首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
顶力计算是顶管施工的重要内容,关系到整个工程的造价和成败。通过对顶力预测进行理论分析,针对混凝土顶管施工建立顶力计算模型,依次计算总顶力的两个组成部分:顶进正面阻力和管周摩擦阻力。采用朗金主动土压力理论计算水平土压力,砂性土采用“水土分算”方法而粘性土采用“水土合算”方法,进而计算顶进正面阻力;结合土柱压力理论和马斯顿压力理论,分别建立相应的管周土压力模型,给出管周总摩擦阻力的计算方法。得到适用条件明确、计算结果可靠的顶力计算公式,该公式的计算结果与工程实例相比较,满足工程要求。  相似文献   

2.
顶管顶进阻力由顶管机的迎面阻力和管节与土体间的摩阻力两部分组成,现有的顶力估算公式都具有一定的适用条件,虽然物理意义明确,但参数取值范围较大,往往估算顶力与实际工程顶力的匹配程度较低,尤其是在三维曲线顶管工程中受曲线段的影响,准确估算顶力的难度更大。以长413.0 m,外径为3.8 m,最小曲率半径为313.7 m的三维曲线顶管工程为研究对象,基于现有的顶力公式估算所需顶力大小并布设中继间,在该工程实测数据的基础上分析顶力组成及其与顶程、顶进曲率半径等影响因素之间的关系和顶管在平面曲线和垂直剖面曲线以不同曲率半径顶进的摩阻力变化规律。分析结果显示,曲线顶管摩阻力附加系数是真实存在的,且工程实测值与经验值有所偏差,但顶管在淤泥或黏土层中顶进时的摩阻力按规程推荐取值能够满足工程实践需求。最后提出了顶力估算及中继间的布置建议,为类似工程提供依据。  相似文献   

3.
大断面深埋高水压地铁盾构隧道周边土压力作用模式评价   总被引:1,自引:0,他引:1  
李雪  周顺华  宫全美  陈长江 《岩土力学》2015,36(5):1415-1420
以南京某大直径地铁盾构隧道为背景,对盾构管片衬砌所受荷载及结构内力进行现场测试,分析了深埋高水压粉细砂地层中盾构隧道管片土压力大小及分布特征。采用3种不同竖向荷载组合(即有效上覆土压力+水压力,太沙基松动土压力+水压力,只有水压力)计算管片内力并与实测内力进行比较,评价了作用在盾构隧道管片上的土压力模式。结果表明:(1)作用在盾构隧道衬砌上的水压力大小基本等于静止水压力;(2)盾构隧道隧顶实测土压力约为太沙基松动土压力的80%,实测隧顶土压力更接近于太沙基松动土压力,隧道上方存在土拱;(3)现场实测管片弯矩较3种荷载作用下计算弯矩小,而实测管片轴力约为理论计算轴力的2倍。此外,分析了水平地基抗力系数对隧道管片内力的影响。研究成果可为大直径深埋盾构隧道设计提供参考。  相似文献   

4.
顶管侧摩阻力理论公式的探讨   总被引:2,自引:1,他引:2  
汤华深  刘叔灼  莫海鸿 《岩土力学》2004,25(Z2):574-576
顶管顶力是由迎面阻力和侧摩阻力组成的,影响顶力的因素很多.分析已有摩阻力计算公式后,给出了圆形断面和方形断面管节的摩阻力计算结果不同的原因.现有的摩阻力计算公式存在一些问题,对于土质较好和埋深够大,能够形成压力拱时的摩阻力计算不合理,在实际工程中,摩阻力并不是随埋深无限增加的.从压力拱理论出发,求出管节外壁土压力的分布,对侧摩阻力计算公式稍作改进.通过算例比较,能形成压力拱时,按照本文公式计算的结果比较合理.  相似文献   

5.
在顶管过程中,顶推力在平衡抵抗力和推动管线向前移动时起决定性作用。曲线顶管的驱动机构比直线顶管复杂,所以它的顶推力也是更加难确定。这个研究理论地探索了曲线顶管的顶推力,主要通过考虑土压力的静力平衡、剪切面的抵抗阻力,管面摩擦力以及管线后面的推动力。这种派生的理论公式可以用来评估直线顶管或曲线顶管的驱动力。案例研究运用理论公式和经验公式相结合来进行。经过校准,修正过的公式是更加的精确实用。  相似文献   

6.
为保证顶管工程的施工安全和经济设计,必须深入分析顶力作用下工作井及周围土体的应力、位移特性。以两个实际顶管工程为工程背景,针对工作井的浅埋、深埋圆形沉井,采用三维有限元分析,给出了浅埋沉井土抗力沿圆周分布的拟合方程。分别采用《规程》[1]和《手册》[2]推荐的计算方法和三维有限元分析,对顶力作用下深埋、浅埋工作井的位移和新增土抗力进行对比分析,结果表明:①由于只考虑了顶力后背一侧半圆范围内土体抗力的作用,规范法和手册法将导致土抗力计算结果偏大;②顶力作用位置对深埋沉井的井壁变位、土抗力大小和分布情况影响显著;③规范法和手册法仅适用于顶力作用于沉井底部的浅埋沉井。  相似文献   

7.
针对矩形顶管上竖向土压力计算模型研究较少的现状,借助Terzaghi土压力计算理论,结合矩形顶管工程特点建立了考虑注浆作用的矩形顶管竖向土压力计算模型,提出了改进的竖向土压力计算公式;依托苏州某矩形顶管工程中竖向土压力实时监测数据,探究了其变化规律并验证了该计算公式的准确性。研究结果表明:土体中的剪切带从管道外壁两侧产生并沿竖直方向发展,且可贯穿至地表;临界状态下剪切带上的膨胀角完全发挥,以临界内摩擦角及其正弦值计算剪切带上的摩擦系数;不同的注浆压力下,管道上方可能出现"主动土拱"和"被动土拱"。计算值与实测值的对比分析表明,改进后的计算方法能够较好地包络矩形顶管竖向土压力范围。  相似文献   

8.
依托垫江至邻水高速公路铜锣山及明月山隧道,对公路隧道二次衬砌受力分担比例进行研究。通过围岩压力实测值与普氏理论、太沙基理论和公路隧道设计规范深埋围岩压力公式计算值进行对比,结果表明: Ⅲ级、Ⅳ级和Ⅴ级围岩压力计算值比较符合实测情况。通过对围岩压力、初期支护与二次衬砌的接触压力现场量测数据进行分析,得出Ⅲ级( 深埋) 、Ⅳ级( 深埋) 、Ⅴ级( 深埋) 和Ⅴ 级( 浅埋) 围岩二次衬砌受力分担比例分别为29. 20%、35. 28%、41. 38% 及32. 17%。研究成果对于公路隧道结构设计有着理论指导作用。  相似文献   

9.
矩形SMW工法工作井土体反力计算方法的研究   总被引:1,自引:0,他引:1  
陈春来  魏纲  陈华辉 《岩土力学》2007,28(4):769-773
对采用型钢水泥土复合挡土墙(Soil Mixing Wall,SMW)建造的矩形工作井在顶力反力作用下的受力机理进行分析,假定承载后背竖向土体反力呈拟正态分布、水平向土体反力呈均匀分布,求得后背土体所能承受的最大土体反力计算公式。考虑前壁土体达到主动状态,得到工作井最大土体反力和允许顶力的计算公式。算例分析表明:采用梯形分布计算得到的后背最大土体反力值要略大于文中方法计算结果;在黏性土中,文中方法采用水土合算计算得到的允许顶力值与实测值较吻合。  相似文献   

10.
以长春市伊通河排水管网改造工程为例,通过现场实测中粗砂地层条件下采用泥水平衡顶管顶进过程中顶进力的变化情况,系统研究了影响顶进力的因素及其变化规律,并对顶进力的计算进行了理论分析,与实际顶进力进行了对比,最后运用Matlab软件对实测数据进行数值分析,得出在该地质条件下的泥水平衡顶管摩阻力和顶进力计算公式。  相似文献   

11.
顶管施工中矩形沉井工作井允许反力的计算   总被引:2,自引:1,他引:1  
龚慈  魏纲  徐日庆 《岩土力学》2005,26(7):1127-1131
根据顶管工程中矩形沉井工作井后背墙变形情况,假定后背墙在顶管反力作用下变形为抛物线形,提出采用与位移有关的土压力来计算土体反力。考虑了沉井底部和侧壁的摩阻力,由沉井整体水平向受力平衡计算允许顶力。通过算例与朗肯理论的比较结果表明,提出的方法可用于计算土体的非极限被动土压力,且该方法考虑了顶管反力这一局部荷载对墙后土压力分布的影响。  相似文献   

12.
魏纲  魏新江  丁智  姚宁 《岩土力学》2006,27(Z1):849-854
研究了顶管正面附加推力、掘进机和后续管道与土体之间的摩擦力在邻近桩基上引起的总的附加荷载的分布规律。研究结果表明,附加荷载的变化规律与桩基和掘进机的相对位置密切相关,是一个三维问题;在顶进方向和垂直于管壁方向,随着掘进机开挖面通过前后,附加荷载由压力变为拉力,顶进方向的附加荷载值和影响范围较垂直于管壁方向大;竖直方向的附加荷载较小,靠近管道轴线附近的桩基部位受到的附加荷载方向与两端相反,曲线呈“弓”型分布;随着桩基与管道距离的减小,附加荷载急剧增大。  相似文献   

13.
顶管施工对相邻平行地下管线位移影响因素分析   总被引:6,自引:2,他引:4  
余振翼  魏纲 《岩土力学》2004,25(3):441-445
顶管施工引起的管道周围土体移动会对相邻地下管线造成危害。采用三维有限元方法分析了顶管施工引起的相邻平行地下管线的位移,研究了注浆、纠偏、离顶管距离的远近、地下管线埋深、管线与土体弹性模量比及不同管材对地下管线位移的影响。计算结果表明,注浆与纠偏压力越大,地下管线的位移越大;地下管线距离顶管越远,引起的位移越小;地下管线弹性模量越小,产生的位移越大。  相似文献   

14.
考虑注浆压力的顶管施工引起土体变形计算方法   总被引:1,自引:0,他引:1  
顶管施工引起周围地层变形的计算预测是顶管施工中必须加以重视的问题。地层的沉降变形与顶管施工的几个环节有密切的联系,如:①顶管姿态与开挖面土压;②顶进与换管;③注浆过程等。理论分析应考虑这几个施工中的关键因素。针对上述施工影响因素,提出了考虑注浆压力的顶管施工的地层移动的计算方法。用Mindlin的位移解分析模拟开挖面土压、顶进与换管过程中的侧面摩擦力的变化引起的位移;以Sagaseta的土体损失引起的土体位移模式分析姿态控制、土体损失等引起的变形;将圆孔扩张的Verruijt解拓展到三维,用于计算注浆压力引起的位移与变形。结果表明,考虑注浆压力的变化,可以得到更为合理的预测结果。  相似文献   

15.
顶管施工对土体影响的现场试验研究   总被引:9,自引:3,他引:6  
通过对顶管工程的现场试验,得到了顶管施工对土压力,孔隙水压力,水位以及深层土体位移和地表位移的影响,从中得出了顶管施工对土体扰动的大小及其扰动范围的规律,并从理论上分析了原因,为顶管工程的应用提供了参考。  相似文献   

16.
景路  袁聚云  袁勇 《岩土力学》2013,34(Z1):173-178
目前的地层损失参数和土体变形计算方法不能反映顶管施工的动态过程,重新定义顶管施工过程中的地层损失参数,使之可以反映超挖、欠挖等不同工况。基于Mindlin解,改进间隙参数g,从而可以考虑管壁与土的摩擦力。基于开挖面周围土体的扰动分区,修正Loganathan土体变形公式,并将改进的间隙参数g代入修正公式,计算顶进距离不同时的土体变形,获得顶管推进过程中地表测点的动态变化。算例分析表明,计算结果与监测数据吻合较好。  相似文献   

17.
张治国  张孟喜  王卫东 《岩土力学》2014,35(Z2):121-128
基于层状体系解析刚度矩阵理论解,结合5节点Gauss-Legendre求积公式,提出了层状地基中顶管施工正面附加推力、掘进机与土体之间摩擦力以及共同作用力引起的附加荷载计算方法,分析了顶管推进引起的土体竖向附加荷载分布规律,也研究了地基等效均质性、土层力学参数、计算点间距以及顶管埋深等因素对顶管施工诱发附加荷载的影响效应。研究结果表明,掘进摩擦力引起的附加荷载在掘进面前方迅速达到压应力峰值,其量值大小和影响范围均要大于正面附加推力,是顶管施工引起临近地层附加荷载的主要影响因素。此外,层状地基土体参数的改变会对顶管施工扰动地层的附加荷载产生一定影响,地基等效均质性、计算点间距以及顶管埋深等因素对附加荷载大小及分布均存在显著影响。成果可为合理制定顶管开挖对周围土工环境的保护措施提供一定理论依据,也可为其他盾构隧道工程提供一定的理论参考。  相似文献   

18.
顶管施工引起的土体垂直变形计算方法研究   总被引:1,自引:0,他引:1  
魏纲  陈春来  余剑英 《岩土力学》2007,28(3):619-624
对前人工作进行总结,将3个已有的经验公式合并成一个通用经验公式,该公式可以计算由土体损失引起的土体中任一点沉降。假定土体不排水,利用弹性力学的Mindlin解推导了顶管正面附加推力、掘进机和后续管道与土体之间的摩擦力引起的土体垂直变形计算公式。结合土体损失引起的土体变形计算公式,得到顶管施工引起的总的土体垂直变形计算公式,该方法适用于施工阶段。算例分析表明,正面附加推力引起开挖面前方地面隆起,后方地面沉降,以开挖面正上方为轴线呈反对称分布,在正常施工时产生的地面变形较小;掘进机和后续管道与土体之间的摩擦力引起的地面变形分布规律与正面附加推力相似,轴线分别位于掘进机中间部位和后续管道中间部位的正上方。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号