureless micritic, crystalline and coarsely crystalline magnesite. All varieties exhibit anomalously high δ13C values ranging from +9·0‰ to +11·6‰ and δ18O values of 20·0–25·7‰. Laminated and structureless micritic magnesite forms as a secondary phase replacing dolomite during early diagenesis, and replaced dolomite before the major phase of burial. Crystalline and coarsely crystalline magnesite replacing micritic magnesite formed late in the diagenetic/metamorphic history. Magnesite apparently precipitated from sea water‐derived brine, diluted by meteoric fluids. Magnesitization was accomplished under evaporitic conditions (sabkha to playa lake environment) proposed to be similar to the Coorong or Lake Walyungup coastal playa magnesite. Magnesite and host dolostones formed in evaporative and partly restricted environments; consequently, extremely high δ13C values reflect a combined contribution from both global and local carbon reservoirs. A 13C‐rich global carbon reservoir (δ13C at around +5‰) is related to the perturbation of the carbon cycle at 2·0 Ga, whereas the local enhancement in 13C (up to +12‰) is associated with evaporative and restricted environments with high bioproductivity.  相似文献   

12.
Dark mottles are a prominent and widespread feature of the regressive, cyclic, shallow marine limestones which form the late Asbian succession in many parts of Britain. The colour difference which defines mottles in outcrop is caused by distinct but often subtle petrographic differences in the limestone fabric. Specifically, mottles contain a light brown coloured opaque inclusion-rich calcite spar with characteristic dull brown luminescence; ‘mottle spar’. Outside mottle margins this calcite spar is absent, with clear inequant blocky cements forming the pore filling phase. ‘Mottle spar’ comprises a fabric of irregular crystals predominantly 5–40 μm in diameter, with more regular crystals up to 100 μm diameter often occurring in intraparticle and large interparticle pores. Under cathodoluminescence, ‘mottle spar’ displays crystal morphologies and growth patterns which indicate that both localized neomorphism and patchy cementation contributed to mottle formation. Cathodoluminescence cement stratigraphy shows that ‘mottle spar’ pre-dates all other major pore filling cements in the local Asbian succession, but post-dates marine micritization. ‘Mottle spar’ sharply defines the moulds of former aragonitic allochems which are now filled by the later clear, inequant spar cements. This shows that aragonite dissolution occurred after the formation of ‘mottle spar’. Mottles in calcretes contain unaltered allochems which have been protected from the effects of subaerial micritization by ‘mottle spar’, although mottles are often affected by subaerial brecciation. This evidence shows that mottles formed during early diagenesis; after marine micritization, but before dissolution of aragonite, subaerial exposure and meteoritic phreatic cementation. Mottles represented lithified patches of very low porosity which are interpreted to have formed in the marine/freshwater mixing zone, during the repeated phases of regression and emergence in the late Asbian.  相似文献   

13.
Lower Cretaceous (Hauterivian) bioclastic sandstone turbidites in the Scapa Member (North Sea Basin) were extensively cemented by low-Mg calcite spars, initially as rim cements and subsequently as concretions. Five petrographically distinct cement stages form a consistent paragenetic sequence across the Scapa Field. The dominant and pervasive second cement stage accounts for the majority of concretions, and is the focus of this study. Stable-isotope characterization of the cement is hampered by the presence of calcitic bioclasts and of later cements in sponge spicule moulds throughout the concretions. Nevertheless, trends from whole-rock data, augmented by cement separates from synlithification fractures, indicate an early calcite δ18O value of+0·5 to -1·5‰ PDB. As such, the calcite probably precipitated from marine pore fluids shortly after turbidite deposition. Carbon isotopes (δ13C=0 to -2‰ PDB) and petrographic data indicate that calcite formed as a consequence of bioclastic aragonite dissolution. Textural integrity of calcitic nannoplankton in the sandstones demonstrates that pore fluids remained at or above calcite saturation, as expected for a mineral-controlled transformation. Electron probe microanalyses demonstrate that early calcite cement contains <2 mol% MgCO3, despite its marine parentage. Production of this cement is ascribed to a combination of an elevated aragonite saturation depth and a lowered marine Mg2+/Ca2+ ratio in early Cretaceous ‘calcite seas’, relative to modern oceans. Scapa cement compositions concur with published models in suggesting that Hauterivian ocean water had a Mg2+/Ca2+ ratio of ≤1. This is also supported by consideration of the spatial distribution of early calcite cement in terms of concretion growth kinetics. In contrast to the dominant early cement, late-stage ferroan, 18O-depleted calcites were sourced outwith the Scapa Member and precipitated after 1–2 km of burial. Our results emphasize that bioclast dissolution and low-Mg calcite cementation in sandstone reservoirs should not automatically be regarded as evidence for uplift and meteoric diagenesis.  相似文献   

14.
Faunally restricted argillaceous wackestones from the Middle Jurassic of eastern England contain evidence of early diagenetic skeletal aragonite dissolution and stabilization of the carbonate matrix, closely followed by precipitation of zoned calcite cements, and precipitation of pyrite. Distinctive cathodoluminescence and trace element trends through the authigenic calcites, their negative δ13C compositions and the location of pyrite in the paragenetic sequence indicate that calcite precipitation took place during sequential bacterial Mn, Fe and sulphate reduction. Calcite δ18O values are compatible with cementation from essentially marine pore fluids, although compositions vary owing to minor contamination with 18O-depleted ‘late’cements. Mg and Sr concentrations in the calcites are lower than those in recent marine calcite cements. This may be a result of kinetic factors associated with the shallow burial cementation microenvironments. Bicarbonate for sustained precipitation of the authigenic calcites was derived largely from aragonite remobilization, augmented by that produced through anaerobic organic matter oxidation in the metal and sulphate reduction environments. Aragonite dissolution is thought to have been induced by acidity generated during aerobic bacterial oxidation of organic matter. Distinction of post-oxic metal reduction and anoxic sulphate reduction diagenetic environments in modern carbonate sediments is uncommon outside pelagic settings, and early bacterially mediated diagenesis in modern platform carbonates is associated with extensive carbonate dissolution. High detrital Fe contents of the Jurassic sediments, and their restricted depositional environment, were probably the critical factors promoting early cementation. These precipitates constitute a unique example of calcite authigenesis in shallow water limestones during bacterial Mn and Fe reduction.  相似文献   

15.
The Gordon Group carbonates consist of biota of the Chlorozoan assemblage, diverse non‐skeletal grains and abundant micrite and dolomite, similar to those of modern warm water carbonates. Cathodoluminescence studies indicate marine, meteoric and some burial cements. Dolomites replacing burrows, mudcracks and micrite formed during early diagenesis.

δ18O values (‐5 to ‐7%ō PDB) of the non‐luminescent fauna and marine cement are lighter than those of modern counterparts but are similar to those existing within low latitudes during the Ordovician because of the light δ18O values of Ordovician seawater (‐3 to ‐5%o SMOW). The δ18O difference (2%o) between marine and meteoric calcite indicates that Ordovician meteoric water was similar to that in modern subtropics. Values of δ13C relative to δ18O indicate that during the Early Ordovician there were higher atmospheric CO2 levels than at present but during the Middle and Late Ordovician they became comparable with the present because of a change from ‘Greenhouse’ to glacial conditions. δ18O values of Late Ordovician seawater were heavier than in the Middle Ordovician mainly because of glaciation.

Dolomitization took place in marine to mixed‐marine waters while the original calcium carbonate was undergoing marine to meteoric diagenesis.  相似文献   

16.
A carbonate buildup of Middle Triassic age, the Esino Limestone, outcrops in the Southern Calcareous Alps of Lombardy (N Italy). Along its margin and within the open subtidal facies, the Esino Limestone contains calcite cement-filled cavities of cm to m size. These features, known as evinosponges, may form pervasive networks within the host rock. The filling consists of concentric, isopachous layers of fibrous low-Mg calcite crystals characterized by strong undulose extinction and bent cleavages. The cement crusts are non-luminescent under cathodoluminescence, but both cements and host rock are cross-cut by micro-fractures filled with bright-luminescent calcite, related to late void-filling sparite. Mixing of different carbonates is reflected in stable isotope data. On the hand specimen scale, the oxygen and carbon isotope compositions of cements and host rock show little variation. When compared on a regional scale, the values cover a broad range from δ18O(PDB)=?5‰ to ?12‰ and from δ13O =0‰ to +3‰. The linear covariant trends defined by the oxygen and carbon isotope data for different sampling regions reflect the admixture of late, isotopically depleted calcite with an isotopically enriched non-luminescent calcite of early diagenetic origin. The Esino Limestone fibrous cements, which were probably precipitated in the marine or marine-meteoric phreatic environment, were affected by late diagenetic processes that caused mineral deformation and isotopic depletion through recrystallization and the admixture of a later calcite. These later calcites precipitated from penetrative fluids possibly related to Late Triassic volcanic activity and/or to the Late Cretaceous/Early Palaeogene alpine orogeny.  相似文献   

17.
The calcite fossils of the Derbyhaven Beds, Isle of Man, have δ13C values (+ 1·8 PDB) similar to modern, shallow-water marine skeletons, but the δ18O values (?6·1 PDB) are much lighter than modern skeletons. The light oxygen values indicate either re-equilibration with isotopically light water before cementation started, or Carboniferous sea water with δ18O of ?6‰. Aragonite dissolution was followed by precipitation of zoned calcite cement. In this cement, up to six intracrystalline zones, recognized in stained thin sections, show isotopic variation. Carbon varies from + 3-8 to + 1-2‰. and oxygen from ? 2-6 to ? 12-4‰. with decreasing age of the cement. This trend is attributed to increasing temperature and to isotopic evolution of the pore waters during burial. The zoned calcite is sequentially followed by dolomite and kaolinite cements which continue the trend towards light isotopic values. This trend is continued with younger, fault-controlled dolomite, and is terminated by vein-filling calcite and dolomite. The younger calcite, interpreted as a near-surface precipitate from meteoric waters, is unrelated to the older sequence of carbonates and has distinctly different carbon isotope ratios: δ13C ? 6-8‰.  相似文献   

18.
Early concretionary and non-concretionary siderites are common in subsurface Triassic sandstones and mudrocks of the Rewan Group, southern Bowen Basin. A detailed petrological and stable isotopic study was carried out on these siderites in order to provide information on the depositional environment of the host rocks. The siderites are extremely pure, containing 85–97 mol% FeCO3, and are commonly enriched in manganese. δ13C (PDB) values are highly variable, ranging from - 18·4 to +2·9‰, whereas δ18O (PDB) values are very consistent, ranging from - 14·0 to - 10·2‰ (mean= - 11·9 ± 1·0‰). The elemental and oxygen isotopic composition of the siderites indicates that only meteoric porewaters were involved in siderite formation, implying that host rocks accumulated in totally non-marine environments. The carbon isotopic composition of the siderites is interpreted to reflect mixing of bicarbonate/carbon dioxide generated by methane oxidation and methanogenesis. Very low δ13C values demonstrate that, contrary to current views, highly 13C-depleted siderite can be produced at shallow burial depths in anoxic non-marine sediments.  相似文献   

19.
Petrography demonstrates the presence of three types of fibrous calcite cement in buildup deposits of the Kullsberg Limestone (middle Caradoc), central Sweden. Translucent fibrous calcite has intrinsic blue luminescence (CL) indicative of pure calcite. This cement has 2–5 mol% MgCO3, low Mn and Fe (≤ 100 p.p.m.), and is considered to be slightly altered to unaltered, primary low- to intermediate-Mg calcite. Grey turbid fibrous calcite has variable but generally low MgCO3 content (most analyses <2 mol%) and variable CL response, with Mn and Fe concentrations up to 1200 and 500 p.p.m., respectively. The heterogeneous characteristics of this variety of fibrous calcite are caused by diagenetic alteration of a translucent fibrous calcite precursor. Light-brown turbid fibrous calcite has low MgCO3 (near 1 mol%) and variable Mn (up to 800 p.p.m.) and Fe (up to 500 p.p.m.) concentrations, with an abundance of bright luminescent patches, which formed during alteration caused by reducing diagenetic fluids. The δ13C and δ18O values of all fibrous calcite form a tight field (δ13C=1·7 to 3·1‰ PDB, δ18O= ? 2·6 to ? 4·1‰ PDB) compared with fibrous calcite isotope values from other units. Fibrous calcite δ18O values are larger than adjacent meteoric or burial cements, which have δ18O δ ? 8‰ PDB. Consequently, most diagenetic alteration of Kullsberg fibrous calcite is interpreted to have occurred in the marine diagenetic realm. First-generation equant and bladed calcite cements, which pre-date fibrous calcite, are interpreted as unaltered, low-Mg calcite marine cements based on δ13C and δ18O data (δ13C = 2·3 to 2·7‰ PDB, δ18O= ? 2·8 to ? 3·5‰ PDB). Unlike fibrous cement, which reflects global sea water chemistry, first-generation equant and bladed calcite are indicators of localized modification of seawater chemistry in restricted settings. Kullsberg abiotic marine cements have larger δ18O values than most Caradoc marine precipitates from equatorial Laurentia. Positive Kullsberg δ18O values are attributed to lower seawater temperatures and/or slightly elevated salinity on the Baltic platform relative to seawater from which other marine precipitates formed.  相似文献   

20.
The Lower Permian Aldebaran Sandstone is the principal hydrocarbon reservoir in the Denison Trough (Bowen Basin), east-central Queensland, Australia. It accumulated in a wide range of fluvio-deltaic and nearshore marine environments. Detailed petrological study of the unit by thin section, X-ray diffraction, scanning electron microscopy, electron microprobe and isotopic analysis reveals a complex diagenetic history which can be directly related to depositional environment, initial composition and burial-temperature history. Early diagenetic effects included the precipitation of pyrite, siderite and illite-smectite rims (δ18O (SMOW) =+8.9 to + 11.3‰). Deep burial effects included physico-chemical compaction and the formation of quartz overgrowths, siderite (δ13C(PDB) =?34.0 to + 11.5‰, δ18O =?0.7 to +22.7‰), illite/illite-smectite and ankerite (δ13C=?9.3 to ?4.9‰) δ18O=+ 7.6 to + 14.4‰). Involved fluids were in part ‘connate meteoric’ water derived from compaction of the underlying freshwater Reids Dome beds. Important post-maximum burial effects, controlled by deep meteoric influx from the surface, were ankerite and labile grain dissolution and formation of kaolinite (δ18O=+7.8 to +8.9‰, δD=?115 to ?99‰), calcite (δ13C=?9.5 to +0.9‰, δ18O=+9.0 to +20.0‰) and dawsonite (δ13C=?4.0 to +2.3‰, δ18O=+9.8 to +19.8‰), the formation of dawsonite reflecting eventual stagnation of the aquifer. Entrapment of contained hydrocarbons was a relatively recent event which may be continuing today. Reservoir quality varies from marginal to good in the west to poor in the east, with predictable trends being directly linked to depositional environment and diagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号