首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atom probe tomography (APT) is an analytical technique that provides quantitative three‐dimensional elemental and isotopic analyses at sub‐nanometre resolution across the whole periodic table. Although developed and mostly used in the materials science and semiconductor fields, recent years have seen increasing development and application in the geoscience and planetary science disciplines. Atom probe studies demonstrate compositional complexity at the nanoscale and provide fundamental new insights into the atom‐scale mechanisms taking place in minerals over geological time. Here, we provide an overview of APT, including the historical development and technical aspects of the instrumentation, and the fundamentals of data acquisition, data processing and data reconstruction. We also review previous studies and highlight the potential future applications of nanoscale geochemical studies of natural materials.  相似文献   

2.
A combined geochronological and geochemical investigation for the same domain of zircon provides valuable information on timing and genesis, particularly in the case of multi‐growth metamorphic zircon. A high spatial resolution concurrent analytical method for zircon U‐Pb age and rare earth element content was successfully achieved in this study, using a multi‐collector secondary ion mass spectrometer (SIMS) at a ~ 8 μm diameter scale. Special instrument parameters were employed, including a high mass resolution of approximately 15000 applied to replace the previous energy filter method, and a dynamic multi‐collector mode used to reduce the measurement time to 18 min per analysis. Six zircon reference materials yielded precise and accurate 206Pb/238U ages, which are comparable to those obtained by the ordinary mono‐collector method, but with 2–3 times higher spatial resolution. All zircon grains measured in this study showed enriched heavy‐REE (HREE) contents consistent with previously reported values determined by LA and solution ICP‐MS methods. The light‐REE (LREE) mass fractions measured using both SIMS and LA‐ICP‐MS methods in this study, although with quite different volume, show consistent results within uncertainties.  相似文献   

3.
Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) is a powerful method for the chemical analysis of solid surfaces. In this paper, the capabilities and limitations of this technique and the potential for its use in geochemical research are outlined. Using ToF‐SIMS, the chemical composition of sample structures down to 10–100 μm can be determined, without the need for pre‐selection or labelling of the analysed substances. In addition, the lateral distribution of organic and inorganic compounds can be mapped in geochemical samples at a resolution in the micrometre range. The capabilities of the technique in geochemistry are illustrated by two examples. In the first example, it is shown that ToF‐SIMS can be used to detect biomarkers in oil samples, making it a promising method for the analysis of biomarkers in fluid inclusions. In the second example, a number of specific lipid biomarkers were identified and mapped on the surface of a microbial mat cryosection surface. Post‐measurement optical microscopy correlated the localisation of the lipids with the presence of methanotrophic archaea in the microbial mat.  相似文献   

4.
A novel preconcentration method is presented for the determination of Mo isotope ratios by multi‐collector inductively coupled plasma‐mass spectrometry (MC‐ICP‐MS) in geological samples. The method is based on the separation of Mo by extraction chromatography using N‐benzoyl‐N‐phenylhydroxylamine (BPHA) supported on a microporous acrylic ester polymeric resin (Amberlite CG‐71). By optimising the procedure, Mo could be simply and effectively separated from virtually all matrix elements with a single pass through a small volume of BPHA resin (0.5 ml). This technique for separation and enrichment of Mo is characterised by high selectivity, column efficiency and recovery (~ 100%), and low total procedural blank (~ 0.18 ng). A 100Mo‐97Mo double spike was mixed with samples before digestion and column separation, which enabled natural mass‐dependent isotopic fractionation to be determined with a measurement reproducibility of  < 0.09‰ (δ98/95Mo, 2s) by MC‐ICP‐MS. The mean δ98/95MoSRM 3134 (NIST SRM 3134 Mo reference material; Lot No. 891307) composition of the IAPSO seawater reference material measured in this study was 2.00 ± 0.03‰ (2s, n = 3), which is consistent with previously published values. The described procedure facilitated efficient and rapid Mo isotopic determination in various types of geological samples.  相似文献   

5.
This GGR biennial critical review covers developments and innovations in key analytical methods published since January 2014, relevant to the chemical, isotopic and crystallographic characterisation of geological and environmental materials. In nine selected analytical fields, publications considered to be of wide significance are summarised, background information is provided and their importance evaluated. In addition to instrumental technologies, this review also presents a summary of new developments in the preparation and characterisation of rock, microanalytical and isotopic reference materials, including a précis of recent changes and revisions to ISO guidelines for reference material characterisation and reporting. Selected reports are provided of isotope ratio determinations by both solution nebulisation MC‐ICP‐MS and laser ablation‐ICP‐MS, as well as of radioactive isotope geochronology by LA‐ICP‐MS. Most of the analytical techniques elaborated continue to provide new applications for geochemical analysis; however, it is noted that instrumental neutron activation analysis has become less popular in recent years, mostly due to the reduced availability of nuclear reactors to act as a neutron source. Many of the newer applications reported here provide analysis at increasingly finer resolution. Examples include atom probe tomography, a very sensitive method providing atomic scale information, nanoscale SIMS, for isotopic imaging of geological and biological samples, and micro‐XRF, which has a spatial resolution many orders of magnitude smaller than conventional XRF.  相似文献   

6.
Gold geochemical provinces in China were delineated through stream sediment or catchment sediment sampling in this study. Each gold geochemical province delineated by a threshold value of 2.5 ng/g covers an area of thousands of kilometers. It is a dilemma that geochemists traditionally thought that gold could not migrate for a long distance in rivers or streams to form a large-scale geochemical anomaly due to its chemical inertness and high specific density. The quantitative spectroscopic analysis and observations under a scanning electron microscope(SEM) indicate the presence of submicroscopic gold particles(5 μm in diameter) in large quantities, and observations under a Transmission Electron Microscopy(TEM) further suggest the presence of nanoscale gold particles(several tens of nanometre in diameter) in ores, rocks, soils and stream sediments. Particularly, submicroscopic and nanoscale gold particles less than 5 μm were only found in samples having a low gold content(10ng/g). This result shows that geochemical provinces, delineated by a threshold value of 2.5 ng/g, are formed by long-distance transport of ultrafine gold in streams. The findings may provide direct microscopic evidence for gold migration to form geochemical provinces.  相似文献   

7.
Zircon crystals in the age range of ca. 10–300 ka can be dated by 230Th/238U (U‐Th) disequilibrium methods because of the strong fractionation between Th and U during crystallisation of zircon from melts. Laser ablation inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) analysis of nine commonly used reference zircons (at secular equilibrium) and a synthetic zircon indicates that corrections for abundance sensitivity and dizirconium trioxide molecular ions (Zr2O3+) are critical for reliable determination of 230Th abundances in zircon. When corrected for abundance sensitivity and interferences, mean activity ratios of (230Th)/(238U) for nine reference zircons analysed on five different days averaged 0.995 ± 0.023 (95% confidence weighted by data‐point uncertainty only, MSWD = 1.6; = 9), consistent with their U‐Pb ages > 4 Ma that imply equilibrium for all intermediate daughter isotopes (including 230Th) within the 238U decay chain. U‐Th zircon ages generated by LA‐ICP‐MS without mitigating (e.g., by high mass resolution) or correcting for abundance sensitivity and molecular interferences on 230Th are potentially unreliable. To validate the applicability of LA‐ICP‐MS to this dating method, we acquired data from three late Quaternary volcanic units: the 41 ka Campanian Ignimbrite (plutonic clasts), the 161 ka Kos Plateau Tuff (juvenile clasts) and the 12 ka Puy de Dôme trachyte lava (all eruption ages by Ar/Ar, with zircon U‐Th ages being of equal or slightly older). A comparison of the corrected LA‐ICP‐MS results with previously published secondary ion mass spectrometry (SIMS) data for these rocks shows comparable ages with equivalent precision for LA‐ICP‐MS and SIMS, but much shorter analysis durations (~ 2 min vs. ~ 15 min) per spot with LA‐ICP‐MS and much simpler sample preparation. Previously undated zircons from the Yali eruption (Kos‐Nisyros volcanic centre, Greece) were analysed using this method. This yielded a large age spread (~ 45 to > 300 ka), suggesting significant antecryst recycling. The youngest zircon age (~ 45 ± 10 ka) provides a reasonable maximum estimate for the eruption age, in agreement with the previously published age using oxygen isotope stratigraphy (~ 31 ka).  相似文献   

8.
Development of new techniques, enabling simultaneous determination of large numbers of elements in environmental samples, can force analysts to use certified reference materials that do not contain all the elements of interest. In this paper, the mass fractions of forty‐six major and trace elements, including rare earth elements (REE), are presented in one soil (NCS DC 77302 also known as GBW 07410) and five sediment (Metranal‐1, IAEA 405, MESS‐3, NCS DC 73309 also known as GBW 07311 and NCS DC 75301 also known as GBW 07314) certified reference materials determined by high resolution inductively coupled plasma‐mass spectrometry. The selected certified materials represent a spectrum of geological matrices often analysed in environmental studies. Measured elements include certified elements, elements listed with information values as well as new elements absent from certificates, including REEs and some other elements. REE + Y mass fractions in the river sediment reference material Metranal‐1 are reported for the first time. The results obtained are in agreement with available certified or information values.  相似文献   

9.
Detrital zircon (DZ) U‐Pb laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) has revolutionised the way geologists approach many Earth science questions. Although recent research has focused on rapid sample throughput, acquisition rates are limited to 100–300 analyses h?1. We present a method to acquire zircon U‐Pb dates at rates of 120, 300, 600 and 1200 analyses h?1 (30, 12, 6 and 3 s per analysis) by multi‐collector LA‐ICP‐MS. We demonstrate the efficacy of this method by analysing twelve zircon reference materials with dates from ~ 3465 to ~ 28 Ma. Mean offset from high‐precision dates increases with faster rates from 0.9% to 1.1%; mean random 1s uncertainty increases from 0.6% to 1.3%. We tested this new method on a sandstone sample previously characterised by large‐n DZ geochronology. Quantitative comparison shows increased correspondence among age distributions comprising > 300 dates. This new method holds promise for DZ geochronology because (a) it requires no major changes to hardware, but rather modifications to software; (b) it yields robust age distributions well‐suited for quantitative analysis and maximum depositional age calculations; (c) there is only a minor sacrifice of accuracy and measurement uncertainty; and (d) there is less burden to researchers in terms of time investment and analytical cost.  相似文献   

10.
The paper presents new original data on the Devonian felsic volcanism of the NW Rudny Altai (Russia) in the west of Central Asian Orogenic Belt (CAOB) – the front part of the Altai convergent margin of the Siberian continent. Two geochemical types of subvolcanic rhyolites were emplaced synchronously with the bimodal rhyolite-basalt association, which began to form in the end-Emsian, and clearly manifested on the border of the Givetian and the Frasnian. The rhyolites yield zircon U-Pb ages of ca. 390 Ma (R1-type) and 380 Ma (R2- and R3-types), reflecting two peaks of the volcanic activity. Most of these rocks have extreme petrochemical characteristics of high SiO2 contents and have contrast Na/K ratios. Their compositions are transition between calc-alkaline and tholeiite series: (La/Yb)n ~ 2–7, Zr/Y ~ 4 (Zr < 350 ppm) and La/Sm ~ 0.55–1. Rhyolites bear the distinctive geochemical signature of A-type felsic magma, such as enrichments in Zr, Nb, Y and Ce (>350 ppm), Zr (>250 ppm), and high Ga/Al (>2.6) values. The island-arc-like R1-rhyolite formed immediately after the beginning of rifting due to widespread crustal melting under reduced conditions. The generation of rift-like R2- and R3-rhyolites took place under non-equilibrium conditions, synchronously with the rise in the upper crust of Givetian-Frasnian basic magmas, as a result of the active lithospheric extension and high thermal input from the underlying hot mantle. We propose an extension regime in the transition area between the island-arc and back-arc basin for the origin of rhyolites. The study of the Devonian volcanism of the Rudny Altai gives important information about the processes that occurred at the initial stage of the formation of the Altai convergent margin.  相似文献   

11.
A measurement procedure for the rapid acquisition of U‐Pb dates for detrital zircons by quadrupole LA‐ICP‐MS was developed. The procedure achieves a threefold increase in measurement efficiency compared with the most commonly used methods. Utilising reduced background counting times and a shortened ablation period, a throughput of ~ 130 measurements/h can be achieved. The measurement procedure was characterised and validated using data from thirty‐nine sessions acquired over a twelve‐month period. Systematic measurement error in 206Pb/238U dates for reference materials used for quality control with ages between 28.2 and 2672 Ma was < 1.5%. Average measurement uncertainty, including both random and systematic components, was 1–4% (2s). Interrogation of time‐resolved calculated dates and signal intensities for each measurement allows for the detection and elimination of portions of measurements exhibiting age heterogeneities, zoning, lead loss and contamination by common lead. The measurement procedure diminishes the need to acquire cathodoluminescence imagery for routine detrital zircon applications further increasing throughput and reducing cost. The utility of the measurement procedure is demonstrated by the measurement of samples previously characterised by LA‐MC‐ICP‐MS.  相似文献   

12.
The traditional Carius tube technique is cumbersome and requires skilful work to seal the Carius tube, which can be used only once. We describe a modification to the technique that does not require the use of a high‐temperature welding torch to melt the Carius tube to seal it. The newly designed Carius tube consists of a main body with a 3 mm‐thick glass wall, a neck and head with walls 4 mm in thickness, and an efficient screw‐thread stopper. These new features allowed the tube to be used repeatedly. We demonstrate relatively low procedural blanks derived for Re and Os, and platinum‐group elements (PGEs), using the redesigned tube. A temperature of 220 °C could be reached for about 5 ml of HNO3 for a 47 ml tube and for 32 ml of inverse aqua regia for a 200 ml tube. This digestion technique can be used for routine analysis of Re and PGEs in geological samples.  相似文献   

13.
The lithium isotope system can be an important tracer for various geological processes, especially tracing continental weathering. The key to this application is the accurate and precise determination of lithium isotopic composition. However, some of the previously established column separation methods are not well behaved when applied to chemically diverse materials, due to the significant variations in matrix/lithium ratios in some materials. Here, we report a new dual‐column system for lithium purification to achieve accurate and precise analysis of lithium isotopic compositions using a multi‐collector inductively coupled plasma‐mass spectrometer (MC‐ICP‐MS). Compared with single‐column systems, our dual‐column system yielded a consistent elution range of the lithium‐bearing fraction (7–16 ml) for samples with a large range of lithium loads and matrix compositions, so that column re‐calibration is not required. In addition, this method achieved complete lithium recovery and low matrix interference (e.g., Na/Li ≤ 1) with a short elution time (~ 6 h, excluding evaporation), with the entire procedure completed in 1.5 days. We report high precision Li isotopic compositions in twelve chemically diverse materials including seawater, silicates, carbonates, manganese nodules and clays. New recommended Li isotopic values and associated uncertainties are presented as reference values for quality control and inter‐laboratory calibration for future research and were consistent with previously published data. However, significant lithium isotopic variances (~ 1‰) in BHVO‐2 from different batches suggest Li isotopic heterogeneity in this reference material and that Li isotopic studies using this reference material should be treated with caution.  相似文献   

14.
We have developed new analytical procedures to measure precise and accurate 238U–206Pb and 235U–207Pb ages for young (~ 1 Ma) zircons using laser ablation‐ICP‐mass spectrometry. For young zircons, both careful correction for the background counts and analysis of very small Pb/U ratios (i.e., 206Pb/238U < 0.00016 and 207Pb/235U < 0.0001 for 1 Ma zircons) are highly desired. For the correction of the background, the contribution of the background signal intensities for the analytes, especially for the residual signal intensities for 206Pb and 207Pb, was defined through laser ablation of synthesised zircons (ablation blank) containing negligible Pb. The measured signal intensities for 202Hg, 206Pb and 207Pb signals obtained by the ablation blank were slightly higher than those obtained by data acquisition without laser ablation (gas blank). For the wider dynamic range measurements on Pb/U ratios, an attenuator device for the ion detection system was employed to extend the capability to monitor high‐intensity signals (i.e., > 3 Mcps). Through the attenuator device, the ion currents were reduced to 1/450 of the signal intensity without the attenuator. Because the switching time for the attenuator was shorter than 1 ms, signal intensities for only specific isotopes could be reduced. With attenuation of the 238U signal, counting statistics on 206Pb and 207Pb isotopes could be improved and counting loss on the 238U signal could be minimised. To demonstrate the reliability of this new analytical technique, 238U–206Pb and 235U–207Pb ages for three young zircon samples (collected from Osaka Group Pink Volcanic Ash, Kirigamine and Bishop Tuff) were measured. The data presented here demonstrate clearly that the present technique could become a major analytical tool for in situ U–Pb age determination of young zircons (~ 1 Ma).  相似文献   

15.
湖泊沉积有机质的地球化学记录与古气候古环境重建   总被引:6,自引:1,他引:5  
与深海沉积与冰芯记录相比,湖泊沉积主要反映区域气候变迁史,可以揭示百年、甚至十年尺度的古气候事件,是高分辨率古环境、古气候重建的理想场所.传统的地质地球化学方法主要侧重于宏观物理 /化学特性描述和孢粉学的研究,近 10年来,沉积有机质分子碳、氢同位素地球化学技术的渗入,使研究工作从传统的宏观、微观层次向分子级水平发展,对诸如古生产率估算、C3/C4植被演替史、古二氧化碳分压及古温度计算等深层次问题解决提供了强有力支持.本文评述了湖泊沉积有机质分子与碳、氢同位素地球化学记录及其在区域古环境、古气候研究中的应用前景.  相似文献   

16.
With implications for the origin of ore deposits, redox state of the atmosphere, and effects of volcanic outgassing, understanding the sulfur cycle is vital to our investigation of Earth processes. However, the paucity of sulfur concentration measurements in silicate rocks and the lack of well‐calibrated reference materials with concentrations relevant to the rocks of interest have hindered such investigations. To aid in this endeavour, this study details a new method to determine sulfur concentration via high mass resolution solution inductively coupled plasma‐mass spectrometry (ICP‐MS). The method is based on an aqua regia leach, involving relatively rapid sample preparation and analysis, and uses small test portion masses (< 50 mg). We utilised two independently prepared standard solutions to calibrate the analyses, resulting in 4% accuracy, and applied the method to eight geochemical reference materials. Measurements were reproducible to within ~ 10%. Sulfur concentrations and isotopes of six reference materials were measured additionally by elemental analyser‐combustion‐isotope ratio mass spectrometry to independently evaluate the accuracy of the ICP‐MS method. Reference materials that yielded reproducible measurements identical to published values from other laboratories (JGb‐1, JGb‐2 and MAG‐1) are considered useful materials for the measurement of sulfur. Reference materials that varied between studies but were reproducible for a given test portion perhaps suffer from sample heterogeneity and are not recommended as sulfur reference materials.  相似文献   

17.
In recent years, the 187Re–187Os isotope system has been increasingly used to study samples containing very small quantities of Os. For such samples, optimisation of measurement procedures is essential to minimise the loss of Os before mass spectrometric measurements. Micro‐distillation is a necessary purification step that is applied after the main Os chemical separation procedure, prior to Os isotope ratio measurements by negative‐thermal ionisation mass spectrometry (N‐TIMS). However, unlike the other separation steps, this procedure has not yet been optimised for small samples. In this study, we present a refined micro‐distillation method that achieved higher yields and allowed high‐precision R(187Os/188Os) expressed as 187Os/188Os measurements for small‐sized geological samples that contain only a few pg Os. The Os recovery in the micro‐distillation step was tested by changing the operating conditions including heating time and temperature, and amounts of oxidant and reductant. Recoveries were measured by the isotope dilution ICP‐MS method after the addition of 190Os‐enriched spike solution. We found that the most critical factor controlling the chemical yield of Os during micro‐distillation is the extent of dilution of the reductant (HBr) by H2O evaporated from the oxidant. A refined micro‐distillation method, in which the amount of oxidant solution is reduced from the conventional method, achieved an improved chemical yield of Os (~ 90%). This refined method was applied to the measurement of 187Os/188Os by N‐TIMS of varying test portions of the geological reference material BIR‐1a. The resulting 187Os/188Os ratios of BIR‐1a matched the literature data, with propagated uncertainties of 0.2, 1.1 and 11% digested sample quantities containing 150, 10 and 1 pg of Os, respectively.  相似文献   

18.
Apatite incorporates variable and significant amounts of halogens (mainly F and Cl) in its crystal structure, which can be used to determine the initial F and Cl concentrations of magmas. The amount of chlorine in the apatite lattice also exerts an important compositional control on the degree of fission‐track annealing. Chlorine measurements in apatite have conventionally required electron probe microanalysis (EPMA). Laser ablation inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) is increasingly used in apatite fission‐track dating to determine U concentrations and also in simultaneous U‐Pb dating and trace element measurements of apatite. Apatite Cl measurements by ICP‐MS would remove the need for EPMA but the high (12.97 eV) first ionisation potential makes analysis challenging. Apatite Cl data were acquired using two analytical set‐ups: a Resonetics M‐50 193 nm ArF Excimer laser coupled to an Agilent 7700× quadrupole ICP‐MS (using a 26 μm spot with an 8 Hz repetition rate) and a Photon Machines Analyte Excite 193 nm ArF Excimer laser coupled to a Thermo Scientific iCAP Qc (using a 30 μm spot with a 4 Hz repetition rate). Chlorine concentrations were determined by LA‐ICP‐MS (1140 analyses in total) for nineteen apatite occurrences, and there is a comprehensive EPMA Cl and F data set for 13 of the apatite samples. The apatite sample suite includes different compositions representative of the range likely to be encountered in natural apatites, along with extreme variants including two end‐member chlorapatites. Between twenty‐six and thirty‐nine isotopes were determined in each apatite sample corresponding to a typical analytical protocol for integrated apatite fission track (U and Cl contents) and U‐Pb dating, along with REE and trace element measurements. 35Cl backgrounds (present mainly in the argon gas) were ~ 45–65 kcps in the first set‐up and ~ 4 kcps in the second set‐up. 35Cl background‐corrected signals ranged from ~ 0 cps in end‐member fluorapatite to up to ~ 90 kcps in end‐member chlorapatite. Use of a collision cell in both analytical set‐ups decreased the low mass sensitivity by approximately an order of magnitude without improving the 35Cl signal‐to‐background ratio. A minor Ca isotope was used as the internal standard to correct for drift in instrument sensitivity and variations in ablation volume during sessions. The 35Cl/43Ca values for each apatite (10–20 analyses each) when plotted against the EPMA Cl concentrations yield excellently constrained calibration relationships, demonstrating the suitability of the analytical protocol and that routine apatite Cl measurements by ICP‐MS are achievable.  相似文献   

19.
Two geochemical reference materials of Himalayan origin named DG‐H (a granite) and AM‐H (an amphibolite) prepared by the Wadia Institute of Himalayan Geology Dehradun are described. Both samples were collected from the NW Himachal Himalaya in India. With the participation of analysts from more than forty international laboratories, element determination data collected during the past 10 years for characterisation of the samples was processed to assign working values using statistical procedures in use for this purpose. Earlier work published on these samples is incorporated in the present communication making it an updated document. The typical chemical and petrological characteristics of these two samples may prove useful for method validation and calibration of analytical instruments used for analysing similar rock types, and for widening the analytical range of several analytical methods used for geochemical analysis.  相似文献   

20.
Understanding Arctic glacier sensitivity is key to predicting future response to air temperature rise. Previous studies have used proglacial lake sediment records to reconstruct Holocene glacier advance–retreat patterns in South and West Greenland, but high‐resolution glacier records from High Arctic Greenland are scarce, despite the sensitivity of this region to future climate change. Detailed geochemical analysis of proglacial lake sediments close to Zackenberg, northeast Greenland, provides the first high‐resolution record of Late Holocene High Arctic glacier behaviour. Three phases of glacier advance have occurred in the last 2000 years. The first two phases (c. 1320–800 cal. a BP) occurred prior to the Little Ice Age (LIA), and correspond to the Dark Ages Cold Period and the Medieval Climate Anomaly. The third phase (c. 700 cal. a BP), representing a smaller scale glacier oscillation, is associated with the onset of the LIA. Our results are consistent with recent evidence of pre‐LIA glacier advance in other parts of the Arctic, including South and West Greenland, Svalbard, and Canada. The sub‐millennial glacier fluctuations identified in the Madsen Lake succession are not preserved in the moraine record. Importantly, coupled XRF and XRD analysis has effectively identified a phase of ice advance that is not visible by sedimentology alone. This highlights the value of high‐resolution geochemical analysis of lake sediments to establish rapid glacier advance–retreat patterns in regions where chronological and morphostratigraphical control is limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号