首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Solidus temperatures of quartz–alkali feldspar assemblages in the haplogranite system (Qz-Ab-Or) and subsystems in the presence of H2O-H2 fluids have been determined at 1, 2, 5 and 8 kbar vapour pressure to constrain the effects of redox conditions on phase relations in quartzofeldspathic assemblages. The hydrogen fugacity (f H2) in the fluid phase has been controlled using the Shaw membrane technique for moderately reducing conditions (f H2 < 60 bars) at 1 and 2 kbar total pressure. Solid oxygen buffer assemblages in double capsule experiments have been used to obtain more reducing conditions at 1 and 2 kbar and for all investigations at 5 and 8 kbar. The systems Qz-Or-H2O-H2 and Qz-Ab-H2O-H2 have only been investigated at moderately reducing conditions (1 and 5 kbar) and the system Qz-Ab-Or-H2O-H2 has been investigated at redox conditions down to IW (1 to 8 kbar). The results obtained for the water saturated solidi are in good agreement with those of previous studies. At a given pressure, the solidus temperature is found to be constant (within the experimental precision of ± 5°C) in the f H2 range of 0–75 bars. At higher f H2, generated by the oxygen buffers FeO-Fe3O4 (WM) and Fe-FeO (IW), the solidus temperatures increase with increasing H2 content in the vapour phase. The solidus curves obtained at 2 and 5 kbar have similar shapes to those determined for the same quartz - alkali feldspar assemblages with H2O-CO2- or H2O-N2-bearing systems. This suggests that H2 has the behaviour of an inert diluent of the fluid phase and that H2 solubility in aluminosilicate melts is very low. The application of the results to geological relevant conditions [HM (hematite-magnetite) > f O2 > WM] shows that increasing f H2 produces a slight increase of the solidus temperatures (up to 30 °C) of quartz–alkali feldspar assemblages in the presence of H2O-H2 fluids between 1 and 5 kbar total pressure. Received: 4 March 1996 / Accepted: 22 August 1996  相似文献   

2.
Phase relations of basalts from the Kerguelen large igneous province have been investigated experimentally to understand the effect of temperature, fO2, and fugacity of volatiles (e.g., H2O and CO2) on the differentiation path of LIP basalts. The starting rock samples were a tholeiitic basalt from the Northern Kerguelen Plateau (ODP Leg 183 Site 1140) and mildly alkalic basalt evolved from the Kerguelen Archipelago (Mt. Crozier on the Courbet Peninsula), representing different differentiation stages of basalts related to the Kerguelen mantle plume. The influence of temperature, water and oxygen fugacity on phase stability and composition was investigated at 500 MPa and all experiments were fluid-saturated. Crystallization experiments were performed at temperatures between 900 and 1,160°C under oxidizing (log fO2 ~ ΔQFM + 4) and reducing conditions (log fO2 ~ QFM) in an internally heated gas-pressure vessel equipped with a rapid quench device and a Pt-Membrane for monitoring the fH2. In all experiments, a significant influence of the fO2 on the composition and stability of the Mg/Fe-bearing mineral phases could be observed. Under reducing conditions, the residual melts follow a tholeiitic differentiation trend. In contrast, melts have high Mg# [Mg2+/(Mg2+ + Fe2+)] and follow a calk-alkalic differentiation trend at oxidizing conditions. The comparison of the natural phenocryst assemblages with the experimental products allows us to constrain the differentiation and pre-eruptive conditions of these magmas. The pre-eruptive temperature of the alkalic basalt was about 950–1,050°C. The water content of the melt was below 2.5 wt% H2O and strongly oxidizing conditions (log fO2 ~ ΔQFM + 2) were prevailing in the magma chamber prior to eruption. The temperature of the tholeiitic melt was above 1,060°C, with a water content below 2 wt% H2O and a log fO2 ~ ΔQFM + 1. Early fractionation of clinopyroxene is a crucial step resulting in the generation of silica-poor and alkali-rich residual melts (e.g., alkali basalt). The enrichment of alkalis in residual melts is enhanced at high fO2 and low aH2O.  相似文献   

3.
An experimental method of melt inclusion synthesis within olivine crystals has been developed to determine the composition of the melt present in a partially molten peridotite assemblage. Trace element doped peridotite was equilibrated with 5 wt% of a C-O-H volatile source at 20 kbar/1175 °C in a piston-cylinder apparatus under buffered oxygen and sulphur fugacity conditions [log(f O2) ∼ IW +1 log unit, log (f S2) ∼ Fe/FeS > +1 log unit]. A single crystal of olivine, which had been cut to a disc shape, was included in the sample capsule. At run conditions the peridotite charge formed olivine, orthopyroxene, clinopyroxene, Fe-Ni sulphide and a volatile-bearing melt. The melt phase is preserved as homogeneous glass inclusions up to 50 μm in size, trapped in situ in the olivine disc. The major element composition of the glass inclusions showed them to be of broadly basaltic character, but with a low Mg/(Mg + ΣFe), which is associated with precipitation of olivine from the melt inclusion onto the walls of the olivine disc during quenching. Thus the equilibrium melt composition has been calculated from the glass inclusion composition by addition of olivine component using the Fe/Mg exchange coefficient of Roeder and Emslie (1970); the desired Mg/(Mg + ΣFe) being determined from the composition of olivine formed at run conditions in the peridotite section of the charge. The melt composition obtained is close to the trend for dry melting established by Falloon and Green (1988), and it is evident that although the reduced volatiles in this case have induced a liquidus depression of some 250 °C, there has been only a small shift in melt composition. Trace element, carbon and hydrogen contents of thirteen melt inclusions have been determined by secondary ion mass spectrometry (SIMS). The trace element signature is consistent with ∼29% melting in equilibrium with a lherzolitic assemblage. The equilibrium melt has a C/H of 0.48 by weight. Carbon solubility in partial melts is thus significant under reducing conditions in the presence of dissolved “water components” and establishes a major melt fluxing role for carbon in the upper mantle. The ubiquitous presence of carbon and hydrogen in basaltic magmas underscores the importance of determining both the position of vapour-present solidi and the composition of melts generated, when developing petrogenetic models. Received: 1 July 1996 / Accepted: 25 June 1997  相似文献   

4.
Experiments in the systems diopside-albite (Di-Ab) and diopside-albite-dolomite (Di-Ab-Dmt), doped with a wide range of trace elements, have been used to characterise the difference between clinopyroxene-silicate melt and clinopyroxene-carbonate melt partitioning. Experiments in Di-Ab-Dmt yielded clinopyroxene and olivine in equilibrium with CO2-saturated dolomitic carbonate melt at 3 GPa, 1375 °C. The experiments in Di-Ab were designed to bracket those conditions (3 GPa, 1640 °C and 0.8 GPa, 1375 °C), and so minimise the contribution of differential temperature and pressure to partitioning. Partition coefficients, determined by SIMS analysis of run products, differ markedly for some elements between Di-Ab and Di-Ab-Dmt systems. Notably, in the carbonate system clinopyroxene-melt partition coefficients for Si, Al, Ga, heavy REE, Ti and Zr are higher by factors of 5 to 200 than in the silicate system. Conversely, partition coefficients for Nb, light REE, alkali metals and alkaline earths show much less fractionation (<3). The observed differences compare quantitatively with experimental data on partitioning between immiscible carbonate and silicate melts, indicating that changes in melt chemistry provide the dominant control on variation in partition coefficients in this case. The importance of melt chemistry in controlling several aspects of element partitioning is discussed in light of the energetics of the partitioning process. The compositions of clinopyroxene and carbonate melt in our experiments closely match those of near-solidus melts and crystals in CMAS-CO2 at 3 GPa, suggesting that our partition coefficients have direct relevance to melting of carbonated mantle lherzolite. Melts so produced will be characterised by elevated incompatible trace element concentrations, due to the low degrees of melting involved, but marked depletions of Ti and Zr, and fractionated REE patterns. These are common features of natural carbonatites. The different behaviour of trace elements in carbonate and silicate systems will lead to contrasted styles of trace element metasomatism in the mantle. Received: 15 July 1999 / Accepted: 18 February 2000  相似文献   

5.
 Olivine and augite minette powders have been equilibrated from one bar to nearly 2.0 kbar (water-saturated), and from 900 to 1300° C, and then quenched rapidly, at oxygen fugacities controlled between the nickel-nickel oxide (NNO) and hematite-magnetite (HM) oxygen buffers. The liquidus of both samples is suppressed ∼100° C at water-saturated conditions and 1500 bar. Both lavas contained between 3 and 4 wt% water at the stage of phenocryst precipitation. The partitioning of ferric and ferrous iron between phlogopite and liquid has been determined on eight samples across 3 log fO2 units; when these determinations are combined with previous studies, Fe2O3/(Σ FeO total) of Mg-rich biotite can be calculated knowing log f O2, T, and X Fe. Thermodynamic modelling of biotite-liquid equilibria results in two expressions for calculating activity coefficients (γ) for annite and phlogopite in natural biotites. Based on the partitioning of BaO and TiO2 between biotite and liquid, we have formulated a thermometer and barometer. Over the range of 400° C, TiO2 partitioning between phlogopite and liquid is a function of temperature (±50° C), and is insensitive to pressure and H2O and O2 activities. BaO partitioning between phlogopite and liquid is a function of both temperature and pressure (±4 kbar), the latter being most important. Applying the TiO2 and BaO partitioning expressions to lamprophyre and lamproite suites shows that Mexican minettes equilibrated at low pressures (5 to 15 kbar;±4 kbar) and temperatures (1090 to 1160° C; ±50° C), while Australian lamproites equilibrated at higher P (up to 30 kbar; ±4 kbar) and T (1125 to 1400° C; ±50° C). Experimental glass compositions and phenocryst fractionation calculations, together with the BaO- and TiO2- based pressure calculations indicate that felsic minettes from the Mexican suite of lavas can be generated by simple fractionation of a more mafic parent minette at mid to lower crustal pressures. Received: 1 August 1994/Accepted: 30 June 1995  相似文献   

6.
In order to develop models simulating the crystallization of Fe-Ti oxides in natural lavas, we have processed published experimental data on magnetite-melt and ilmenite-melt equilibria. These data include 62 Mt-melt and 75 Ilm-melt pairs at temperatures 1040–1150 °C, oxygen fugacities from IW to NNO+2, and bulk compositions ranging from ferrobasalts to andesites and dacites. Five major cations (Fe3+, Fe2+, Ti4+, Mg2+ and Al3+) were considered for the purpose of describing Fe-Ti oxide saturation as a function of melt composition, temperature and oxygen fugacity at 1 atmosphere pressure. The empirically calibrated mineral-melt expression based on multiple linear regressions is: ln D i = a/T + blog f O2 + c + d 1 X Na + d 2 X K + d 3 X P, where D i represents molar distribution coefficients of the given cations between Mt/Ilm and melt; X Na, X K, and X P are the molar fractions of Na, K, and P in the melt. The empirically calibrated Mt-melt and Ilm-melt equilibria equations allowed us to develop two models for calculating crystallization temperatures of the Fe-Ti oxides in the melts with an accuracy of 10–15 °C, and compositions with an accuracy of 0.5–2 mol%. These models have been integrated into the COMAGMAT-3.5 program, improving our ability to study numerically the effects of temperature and oxygen fugacity on the stability and phase equilibria of Fe-Ti oxides. Application of this approach to the tholeiitic series of Chazhma Sill from Eastern Kamchatka (Russia) indicates oxygen fugacity conditions near NNO + 0.5. Numerical simulation of fractional crystallization of an iron-enriched basaltic andesite parent at these oxidizing conditions accurately reproduces the FeO-SiO2 relations observed in the Chazhma suite. Received: 3 March 1998 / Accepted: 7 August 1998  相似文献   

7.
Phase relations of three samples of the Laacher See Tephra (LST) have been determined experimentally as a function of temperature (760 to 880 °C), pressure (200, 300 and 400 MPa), water content of the melt and oxygen fugacity (ƒO2). The crystallization experiments were carried out at ƒO2=NNO buffer and at NNO=+ 2.3 log units. The melt water contents varied between 6 and more than 8 wt% H2O, corresponding to water-undersaturated and water saturated conditions respectively. The synthetic products are compared to the natural phases to constrain pre-eruptive conditions in the Laacher See magma chamber. The major phases occurring in the LST have been reproduced. The stability of hauyne is favoured at high ƒO2 (≈NNO + 2.3). The CaO contents in melt and plagioclase synthesized under water-saturated conditions are significantly higher than in the natural phases, implying that most of the differentiation of the phonolites took place under water-undersaturated conditions. However, this does not exclude the presence of a S-, Cl- and CO2-rich fluid phase in the upper parts of the magma chamber. The phase relationships and the TiO2 contents of melts show that the temperature was lower than 760 °C in the upper part of the magma column (probably down to 720 °C in the most differentiated levels) and that temperatures above 840–860 °C prevailed in the lower part. The variation of the X Mg of ferromagnesian minerals observed in both natural and experimental phases reflects the strong variations in ƒO2 in the lower magma chamber just prior to eruption (probably variation of about 2 log units). The most probable explanation for these ƒO2 variations is the injection of an oxidized alkali-rich magma, containing Mg-rich phenocrysts, at the base of a chemically zoned and more reduced magma column prior to eruption. Although the amount of injected magma may not have been very important, it was sufficient to change the ƒO2 conditions locally, explaining the heterogeneous X Mg of ferromagnesian minerals and the formation of hauyne at the base of the chamber. Received: 30 May 2000 / Accepted: 12 August 2000  相似文献   

8.
Meta-sedimentary rocks including marbles and calcsilicates in Central Dronning Maud Land (CDML) in East Antarctica experienced a Pan-African granulite facies metamorphism with peak metamorphic conditions around 830 ± 20 °C at 6.8 ± 0.5 kbar which was accompanied by the post-kinematic intrusion of huge amounts of syenitic (charnockitic) magmas at 4.5 ± 0.7 kbar. The marbles and calcsilicates may represent meta-evaporites as indicated by the occurrence of metamorphic gypsum/anhydrite and Cl-rich scapolite that formed in the presence of saline fluids with X NaCl in the range 0.15–0.27. The marbles and calcsilicates bear biotite, tremolite and/or hornblende and humite group minerals (clinohumite, chondrodite and humite) which are inferred to have crystallized at about 650 °C and 4.5 kbar. The syenitic intrusives contain late-magmatic biotite and amphibole (formed between 750 and 800 °C) as well as relictic magmatic fayalite, orthopyroxene and clinopyroxene. Two syenite and two calcsilicate samples contain fluorite. Corona textures in the marbles and calcsilicates suggest very low fluid-rock ratios during the formation of the retrograde (650 °C) assemblages. Biotite in all but two syenite samples crystallized at log(f H 2 O/f HF) ratios of 2.9 ± 0.4, while in the calcsilicates, both biotite and humite group minerals indicate generally higher log(f H 2 O/f HF) values of up to 5.2. A few samples, though, overlap with the syenite values. Log(f H 2 O/f HCl) derived from biotite covers the range 0.5–2.6 in all rock types. Within a single sample, the calculated values for both parameters vary typically by 0.1 to 0.8 log units. Water and halogen acid fugacities calculated from biotite-olivine/orthopyroxene-feldspar-quartz equilibria and the above fugacity ratios are 1510–2790 bars for H2O, 1.3–5.3 bars for HF and 7–600 bars for HCl. The results are interpreted to reflect the reaction of relatively homogeneous magmatic fluids [in terms of log(f H 2 O /f HF)] derived from the late-magmatic stages of the syenites with both earlier crystallized, still hotter parts of the syenites and with adjacent country rocks during down-temperature fluid flow. Fluorine is successively removed from the fluid and incorporated into F-bearing minerals (close to the syenite into metamorphic fluorite). In the course of this process log(f H 2 O /f HF) increases significantly. Chlorine preferably partitions into the fluid and hence log(f H 2 O /f HCl) does not change markedly during fluid-rock interaction. Received: 28 November 1997 / Accepted: 27 April 1998  相似文献   

9.
Plagioclase-melt partition coefficients (D) for 34 trace elements at natural concentration levels were determined experimentally in a natural MORB composition at atmospheric pressure using thin Pt-wire loops. Experiments were carried out at three temperatures (1,220, 1,200, and 1,180°C), and at three different oxygen fugacities (fO2 = IW, QFM, air) in order to assess the effect of fO2 on the partitioning of elements with multiple valence (Fe, Eu, Cr). Run products were analyzed by laser-ablation ICP-MS. Most trace element Ds increase slightly as temperature decreases, except for D Zr, D Fe, D Eu and D Cr that vary systematically with fO2. Applying the Lattice Strain Model to our data suggests the presence of Fe2+ entirely in the octahedral site at highly to moderate reducing conditions, while Fe3+ was assigned wholly to the tetrahedral site of the plagioclase structure. Furthermore, we provide a new quantitative framework for understanding the partitioning behaviour of Eu, which occurs as both 2+ and 3+ cations, depending on fO2and confirm the greater compatibility of Eu2+, which has an ionic radius similar to Sr, relative to Eu3+ in plagioclase and the higher Eu2+/ Eu3+ under reducing conditions. For petrogenetic basaltic processes, a combined fractionation of Eu2+–Sr and Fe–Mg by plagioclase has considerable potential as an oxybarometer for natural magmatic rocks.  相似文献   

10.
Recrystallized globules representing former immiscible sulfide liquids are found in a variety of igneous environments. Relatively little is known about the physical properties and thermochemistry of sulfide liquids, despite their importance in igneous systems. This study presents results of a series of experiments designed to calibrate a thermodynamic model for sulfide liquids in the system O-S-Fe at one atmosphere pressure. Sulfide liquids were equilibrated under controlled oxygen and sulfur fugacities at temperatures between 1100 and 1350 ° C in equilibrium with a silica mineral and a silicate melt. Experiments were quenched in a high-speed double-roller “splat” quencher in order to assure that measured compositions were as close to equilibrium liquid values as possible. Sulfide liquids are not stable in equilibrium with a silica-saturated silicate melt at log10(f O2) > FMQ-1 at 1250 °C and log10(f S2)=−3. Iron content of the sulfide changes little with variations in oxygen and sulfur fugacity at a given temperature. Consequently, oxygen and sulfur contents are inversely correlated in these liquids. Sulfur is present entirely as sulfide. Iron appears to be present in both its ferric and ferrous states. Data from this study were combined with data compiled from the literature to calibrate an asymmetric regular solution thermodynamic mixing model for O-S-Fe liquids. This model reproduces miscibility gaps and data from this study quite well, but exhibits minor but systematic errors at the O-Fe binary. The observed inverse correlation between sulfur and oxygen is reflected in the predicted free-energy surface by a sharp energy valley running along a line of constant Fe content. Received: 10 April 1996 / Accepted: 15 November 1996  相似文献   

11.
The Ordovician stratiform iron deposits at Zamora (NW Iberia) are arranged in several levels ranging between 0.2 and 1.5 m in thickness, which are interstratified in the upper member of the “Pielgo” Quartzites Formation (Arenig). The sandy nature, and trace-fossils corresponding to the ichnogenus Cruziana and Daedalus, together with major and trace element contents of this formation suggest an inter and subtidal, shallow marine depositional environment, which on a global scale formed part of a broad shelf situated in the northern margin of the Gondwana continent. The iron mineralization displays a foliated and banded structure due to the alternation of quartzitic, phosphatic (apatite), chamositic, chamositic-biotitic and ferriferous (magnetite and hematite) beds. They have high TiO2, Ta, Sc, V, Nb, Co, Zn and Y contents. The magnetite contains unusually large amounts of TiO2, V, Cr and Ni; there is also a clear depletion in Eu and the (Eu/Sm)CN ratio is <1 and the (Sm/Yb)CN ratio is >1. The chamosite contains high concentrations of Cr and V. These results suggest that iron was supplied from the weathering of a continental source, in combination with volcanic activity, such as within-basin basic volcanism or the presence of basic volcanic rocks in the exposed land. The physicochemical conditions of iron mineral crystallization calculated from chamosite compositions are the following: log f O2: −38.8 to −30.7, log f S2: −13.2 to −9.5 and T: 200 to 330 °C. These results together with the δ18O value (∼2‰) of the magnetite suggest that chamosite and magnetite were crystallized during later diagenesis and early low-grade metamorphism under redox conditions below the magnetite-hematite buffer. Received: 25 September 1996 / Accepted: 2 February 1998  相似文献   

12.
A systematic characterization of the chemical factors that control calcium partitioning between olivine and melt in a magmatic environment was undertaken using experiments performed on compositionally simple systems (CaO-MgO-SiO2, CaO-MgO-Al2O3-SiO2, CaO-MgO-Al2O3-SiO2-Cr2O3, CaO-MgO-Al2O3-SiO2-TiO2, CaO-MgO-Al2O3-SiO2-Na2O, CaO-MgO-Al2O3-SiO2-FeO, CaO-MgO-Al2O3-SiO2-FeO-Na2O) over a wide range of temperature (1050–1530 °C) at one bar pressure. The calcium concentration of olivines is shown to be dependent not only on the forsterite content of the olivine but to a large extent on melt composition. For a fixed CaO content of the melt, these results show that the CaO concentration of olivine is strongly sensitive to the amount of alumina, alkali and ferrous iron present in the coexisting melt. Oxygen fugacity and temperature are not found directly to affect Ca partitioning. It is thus proposed that the systematic variations of the calcium content of olivine may be used as an “in-situ chemical potentiometer” of the lime activity of the melt. Based upon these data in synthetic systems, an empirical model describing Ca partitioning between olivine and melt is developed. When applied to natural olivines this model reproduces their Ca content, where melt composition is known, to within ±10% relative. The model may therefore be used to predict changes in melt composition during olivine crystallization and/or to assess whether an olivine is in equilibrium with its host magma. Finally, the wide range of Ca partitioning observed at fixed crystal composition confirms that minor element partitioning between crystal and melt cannot be predicted from the physical characteristics of the crystal alone, and that the non-ideality of the melt has to be taken into account. Received: 12 June 1998 / Accepted: 1 February 1999  相似文献   

13.
Experiments have been conducted in a peralkaline Ti-KNCMASH system representative of MARID-type bulk compositions to delimit the stability field of K-richterite in a Ti-rich hydrous mantle assemblage, to assess the compositional variation of amphibole and coexisting phases as a function of P and T, and to characterise the composition of partial melts derived from the hydrous assemblage. K-richterite is stable in experiments from 0.5 to 8.0 GPa coexisting with phlogopite, clinopyroxene and a Ti-phase (titanite, rutile or rutile + perovskite). At 8.0 GPa, garnet appears as an additional phase. The upper T stability limit of K-richterite is 1200–1250 °C at 4.0 GPa and 1300–1400 °C at 8.0 GPa. In the presence of phlogopite, K-richterite shows a systematic increase in K with increasing P to 1.03 pfu (per formula unit) at 8.0 GPa/1100 °C. In the absence of phlogopite, K-richterite attains a maximum of 1.14 K pfu at 8.0 GPa/1200 °C. Titanium in both amphibole and mica decreases continuously towards high P with a nearly constant partitioning while Ti in clinopyroxene remains more or less constant. In all experiments below 6.0 GPa ΣSi + Al in K-richterite is less than 8.0 when normalised to 23 oxygens+stoichiometric OH. Rutiles in the Ti-KNCMASH system are characterised by minor Al and Mg contents that show a systematic variation in concentration with P(T) and the coexisting assemblage. Partial melts produced in the Ti-KNCMASH system are extremely peralkaline [(K2O+Na2O)/Al2O3 = 1.7–3.7], Si-poor (40–45 wt% SiO2), and Ti-rich (5.6–9.2 wt% TiO2) and are very similar to certain Ti-rich lamproite glasses. At 4.0 GPa, the solidus is thought to coincide with the K-richterite-out reaction, the first melt is saturated in a phlogopite-rutile-lherzolite assemblage. Both phlogopite and rutile disappear ca. 150 °C above the solidus. At 8.0 GPa, the solidus must be located at T≤1400 °C. At this temperature, a melt is in equilibrium with a garnet- rutile-lherzolite assemblage. As opposed to 4.0 GPa, phlogopite does not buffer the melt composition at 8.0 GPa. The experimental results suggest that partial melting of MARID-type assemblages at pressures ≥4.0 GPa can generate Si-poor and partly ultrapotassic melts similar in composition to that of olivine lamproites. Received: 23 December 1996 / Accepted: 20 March 1997  相似文献   

14.
Experiments at 750 °C, 200 MPa(H2O), a (H2O)=1, and fO2∼Ni-NiO established that the equilibrium among tourmaline, biotite, cordierite, and melt (± spinel, aluminosilicate, or corundum) occurs with ∼2 wt% B2O3 in strongly peraluminous melt with an aluminosity, measured by the parameter ASI, of >1.2. The experiments demonstrate the relationship of tourmaline stability to the activity product of the tourmaline components boron and aluminum, which are inversely related to one another. Tourmaline is unstable in metaluminous to mildly peraluminous melts (ASI <1.2) at 750 °C regardless of their boron content. For a given aluminosity, addition of components such as F requires a greater boron content of melt at this equilibrium. The stability of tourmaline increases with decreasing temperatures below 750 °C. At the inception of melting, tourmaline breaks down incongruently to assemblages containing crystalline AFM silicates (biotite, cordierite, garnet, sillimanite), aluminates (spinel, corundum), and B-enriched but Fe-Mg-poor melt. Granitic melts are likely to be undersaturated in tourmaline from the start of their crystallization, and their initial boron contents will be limited by the abundance of tourmaline in their source rocks. Quartzofeldspathic (gneissic, metapelitic) rocks that reached conditions of the granulite facies and still contain (prograde) tourmaline are rare, and probably have never yielded a partial melt. Most leucogranitic magmas will initially crystallize biotite, cordierite, or garnet, but not tourmaline. With crystallization, the Fe-Mg content of melt decreases, and the B2O3 content increases until the tourmaline-biotite and/or tourmaline-cordierite (or garnet) equilibria are attained. The B2O3 content of melt is buffered as long as these equilibria continue to operate, but low initial Fe-Mg contents of the magmas limit the quantity of boron that can be consumed by these reactions to <1 wt% B2O3. Normally, leucogranitic magmas contain insufficient Fe and Mg to conserve all boron as tourmaline and thus lose a large fraction of magmatic boron to wallrocks. Leucogranites and pegmatites with tourmaline as an early and only AFM silicate mineral probably contained >2 wt% B2O3 in their bulk magmas. Received: 6 August 1996 / Accepted: 21 July 1997  相似文献   

15.
Fluorine-, boron- and phosphorus-rich pegmatites of the Variscan Ehrenfriedersdorf complex crystallized over a temperature range from about 700 to 500 °C at a pressure of about 1 kbar. Pegmatite quartz crystals continuously trapped two different types of melt inclusions during cooling and growth: a silicate-rich H2O-poor melt and a silicate-poor H2O-rich melt. Both melts were simultaneously trapped on the solvus boundaries of the silicate (+ fluorine + boron + phosphorus) − water system. The partially crystallized melt inclusions were rehomogenized at 1 kbar between 500 and 712 °C in steps of 50 °C by conventional rapid-quench hydrothermal experiments. Glasses of completely rehomogenized inclusions were analyzed for H2O by Raman spectroscopy, and for major and some trace elements by EMP (electron microprobe). Both types of melt inclusions define a solvus boundary in an XH2O–T pseudobinary system. At 500 °C, the silicate-rich melt contains about 2.5 wt% H2O, and the conjugate water-rich melt about 47 wt% H2O. The solvus closes rapidly with increasing temperature. At 650 °C, the water contents are about 10 and 32 wt%, respectively. Complete miscibility is attained at the critical point: 712 °C and 21.5 wt% H2O. Many pegmatites show high concentrations of F, B, and P, this is particularly true for those pegmatites associated with highly evolved peraluminous granites. The presence of these elements dramatically reduces the critical pressure for fluid–melt systems. At shallow intrusion levels, at T ≥ 720 °C, water is infinitely soluble in a F-, B-, and P-rich melt. Simple cooling induces a separation into two coexisting melts, accompanied with strong element fractionation. On the water-rich side of the solvus, very volatile-rich melts are produced that have vastly different physical properties as compared to “normal” silicate melts. The density, viscosity, diffusivity, and mobility of such hyper-aqueous melts under these conditions are more comparable to an aqueous fluid. Received: 15 September 1999 / Accepted: 10 December 1999  相似文献   

16.
The water solubility in haplogranitic melts (normative composition Ab39Or32Qz29) coexisting with H2O-H2 fluids at 800 and 950 °C and 1, 2 and 3 kbar vapour pressure has been determined using IR spectroscopy. The experiments were performed in internally heated pressure vessels and the hydrogen fugacity (f H2) was controlled using the double capsule technique and oxygen buffer assemblages (WM and IW). Due to the limited lifetimes of these oxygen buffers the water solubility was determined from diffusion profiles (concentration-distance profiles) measured with IR spectroscopy in the quenched glasses. The reliability of the experimental strategy was demonstrated by comparing the results of short- and long-duration experiments performed with pure H2O fluids. The water solubility in Ab39Or32Qz29 melts equilibrated with H2O-H2 fluids decreases progressively with decreasing f H2O, as f H2 (or X H2) increases in the fluid phase. The effect of H2 on the evolution of the water solubility is similar to that of CO2 or another volatile with a low solubility in the melt and can be calculated in a first approximation with the Burnham water solubility model. Recalculation of high temperature water speciation for AOQ melts coexisting with H2O-H2 fluids at 800 °C, 2 kbar suggests that the concentrations of molecular H2O are proportional to f H2O (calculated using available mixing models), indicating Henrian behaviour for the solubility of molecular H2O in haplogranitic melts. Received: 29 June 1998 / Accepted: 10 March 1999  相似文献   

17.
Equilibria in the model melt (NaAlSi3O8(80) + FeO(20))-C-H2 system were experimentally studied at ΔlogfO2(IW) from −2.2 to −5.6, a pressure of 1.5 GPa, and a temperature of 1400°C. The experiments were conducted in a piston-cylinder apparatus using Pt capsules. The low fO2 values were imposed during the experiments by adding 2, 5, and 7 wt % of finely dispersed SiC to NaAlSi3O8(80) + FeO(20) powder. The experimental products were investigated by electron microprobe analysis and Raman spectroscopy. The investigations showed that melting at 1.5 GPa and 1400°C in the stability field of a metallic iron phase produces silicate liquids containing both oxidized and reduced H and C species. Carbon and hydrogen are dissolved in the melt as C-H (CH4) complexes. In addition, OH groups, molecular hydrogen H2, and molecular water H2O were observed in the melts. The proportions of dissolved C and H species strongly depend on oxygen fugacity. With decreasing fO2, the content of O-H species decreases and that of H-C species increases. The obtained data and previous results (Kadik et al., 2004, 2006) allow us to suppose a fundamental change in the character of magmatic transfer of C-O-H components during the evolution of the redox state of the Earth’s mantle in geologic time toward higher fO2 in its interiors.  相似文献   

18.
 The equilibrium water content of cordierite has been measured for 31 samples synthesized at pressures of 1000 and 2000 bars and temperatures from 600 to 750° C using the cold-seal hydrothermal technique. Ten data points are presented for pure magnesian cordierite, 11 data points for intermediate iron/magnesium ratios from 0.25 to 0.65 and 10 data points for pure iron cordierite. By representing the contribution of H2O to the heat capacity of cordierite as steam at the same temperature and pressure, it is possible to calculate a standard enthalpy and entropy of reaction at 298.18° K and 1 bar for, (Mg,Fe)2Al4Si5O18+H2O ⇄ (Fe,Mg)2Al4Si5O18.H2O Combining the 31 new data points with 89 previously published experimental measurements gives: ΔH ° r =–37141±3520 J and ΔS °  r =–99.2±4 J/degree. This enthalpy of reaction is within experimental uncertainty of calorimetric data. The enthalpy and entropy of hydration derived separately for magnesian cordierite (–34400±3016 J, –96.5±3.4 J/degree) and iron cordierite (–39613±2475, –99.5±2.5 J/degree) cannot be distinguished within the present experimental uncertainty. The water content as a function of temperature, T(K), and water fugacity, f(bars), is given by n H2O=1/[1+1/(K ⋅ f H2O)] where the equilibrium constant for the hydration reaction as written above is, ln K=4466.4/T–11.906 with the standard state for H2O as the gas at 1 bar and T, and for cordierite components, the hydrous and anhydrous endmembers at P and T. Received: 2 August 1994/Accepted: 7 February 1996  相似文献   

19.
The effects of pressure and oxygen fugacity (fO2) on trace element partitioning between pargasitic amphibole and alkali-basaltic melts have been determined at pressures from 1.5 to 2.5 GPa and oxygen fugacities at 2 log units above and below the nickel–nickel oxide buffer. Amphibole crystallization experiments were performed in a piston cylinder apparatus and partition coefficients between amphibole and quenched melt of large-ion-lithophile elements (LILE: Rb, Sr, Ba), high-field-strength elements (HFSE: Zr, Nb, Ta, Hf, U, Th) and rare-earth elements (REE: La to Lu; +Y) were measured with a LASER ablation inductively coupled plasma – mass spectrometer. Increasing pressure from 1.5 to 2.5 GPa at similar temperatures and approximately constant fO2 increases D Rb but decreases D Zr and D Hf and D REE (D La, D Ce, D Pr). An empirical relationship was observed between D Zr and (Ti/Al)M2 in the amphibole, which can be described by:
Increasing the fO2 by ∼4 log units (∼NNO–2.0 to ∼NNO+2.2) at similar temperatures and constant pressure increases D Ba and D Nd but decreases D Ti. An increase in pressure or fO2 decreases the maximum partition coefficient (D o ), the Young's modulus (E) and the optimum ionic radius (r o ) of the A-, M2- and M4-lattice sites. The calculated r o values from the monovalent cations (Na, K, Rb) in the A site and the quadrivalent cations (Ti, Hf, Zr) in the M2 lattice sites suggests that amphiboles crystallized from alkaline basalt material have smaller 〈A-O〉 and 〈M2-O〉, mean bond-lengths than those formed from pargasitic materials at identical pressures and fO2's. The measured partition coefficients were used to calculate trace element concentrations in melts formed by partial melting of amphibole-bearing peridotite. This modeling demonstrates those changes in either the pressure or fO2 of melting can exert a significant effect on Rb/HFSE ratios in the melts and thus help explain the wide variations of these ratios sometimes observed in basaltic rock suites. Received: 7 August 1998 / Accepted: 7 June 2000  相似文献   

20.
Summary Mineral chemistry and petrological data of chromites from chromitite bands in the N–S trending schist belt of Nuggihalli (southern Karnataka, India), belonging to the Dharwar craton of South India, are presented in this paper. Crystal chemical data indicate a komatiitic affinity of the chromitite. P–T calculations of the chromite-hosting peridotites yielded a pressure range of 13 to 28 kbar and temperatures ranging from 775 to 1080 °C; the oxygen fugacity (log fO2) varies from +0.5 to +1.6 above the QFM buffer. The P, T and fO2 data indicate that Nuggihalli chromitites crystallized in an environment akin to the upper mantle. The studied samples also show partial resetting; the lower temperatures ranging from 515 to 680 °C are ascribed to subsequent metamorphism of the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号