首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
As a common constituent of metamorphic assemblages, rutile provides constraints on the timing and conditions of rock transformation at high resolution. However, very little is known about the links between trace element mobility and rutile microstructures that result from synmetamorphic deformation. To address this issue, here we combine in situ LA-ICP-MS and sensitive high-resolution ion microprobe trace element data with electron back-scatter diffraction microstructural analyses to investigate the links between rutile lattice distortions and Zr and U–Pb systematics. Furthermore, we apply this integrated approach to constrain further the temperature and timing of amphibolite facies metamorphism and deformation in the Bergen Arcs of southwestern Norway. In outcrop, the formation of porphyroblastic rutile in dynamically hydrated leucocratic domains of otherwise rutile-poor statically hydrated amphibolite provides key contextual information on both the ambient conditions of hydration and deformation and the composition of the reactive fluid. Rutile in amphibolite recorded ambient metamorphic temperatures of ~590–730°C during static hydration of the granulitic precursor. By contrast, rutile from leucocratic domains in the directly adjacent shear zone indicates that deformation was accompanied by a localized increase in temperature. These higher temperatures are recorded in strain-free rutile (~600–860°C) and by Zr concentration measurements on low-angle boundaries and shear bands (620–820°C). In addition, we also observe slight depletions of Zr and U along rutile low-angle boundaries relative to strain-free areas in deformed grains from the shear zone. This indicates that crystal–plastic deformation facilitated the compositional re-equilibration of rutile upon cooling to slightly below the peak temperature of deformation. Cessation of deformation at mid-crustal conditions near ~600°C is recorded by late stage growth of small (<150 µm) rutile in the high-strain zones. U–Pb age data obtained from the strain-free and distorted rutile grains cluster in distinct populations of 437.4 ± 2.7 Ma and c. 405–410 Ma, respectively. These different ages are interpreted to reflect the difference in closure for thermally induced Pb diffusion between undeformed and deformed rutile during post-deformation exhumation and cooling. Thus, our results provide a reconstruction of the thermochronological history of the amphibolite facies rocks of the Lindås Nappe and highlight the importance of integration of microstructural data during application of thermometers and geochronometers.  相似文献   

2.
A population of oscillatory zoned, igneous zircon grains in a Javanese andesite contains fluid and mineral inclusions (up to 10 μm across) trapped during zircon growth. Orientation contrast imaging and orientation mapping by electron backscatter diffraction reveal that crystal-plastic deformation overprints growth zoning and has localized around 1–10 μm pores and inclusions. Cumulative crystallographic misorientation of up to 25° around pores and inclusions in zircon is predominantly accommodated by low-angle (<5°) orientation boundaries, with few free dislocations in subgrain interiors. Low-angle boundaries are curved, with multiple orientation segments at the sub-micrometer scale. Misorientation axes associated with the most common boundaries align with the zircon c-axis and are consistent with dislocation creep dominated by <100>(010) slip. A distinctly different population of sub-micron pores is present along subgrain boundaries and their triple junctions. These are interpreted to have formed as a geometric consequence of dislocation interaction during crystal-plasticity. Dislocation creep microstructures are spatially related to differences in cathodoluminescence spectra that indicate variations in the abundance of CL-active rare earth elements. The extent of the modification suggests deformation-related fast-pathway diffusion distances that are over five orders of magnitude greater than expected for volume diffusion. This enhanced diffusion is interpreted to represent a combination of fast-diffusion pathways associated with creep cavitation, dislocations and along low-angle boundaries. These new data indicate that ductile deformation localised around inclusions can provide fast pathways for geochemical exchange. These pathways may provide links to the zircon grain boundary, thus negating the widely held assumption that inclusions in fracture-free zircon are geochemically armoured once they are physically enclosed.  相似文献   

3.
Microstructural analysis of pyrite from a single sample of Witwatersrand conglomerate indicates a complex deformation history involving components of both plastic and brittle deformation. Internal deformation associated with dislocation creep is heterogeneously developed within grains, shows no systematic relationship to bulk rock strain or the location of grain boundaries and is interpreted to represent an episode of pyrite deformation that predates the incorporation of detrital pyrite grains into the Central Rand conglomerates. In contrast, brittle deformation, manifest by grain fragmentation that transects dislocation-related microstructures, is spatially related to grain contacts and is interpreted to represent post-depositional deformation of the Central Rand conglomerates. Analysis of the low-angle boundaries associated with the early dislocation creep phase of deformation indicates the operation of <010>{100} slip systems. However, some orientation boundaries have geometrical characteristics that are not consistent with simple <010>{100} deformation. These boundaries may represent the combination of multiple slip systems or the operation of the previously unrecognized <001>{120} slip system. These boundaries are associated with order of magnitude enrichments in As, Ni and Co that indicate a deformation control on the remobilization of trace elements within pyrite and a potential slip system control on the effectiveness of fast-diffusion pathways. The results confirm the importance of grain-scale elemental remobilization within pyrite prior to their incorporation into the Witwatersrand gold-bearing conglomerates. Since the relationship between gold and pyrite is intimately related to the trace element geochemistry of pyrite, the results have implications for the application of minor element geochemistry to ore deposit formation, suggest a reason for heterogeneous conductivity and localized gold precipitation in natural pyrite and provide a framework for improving mineral processing.  相似文献   

4.
The formation of titanite coronae after rutile is common in retrograde high-to ultrahigh-pressure meta-mafic rocks, which provides a good opportunity to address the geochemical behavior of HFSE in crustal environments. In the Sumdo eclogite, titanite occurs either as a corona around rutile grains or as semi-continuous veins cross-cutting the major foliation, whereas rutile grains occur either as inclusions in garnet or omphacite or as a relict core surrounded by titanite. Textural relationships ...  相似文献   

5.
韧性剪切带是在较高温条件下机械与化学作用高度耦合的系统。韧性剪切带普遍含有一种或多种流体,流体是韧性剪切变形高度局域化和剪切变形组构形成的主要影响因素。在强应变岩石中,可利用变形矿物的元素地球化学的变化特征来反演参与变形的流体的地球化学性质。苏鲁-大别超高压变质带中,多数榴辉岩经历了强烈的韧性剪切应变和流体作用,形成高度局域化、尺度不等的韧性剪切变形带,为研究在高压-超高压条件下,参与流体的性质,应变和流体相互作用提供了重要机会。样品DH-2G是一强烈剪切榴辉岩,由石榴石、绿辉石、金红石,及少量的多硅白云母、黝帘石、角闪石、斜长石、石英、锆石和磷灰石组成。在不同应变域,矿物的粒度变化明显。在类变斑晶域,石榴石粒度比剪切条带中的小2~4倍。在以下讨论中,与细粒石榴石(石榴石-I)共生的绿辉石称为绿辉石-I,与粗粒石榴石(石榴石-II)共生的绿辉石称为绿辉石-II。电子探针和原位LA-ICP-MS测试结果表明:(1)除Ni外,两类石榴石没有显著区别;(2)两类绿辉石在主量元素上也没有明显的差异,但微量元素特征,尤其是稀土元素上,存在明显的变化。与绿辉石-I相比,绿辉石-II具有以下特征:(1)轻稀土明显降低,达25~40倍左右;(2)重稀土明显富集,升高5~10倍;(3)Ni、Zn、Co、Sc、Ba、Zr、Y、Rb、Hf和HREE明显升高,而 V、Sr、U、Th、Pb和LREE明显降低;和(4)微弱的正Eu异常, Eu/Eu*=1.04~1.45,绿辉石-I基本上没有Eu异常。并且,剪切带域金红石的Nb/Ta比值从核部(<19.0)到边部(>20.0)显著增加。岩相学、元素和温压估计研究表明:在剪切过程中不存在外来流体,流体是由无水矿物(绿辉石、石榴石、金红石等)在超高压榴辉岩折返减压过程中通过压力降低出溶结构羟基或分子水,释放出流体,流体富含V、Sr、U、Th、Pb、Zr、Nb和LREE等微量元素。这些流体显著影响深俯冲地壳的流变学性质,是迁移活动元素(LILE和LREE)及保守元素(HFSE等)的重要载体,对超高压岩片的快速折返发挥关键作用。  相似文献   

6.
Quartzofeldspathic ultramylonites from the Alpine Fault Zone, one of the world's major, active plate boundary-scale fault zones have quartz crystallographic preferred orientations (CPO) and abundant low-angle (<10° misorientation) boundaries, typical microstructures for dislocation creep-dominated deformation. Geometrically necessary dislocation density estimates indicate mean dislocation densities of ∼109 cm−2. A significant proportion (∼30%) of grain boundaries (>10° misorientation) are decorated by faceted pores, commonly with uniformly-oriented pyramidal shapes. Only grain boundaries with >10° misorientation angles in polymineralic aggregates are decorated by pores. Mean grain boundary pore densities are ∼5 × 108 cm−2. Grain boundary pores are dissolution pits generated during syn-deformational transient grain boundary permeability, nucleating on dislocation traces at dilatant grain boundary interfaces. They have not been removed by subsequent grain boundary closure or annealing. Pore decoration could have led to grain boundary pinning, triggering a switch in the dominant deformation mechanism to grain boundary sliding, which is supported by evidence of CPO destruction in matrix quartz. Pore-decorated grain boundaries have significantly reduced surface area available for adhesion and cohesion, which would reduce the tensile and shear strength of grain boundaries, and hence, the bulk rock. Grain boundary decoration also significantly decreased the mean distance between pores, potentially facilitating dynamic permeability. Consequently, these microstructures provide a new explanation for strain weakening and evidence of fluid flow along grain boundaries in mylonites at mid-crustal conditions.  相似文献   

7.
An undeformed glomeroporphyritic andesite from the Sunda Arc of Java, Indonesia, contains zoned plagioclase and amphibole glomerocrysts in a fine-grained groundmass and records a complex history of adcumulate formation and subsequent magmatic disaggregation. A suite of xenocrystic zircon records Proterozoic and Archaean dates whilst a discrete population of zoned, euhedral, igneous zircon yields a SHRIMP U-Pb crystallisation age of 9.3 ± 0.2 Ma. Quantitative microstructural analysis of zircon by electron backscatter diffraction (EBSD) shows no deformation in the inherited xenocrysts, but intragrain orientation variations of up to 30° in 80% of the young zircon population. These variations are typically accommodated by both progressive crystallographic bending and discrete low angle boundaries that overprint compositional growth zoning. Dispersion of crystallographic orientations are dominantly by rotation about an axis parallel to the zircon c-axis [001], which is coincident with the dominant orientation of misorientation axes of adjacent analysis points in EBSD maps. Less common <100> misorientation axes account for minor components of crystallographic dispersion. These observations are consistent with zircon deformation by dislocation creep and the formation of tilt and twist boundaries associated with the operation of <001>{100} and <100>{010} slip systems. The restriction of deformation microstructures to large glomerocrysts and the young magmatic zircon population, and the absence of deformation within the host igneous rock and inherited zircon grains, indicate that zircon deformation took place within a low-melt fraction (<5% melt), mid-lower crustal cumulate prior to fragmentation during magmatic disaggregation and entrainment of xenocrystic zircons during magmatic decompression. Tectonic stresses within the compressional Sunda Arc at the time of magmatism are considered to be the probable driver for low-strain deformation of the cumulate in the late stages of initial crystallisation. These results provide the first evidence of crystal plastic dislocation creep in zircon associated with magmatic crystallisation and indicate that the development of crystal-plastic microstructures in zircon is not restricted to high-strain rocks. Such microstructures have previously been shown to enhance bulk diffusion of trace elements (U, Th and REE) in zircon. The development of deformation microstructures, and therefore multiple diffusion pathways in zircon in the magmatic environment, has significant implications for the interpretation of geochemical data from igneous zircon and the trace element budgets of melts due to the potential enhancement of bulk diffusion and dissolution rates.  相似文献   

8.
Core rocks recovered from the main hole (5158 m deep) of the Chinese Continental Scientific Drilling (CCSD‐MH) project, southern Sulu UHP terrane, east‐central China, consist of eclogites, various gneisses and minor metaperidotite cumulates; this lithological section underwent subduction‐zone UHP metamorphism. Coesite‐bearing eclogites are mainly present between the depths of 100–2000 m, but below 2000 m, mafic eclogites are rare. Selected elements (Zr, Nb, Cr, Fe, Si, Mg, Al & Ti) in rutile from 39 eclogite cores from 100 to 2774 m, and major elements of minerals from representative eclogites were analysed by electron microprobe. Zirconium and Nb concentrations of rutile cluster ~100–400 and 200–700 ppm respectively. However, Zr and Nb contents in rutile from strongly retrograded eclogites show larger variations than those of fresh or less retrograded eclogites, implying that somehow fluid infiltration affected rutile chemistry during retrograde metamorphism. Zr contents in rutile inclusions in garnet and omphacite are slightly lower than those of the matrix rutile, suggesting that the rutile inclusions formed before or close to the peak temperature. The P–T conditions of the CCSD‐MH eclogites were estimated by both Fe–Mg exchange and Zr‐in‐rutile thermometers, as well as by the Grt–Cpx–Phn–Ky geothermobarometer. The maximum temperature range of 700–811 °C calculated at 40 kbar using the Zr‐in‐rutile thermometer is comparable with temperature estimates by the Fe–Mg exchange thermometer. The temperature estimates of eclogites in a ~3000 m thick section define a continuous gradient, and do not show a distinct temperature gap, suggesting that the rocks from 100 to 3000 m depth might belong to a single, large‐scale UHP slab. These data combined with P–T calculations for CCSD‐MH peridotites yield a low geotherm (~5 °C km?1) for the Triassic subduction zone between the Sino‐Korean and Yangtze cratons; it lies ~30–35 mW m?2 conductive model geotherm.  相似文献   

9.
Jadeite‐bearing kyanite eclogite has been discovered in the Iratsu body of the Sanbagawa belt, SW Japan. The jadeite + kyanite assemblage is stable at higher pressure–temperature (PT) conditions or lower H2O activity [a(H2O)] than paragonite, although paragonite‐bearing eclogite is common in the Sanbagawa belt. The newly discovered eclogite is a massive metagabbro with the peak‐P assemblage garnet + omphacite + jadeite + kyanite + phengite + quartz + rutile. Impure jadeite is exclusively present as inclusions in garnet. The compositional gap between the coexisting omphacite (P2/n) and impure jadeite (C2/c) suggests relatively low metamorphic temperatures of 510–620 °C. Multi‐equilibrium thermobarometry for the assemblage garnet + omphacite + kyanite + phengite + quartz gives peak‐P conditions of ~2.5 GPa, 570 °C. Crystallization of jadeite in the metagabbro is attributed to Na‐ and Al‐rich effective bulk composition due to the persistence of relict Ca‐rich clinopyroxene at the peak‐P stage. By subtracting relict clinopyroxene from the whole‐rock composition, pseudosection modelling satisfactorily reproduces the observed jadeite‐bearing assemblage and mineral compositions at ~2.4–2.5 GPa, 570–610 °C and a(H2O) >0.6. The relatively high pressure conditions derived from the jadeite‐bearing kyanite eclogite are further supported by high residual pressures of quartz inclusions in garnet. The maximum depth of exhumation in the Sanbagawa belt (~80 km) suggests decoupling of the slab–mantle wedge interface at this depth.  相似文献   

10.
A zircon grain in an orthopyroxene–garnet–phlogopite–zircon–rutile-bearing xenolith from Udachnaya, Siberia, preserves a pattern of crystallographic misorientation and subgrain microstructure associated with crystal–plastic deformation. The zircon grain records significant variations in titanium (Ti) from 2.6 to 30 ppm that corresponds to a difference in calculated Ti-in-zircon temperatures of over several hundred degrees Celsius. The highest Ti concentration is measured at subgrain centres (30 ppm), and Ti is variably depleted at low-angle boundaries (down to 2.6 ppm). Variations in cathodoluminescence coincide with the deformation microstructure and indicate localised, differential enrichment of rare earth elements (REE) at low-angle boundaries. Variable enrichment of U and Th and systematic increase of Th/U from 1.61 to 3.52 occurs at low-angle boundaries. Individual SHRIMP-derived U–Pb ages from more deformed zones (mean age of 1799 ± 40, n = 22) are systematically younger than subgrain cores (mean age of 1851 ± 65 Ma, n = 7), and indicate that open system behaviour of Ti–Th–U occurred shortly after zircon growth, prior to the accumulation of significant radiogenic Pb. Modelling of trace-element diffusion distances for geologically reasonable thermal histories indicates that the observed variations are ~ 5 orders of magnitude greater than can be accounted for by volume diffusion. The data are best explained by enhanced diffusion of U, Th and Ti along deformation-related fast-diffusion pathways, such as dislocations and low-angle (< 5°) boundaries. These results indicate chemical exchange between zircon and the surrounding matrix and show that Ti-in-zircon thermometry and U–Pb geochronology from deformed zircon may not yield information relating to the conditions and timing of primary crystallisation.  相似文献   

11.
Eclogites from the North Qilian suture zone are high‐pressure low‐temperature metamorphic rocks of ocean crust protolith, and occur in both massive and foliated varieties as individual blocks of tens to hundreds of metres in size. The massive type is weakly deformed and shows granoblastic texture characterized by a coarse‐grained peak mineral assemblage of Grt1 + Omp1 + Ph + Rt ± Lws (or retrograde Cz). In contrast, the foliated type is strongly deformed and shows a fine‐grained retrograde mineral assemblage of Grt2 + Omp2 + Cz + Gln + Ph. Both total FeO and aegirine contents in omphacite, as well as XFe[=Fe3+/(Fe3+ + AlVI)] in clinozoisite/epidote, increase significantly from massive to foliated eclogites. Lattice preferred orientation (LPO) of omphacite, determined by electron back‐scatter diffraction analysis, is characterized by weak and strong SL‐type fabrics for massive and foliated eclogites, respectively. Clinozoisite/epidote also developed SL‐type fabric, but different from the LPOs of omphacite in <010> and <001> axes, owing to their opposite crystallographic long and short axis definitions. The transition of deformation mechanism from dislocation creep to diffusive mass transfer (DMT) creep in omphacite and the concomitant retrograde metamorphism both are efficiently facilitated when the original coarse‐grained Omp1 + Grt1 + Lws assemblage is dynamically recrystallized and retrogressed into the fine‐grained Fe3+‐rich assemblage of Omp2 + Grt2 + Cz + Gln. The DMT process with concomitant anisotropic growth assisted by fluids is considered to be an important deformation mechanism for most minerals in the foliated eclogite. P–T estimates yielded 2.3–2.6 GPa and 485?510 °C for the massive eclogite and 1.8–2.2 GPa and 450?480 °C for the foliated eclogite. The significant increase in total Fe and Fe3+ contents in omphacite and clinozoisite/epidote from massive to foliated eclogite suggests changes in mineral compositions accompanied by an increase in oxygen fugacity during ductile deformation associated with exhumation. The LPO transition of omphacite, clinozoisite and rutile from weak SL‐type in massive eclogites to strong SL‐type in foliated eclogites is interpreted to represent the increment of shear strain during exhumation along the ‘subduction channel’.  相似文献   

12.
In the North‐East Greenland Caledonides, P–T conditions and textures are consistent with partial melting of ultrahigh‐pressure (UHP) eclogite during exhumation. The eclogite contains a peak assemblage of garnet, omphacite, kyanite, coesite, rutile, and clinozoisite; in addition, phengite is inferred to have been present at peak conditions. An isochemical phase equilibrium diagram, along with garnet isopleths, constrains peak P–T conditions to be subsolidus at 3.4 GPa and 940°C. Zr‐in‐rutile thermometry on inclusions in garnet yields values of ~820°C at 3.4 GPa. In the eclogite, plagioclase may exhibit cuspate textures against surrounding omphacite and has low dihedral angles in plagioclase–clinopyroxene–garnet aggregates, features that are consistent with former melt–solid–solid boundaries and crystallized melt pockets. Graphic intergrowths of plagioclase and amphibole are present in the matrix. Small euhedral neoblasts of garnet against plagioclase are interpreted as formed from a peritectic reaction during partial melting. Polymineralic inclusions of albite+K‐feldspar and clinopyroxene+quartz±kyanite±plagioclase in large anhedral garnet display plagioclase cusps pointing into the host, which are interpreted as crystallized melt pockets. These textures, along with the mineral composition, suggest partial melting of the eclogite by reactions involving phengite and, to a large extent, an epidote‐group mineral. Calculated and experimentally determined phase relations from the literature reveal that partial melting occurred on the exhumation path, at pressures below the coesite to quartz transition. A calculated P–T phase diagram for a former melt‐bearing domain shows that the formation of the peritectic garnet rim occurred at 1.4 GPa and 900°C, with an assemblage of clinopyroxene, amphibole, and plagioclase equilibrated at 1.3 GPa and 720°C. Isochemical phase equilibrium modelling of a symplectite of clinopyroxene, plagioclase, and amphibole after omphacite, combined with the mineral composition, yields a P–T range at 1.0–1. 6 GPa, 680–1,000°C. The assemblage of amphibole and plagioclase is estimated to reach equilibrium at 717–732°C, calculated by amphibole–plagioclase thermometry for the former melt‐bearing domain and symplectite respectively. The results of this study demonstrate that partial melt formed in the UHP eclogite through breakdown of an epidote‐group mineral with minor involvement of phengite during exhumation from peak pressure; melt was subsequently crystallized on the cooling path.  相似文献   

13.
Kyanite‐ and phengite‐bearing eclogites have better potential to constrain the peak metamorphic P–T conditions from phase equilibria between garnet + omphacite + kyanite + phengite + quartz/coesite than common, mostly bimineralic (garnet + omphacite) eclogites, as exemplified by this study. Textural relationships, conventional geothermobarometry and thermodynamic modelling have been used to constrain the metamorphic evolution of the Tromsdalstind eclogite from the Tromsø Nappe, one of the biggest exposures of eclogite in the Scandinavian Caledonides. The phase relationships demonstrate that the rock progressively dehydrated, resulting in breakdown of amphibole and zoisite at increasing pressure. The peak‐pressure mineral assemblage was garnet + omphacite + kyanite + phengite + coesite, inferred from polycrystalline quartz included in radially fractured omphacite. This omphacite, with up to 37 mol.% of jadeite and 3% of the Ca‐Eskola component, contains oriented rods of silica composition. Garnet shows higher grossular (XGrs = 0.25–0.29), but lower pyrope‐content (XPrp = 0. 37–0.39) in the core than the rim, while phengite contains up to 3.5 Si pfu. The compositional isopleths for garnet core, phengite and omphacite constrain the P–T conditions to 3.2–3.5 GPa and 720–800 °C, in good agreement with the results obtained from conventional geothermobarometry (3.2–3.5 GPa & 730–780 °C). Peak‐pressure assemblage is variably overprinted by symplectites of diopside + plagioclase after omphacite, biotite and plagioclase after phengite, and sapphirine + spinel + corundum + plagioclase after kyanite. Exhumation from ultrahigh‐pressure (UHP) conditions to 1.3–1.5 GPa at 740–770 °C is constrained by the garnet rim (XCaGrt = 0.18–0.21) and symplectite clinopyroxene (XNaCpx = 0.13–0.21), and to 0.5–0.7 GPa at 700–800 °C by sapphirine (XMg = 0.86–0.87) and spinel (XMg = 0.60–0.62) compositional isopleths. UHP metamorphism in the Tromsø Nappe is more widespread than previously known. Available data suggest that UHP eclogites were uplifted to lower crustal levels rapidly, within a short time interval (452–449 Ma) prior to the Scandian collision between Laurentia and Baltica. The Tromsø Nappe as the highest tectonic unit of the North Norwegian Caledonides is considered to be of Laurentian origin and UHP metamorphism could have resulted from subduction along the Laurentian continental margin. An alternative is that the Tromsø Nappe belonged to a continental margin of Baltica, which had already been subducted before the terminal Scandian collision, and was emplaced as an out‐of‐sequence thrust during the Scandian lateral transport of nappes.  相似文献   

14.
大别山双河地区超高压变质岩矿物超微构造的HRTEM研究   总被引:3,自引:1,他引:2  
报道了大别山双河地区超高压榴辉岩和硬玉石英岩矿物超微构造及缺陷结构的高分辨透射电镜研究结果。在天然变形绿辉石晶内的自由位错、位错倾斜壁、位错环、位错网、亚晶界、堆垛层错等亚构造中 ,发现了纳米级水分子团 ,这种球形状水分子团包体的存在是导致绿辉石晶体水解弱化和塑性变形的重要因素。在榴辉岩矿物中广泛发育的层错、(10 0 )变形双晶、晶畴结构、界面与晶面的交叉滑移、晶格畸变等变形构造及缺陷结构 ,指示超高压岩石经历了快速折返。在硬玉单晶大约 5 0 0nm的微晶畴内 ,发现了C2 /c和P2 1/n两种结构 ,C2 /c结构的晶体学参数对应于硬玉 ,而P2 1/n结构的晶体学参数对应于绿辉石 ,纳米级P2 1/n出溶结构的存在 ,表明在退变质过程中 ,硬玉在纳米尺度上部分转变为绿辉石 ,并且未能达到平衡。也说明在主体岩石的抬升过程中 ,硬玉晶体伴随有复杂的非平衡退变质作用。对于大别山超高压变质岩的p T轨迹描述及其构造解释具有重要意义。  相似文献   

15.
Eclogite plays an important role in mantle convection and geodynamics in subduction zones. An improved understanding of processes in the deeper levels of subduction zones and collision belts requires information on eclogite rheology. However, the deformation processes and associated fabrics in eclogite are not well understood. Incompatible views of deformation mechanism have been proposed for both garnet and omphacite. We present here deformation behaviour of eclogite at temperatures of 1027–1427 °C, confining pressures of 2.5–3.5 GPa, and strain rates of 1 × 10?5 s?1 to 5 × 10?4 s?1. We obtained a power‐law creep for the high temperature and pressure deformation of a ‘dry’ eclogite (50 vol.% garnet, 40% omphacite and 10% quartz) with A = 103.3 ± 1.0, n = 3.5 ± 0.4, ΔE =403 ± 30 KJ mol?1 and ΔV = 27.2 cm3 mol?1. The two principal minerals of eclogite have greatly different strengths. Progressive increase of garnet results in a smooth increase in strength. Analysis by electron back‐scattered diffraction shows that: (1) garnet displays pole figures with near random distributions of misorientation angle under both dry and wet conditions; (2) omphacite shows pronounced lattice preferred orientations (LPOs), suggesting a dominant dislocation creep mechanism. Further investigation into the water effects on eclogite show: (3) water content does not influence the style of omphacite fabric but increases slightly the fabric strength; (4) grain boundary processes dominate the deformation of garnet under high water fugacity or high shear‐strain conditions, yielding a random LPO similar to that of non‐deforming garnet, despite the strong shape preferred orientation (SPO) observed. {110} [001] slip may dominate the deformation of rutile. Quartz displays complicated and inconsistent LPOs in eclogite. These results are remarkably similar to observations from deformed eclogites in nature.  相似文献   

16.
Relict eclogites and associated high-pressure rocks are present in the Eastern Segment of the SW Swedish gneiss region (the tectonic counterpart of the Parautochthonous Belt of the Canadian Grenville). These rocks give evidence of Sveconorwegian eclogite facies metamorphism and subsequent pervasive reworking and deformation at granulite and amphibolite facies conditions. The best-preserved eclogite relics suggest a clockwise PT t history, beginning in the amphibolite facies, progressing through the eclogite facies, decompressing and partially reequilibrating through the high- and medium-pressure granulite facies, before cooling through the amphibolite facies. Textures demonstrate the former coexistence of the plagioclase-free assemblages garnet+clinopyroxene+quartz+rutile+ilmenite, garnet+clinopyroxene+ kyanite+rutile, and garnet+kyanite+quartz+rutile. The former existence of omphacite is evidenced by up to 45 vol.% plagioclase expelled as small grains within large clinopyroxene. Matrix plagioclase is secondary and occurs expelled from clinopyroxene or in fine-grained, granulite facies reaction domains formed during resorption of garnet and kyanite. Garnet shows preserved prograde growth zoning with rimward increasing pyrope content, decreasing spessartine content and decreasing Fe/(Fe+Mg) ratio, but is partly resorbed and reequilibrated at the rims. PT estimates from microdomains with clinopyroxene+plagioclase+quartz+garnet indicate pressures of 9.5–12 kbar and temperatures of 705–795 °C for a stage of the granulite facies decompression. The preservation of the prograde zoning suggests that the rocks did not reside at these high temperatures for more than a few million years, and chemical disequilibrium and ‘frozen’ reaction textures indicate heterogeneous reaction progress and overstepping of reactions during the decompression through the granulite facies. Together these features suggest a rapid tectonic exhumation. The eclogite relics occur within a high-grade deformation zone with WNW–ESE stretching and associated oblique normal-sense, top-to-the-east (sensu lato) displacement, suggesting that extension was a main cause for the decompression and exhumation. Probable tectonic scenarios for this deformation are Sveconorwegian late-orogenic gravitational collapse or overall WNW–ESE extension.  相似文献   

17.
The petrogenetic relations among Ti‐rich minerals in high‐grade metabasites is illuminated here through a detailed petrological investigation of an anatectic garnet–clinopyroxene granulite from the Grenville Province, Ontario, Canada containing rutile, titanite and ilmenite in distinct microtextural settings. Garnet porphyroblasts exhibit zoned Ti concentrations (up to 0.15 wt% TiO2 in their cores), as well as a variety of rutile inclusion types, including clusters of small, variably elongate grains and thin (≤1 μm) oriented needles. Calcite inclusions in garnet, commonly observed surrounding garnet cores containing quartz and clinozoisite, indicate the presence of evolving C–O–H fluids during garnet growth and suggest that the rutile clusters may have formed from subsequent Ti diffusion and rutile precipitation within existing fluid inclusions. Titanite forms large subhedral crystals and typically occurs where the primary garnet–clinopyroxene assemblage is in contact with leucosome containing megacrystic hornblende, silvialitic scapolite and calcic plagioclase. Many titanite crystals exhibit marginal subgrains that correspond with sharp changes in their major and trace element composition, likely related to a dissolution–precipitation or recrystallization process following primary crystallization. Clinopyroxene–ilmenite symplectite coronas surround titanite in most locations, likely forming from reaction with the hornblende‐plagioclase matrix (±fluids/melt). Integration of multi‐equilibria thermobarometry and Zr thermometry in rutile and titanite with phase equilibrium modelling allows definition of a clockwise P–T path evolving to peak pressures of ~1.5 GPa at ~750°C during garnet and rutile growth, followed by peak temperature conditions of ~1.2 GPa and ~820–880°C associated with melt‐present titanite growth, and finally cooling and decompression to regional amphibolite facies conditions (~1.0 GPa and ~750°C) associated with the formation of clinopyroxene–ilmenite symplectites surrounding titanite. P–T pseudosections calculated for the pristine (leucosome‐ and titanite ‐free) metabasite bulk composition reproduce much of the prograde phase relations, but predict rutile as the stable Ti‐rich mineral at the peak thermal conditions associated with melt‐present titanite growth. The PM(CaO) and TM(CaO) models show that bulk CaO concentrations have a significant effect on the stability ranges of titanite and rutile. Increased bulk CaO tends to stabilize titanite to higher pressure and temperature at the expense of rutile, with a ≥15% increase in CaO producing the observed titanite‐bearing assemblage at high‐P granulite facies conditions. Thus, the model results are consistent with the textural observations, which suggest that titanite stability is associated with a chemical exchange between the host metabasite and a Ca‐rich melt.  相似文献   

18.
Omphacite and garnet coronas around amphibole occur in amphibolites in the Hong'an area, western Dabie Mountains, China. These amphibolites consist of an epidote–amphibolite facies assemblage of amphibole, garnet, albite, clinozoisite, paragonite, ilmenite and quartz, which is incompletely overprinted by an eclogite facies assemblage of garnet, omphacite and rutile. Coronas around amphibole can be divided into three types: an omphacite corona; a garnet–omphacite–rutile corona; and, a garnet–omphacite corona with less rutile. Chemographic analysis for local reaction domains in combination with petrographical observations show that reactions Amp + Ab + Pg = Omp +Czo + Qtz + H2O, and Amp + Ab = Omp ± Czo + Qtz + H2O may lead to the development of omphacite coronas. The garnet–omphacite–rutile corona was formed from the reaction Amp + Ab + Czo + Ilm ± Qtz = Omp + Grt + Rt + H2O. In garnet–omphacite coronas, the garnet corona grew during an early stage of epidote amphibolite facies metamorphism, whereas omphacite probably formed by the reactions forming the omphacite corona during the eclogite facies stage. It is estimated that these reactions occurred at 0.8–1.4 GPa and 480–610 °C using the garnet–clinopyroxene thermometer and omphacite barometer in the presence of albite.  相似文献   

19.
Phase equilibria modelling, laser‐ablation split‐stream (LASS)‐ICP‐MS petrochronology and garnet trace‐element geochemistry are integrated to constrain the P–T–t history of the footwall of the Priest River metamorphic core complex, northern Idaho. Metapelitic, migmatitic gneisses of the Hauser Lake Gneiss contain the peak assemblage garnet + sillimanite + biotite ± muscovite + plagioclase + K‐feldspar ± rutile ± ilmenite + quartz. Interpreted P–T paths predict maximum pressures and peak metamorphic temperatures of ~9.6–10.3 kbar and ~785–790 °C. Monazite and xenotime 208Pb/232Th dates from porphyroblast inclusions indicate that metamorphism occurred at c. 74–54 Ma. Dates from HREE‐depleted monazite formed during prograde growth constrain peak metamorphism at c. 64 Ma near the centre of the complex, while dates from HREE‐enriched monazite constrain the timing of garnet breakdown during near‐isothermal decompression at c. 60–57 Ma. Near‐isothermal decompression to ~5.0–4.4 kbar was followed by cooling and further decompression. The youngest, HREE‐enriched monazite records leucosome crystallization at mid‐crustal levels c. 54–44 Ma. The northernmost sample records regional metamorphism during the emplacement of the Selkirk igneous complex (c. 94–81 Ma), Cretaceous–Tertiary metamorphism and limited Eocene exhumation. Similarities between the Priest River complex and other complexes of the northern North American Cordillera suggest shared regional metamorphic and exhumation histories; however, in contrast to complexes to the north, the Priest River contains less partial melt and no evidence for diapiric exhumation. Improved constraints on metamorphism, deformation, anatexis and exhumation provide greater insight into the initiation and evolution of metamorphic core complexes in the northern Cordillera, and in similar tectonic settings elsewhere.  相似文献   

20.
The Eclogite Zone, of the Tauern Window is an exhumed subduction channel comprising eclogites with different grades of retrogression in a matrix of high-pressure metasediments. The rocks were exposed to 600 °C and 20–25 kbars, and then retrogressed during their exhumation, first under blueschist facies and later under amphibolite facies metamorphism. To gain insights into the deformation within the subduction channel during subduction and exhumation, both fresh and retrogressed eclogites, as well as the surrounding metasediments were investigated with respect to their deformation microstructures and crystallographic preferred orientations (CPOs). Pristine and retrogressed eclogites show grain boundary migration and subgrain rotation recrystallization microstructures in omphacite. A misorientation axes analysis reveals the activity of complementary deformation mechanisms including grain boundary sliding and dislocation creep. The omphacite CPOs of the eclogites correspond to dominant SL-fabrics characteristic of plane strain deformation, though there are local variations towards flattening or constriction within the paleosubduction channel. The glaucophane CPOs in retrogressed eclogites match those of omphacite, suggesting that a constant strain geometry persisted during exhumation at blueschist facies conditions. Plastic deformation of the host high-pressure metasediments outlasted that of the eclogites, as indicated by white mica fabrics and quartz CPO. The latter is consistently asymmetric, pointing to the operation of non-coaxial deformation. The microstructures and CPO data indicate a continuous plastic deformation cycle with eclogite and blueschist facies metamorphism related to subduction and exhumation of the different rock units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号