首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
北山地区早古生代板块构造特征   总被引:35,自引:2,他引:35       下载免费PDF全文
位于甘肃省西北边界和内蒙古自治区西端的北山地区,早古生代大地构造单元由塔里木板块东段北缘和北侧贝加尔期分裂出来的旱山微板块组成,其间被石板井-小黄山蛇绿混杂岩带所分隔。在漫长的构造演化进程中发育有蛇绿岩带。同时,经历了大西洋型、安第斯型(?)和西太平洋型大陆边缘的演化阶段,陆壳增厚,地壳成熟度增加,由大洋地壳和过渡型地壳向大陆型地壳转化。晚古生代初,全区进入板内活动时期。  相似文献   

2.
准噶尔地块可分为东、西准噶尔构造区和准噶尔盆地.自古生代以来准噶尔盆地及其周边大规模的火山活动和复杂的构造演化、以及有关准噶尔盆地基底及其与周边的构造关系及其演化,一直存在争议.利用EMAG2岩石圈磁异常模型,采用三维反演技术,对准噶尔及其周边地区的地壳磁化率进行成像,得到了0~60 km深度范围之内的磁性结构.反演结果显示:准噶尔盆地腹部地壳磁性结构相对完整;西准噶尔地壳具有与洋壳俯冲相关岛弧环境的磁性结构;东准噶尔和吐哈盆地磁性层较厚且连续,具有古陆基底特征.此外,地壳磁化率异常展示了区域断裂构造及其深部延伸特征,同时显示在覆盖区可能存在隐伏深大断裂带.对该地区岩石圈磁异常成因的定量解释,为深入剖析准噶尔地区岩石圈构造及其与周边构造单元之间的关系提供了有益的资料和参考.   相似文献   

3.
The Otway Basin in southeastern Australia formed on a triangular‐shaped area of extended continental lithosphere during two extensional episodes in Cretaceous to Miocene times. The extent of the offshore continental margin is highlighted by Seasat/Geosat satellite altimeter data. The crustal architecture and structural features across this southeast Australian margin have been interpreted from offshore‐onshore wide‐angle seismic profiling data along the Otway Continental Margin Transect extending from the onshore Lake Condah High, through the town of Portland, to the deep Southern Ocean. Along the Otway Continental Margin Transect, the onshore half‐graben geometry of Early Cretaceous deposition gives way offshore to a 5 km‐thick slope basin (P‐wave velocity 2.2–4.6 km/s) to at least 60 km from the shoreline. At 120 km from the nearest shore in a water depth of 4220 m, sonobuoy data indicate a 4–5 km sedimentary sequence overlying a 7 km thick basement above the Moho at 15 km depth. Major fault zones affect the thickness of basin sequences in the onshore area (Tartwaup Fault Zone and its southeast continuation) and at the seaward edge of the Mussel Platform (Mussel Fault). Upper crustal basement is interpreted to be attenuated and thinned Palaeozoic rocks of the Delamerian and Lachlan Orogens (intruded with Jurassic volcanics) that thin from 16 km onshore to about 3.5 km at 120 km from the nearest shore. Basement rocks comprise a 3 km section with velocity 5.5–5.7 km/s overlying a deeper basement unit with velocity 6.15–6.35 km/s. The Moho shallows from a depth of 30 km onshore to 15 km depth at 120 km from the nearest shore, and then to about 12 km in the deep ocean at the limits of the transect (water depth 5200 m). The continent‐ocean boundary is interpreted to be at a prominent topographic inflection point 170 km from shore at the bottom of the continental slope in 4800 m of water. P‐wave velocities in the lower crust are 6.4–6.8 km/s, overlying a thin transition zone to an upper mantle velocity of 8.05 km/s beneath the Moho. Outstandingly clear Moho reflections seen in deep‐marine profiling data at about 10.3 s two‐way time under the slope basin and continent‐ocean boundary place further strong controls on crustal thickness. There is no evidence of massive high velocity (>7 km/s) intrusives/underplate material in the lower crust nor any synrift or early post‐rift subaerial volcanics, indicating that the Otway continental margin can be considered a non‐volcanic margin, similar in many respects to some parts of the Atlantic Ocean margins e.g. the Nova Scotia ‐ Newfoundland margin off Canada and the Galicia Bank off the Iberian Peninsula. Using this analogue, the prominent gravity feature trending northwest‐southeast at the continent‐ocean boundary may indicate the presence of highly serpentinised mantle material beneath a thin crust, but this has yet to be tested by detailed work.  相似文献   

4.
安徽庐枞盆地是长江中下游成矿带的重要矿集区,其深部火山岩基底性质不明,制约了矿产勘探的开展。通过对庐枞火山岩盆地中段1∶5万高精度重磁数据及大地电磁测深数据进行再处理,探讨该区地球物理场的特征及其地质意义。结果表明: 庐枞火山岩盆地位于NE向古生代地层褶皱带的“鞍部”,火山岩厚度与重力剩余异常幅值变化具有较好的对应关系; 火山岩之下主体为隐伏侵入岩,呈似厚层状,底界面厚度为3~4 km,黄屯—枞阳断裂与罗河断裂是主要的深部岩浆通道。推断盆地内三叠系—石炭系主体被侵位,部分泥盆系—志留系在隐伏侵入岩之下发育。研究成果可为庐枞盆地基础地质研究及找矿预测提供参考。  相似文献   

5.
New structural, petrological, chemical, isotope, and paleomagnetic data have provided clues to the Late Riphean–Paleozoic history of the Uda–Vitim island arc system (UVIAS) in the Transbaikalian sector of the Paleoasian ocean, as part of the Transbaikalian zone of Paleozoids. The island arc system consists of three units corresponding to main evolution stages: (i) Upper Riphean (Late Baikalian), (ii) Vendian–Lower Paleozoic (Caledonian), and (iii) Middle–Upper Paleozoic (Hercynian). The earliest stage produced the base of the system composed of Late Riphean ophiolite (971–892 Ma, U-Pb) and volcanic (837–789 Ma, U-Pb) and sedimentary rocks (hemipelagic siliceous sediments and dolerite sills) which represent the Barguzin–Vitim oceanic basin and the Kelyana island arc. The main event of the second stage was the formation of the large UVIAS structure (over 150,000 km2) which comprised the Transbaikalian oceanic basin, the forearc and backarc basins, and the volcanic arc itself, and consisted of many volcanic-tectonic units exceeding 100 km2 in area (Eravna, Oldynda, Abaga, etc.). Lithology, stratigraphy, major–element compositions, and isotope ages of Vendian–Cambrian volcanic rocks and associated sediments indicate strong differentiation of calc-alkaline series and the origin of the island arc system upon oceanic crust, in a setting similar to that of the today’s Kuriles–Kamchatka island arc system. The Middle–Upper Paleozoic stage completed the long UVIAS history and left its imprint in sedimentary and volcanic rocks in superposed trough basins. The rocks were studied in terms of their biostratigraphic and isotope age constraints, as well as major- and trace-element compositions, and were interpreted as products of weathering and tectonic-magmatic rework of the UVIAS units.  相似文献   

6.
The Lachlan Fold Belt has the velocity‐depth structure of continental crust, with a thickness exceeding 50 km under the region of highest topography in Australia, and in the range 41–44 km under the central Fold Belt and Sydney Basin. There is no evidence of high upper crustal velocities normally associated with marginal or back‐arc basin crustal rocks. The velocities in the lower crust are consistent with an overall increase in metamorphic grade and/or mafic mineral content with depth. Continuing tectonic development throughout the region and the negligible seismicity at depths greater than 30 km indicate that the lower crust is undergoing ductile deformation.

The upper crustal velocities below the Sydney Basin are in the range 5.75–5.9 km/s to about 8 km, increasing to 6.35–6.5 km/s at about 15–17 km depth, where there is a high‐velocity (7.0 km/s) zone for about 9 km evident in results from one direction. The lower crust is characterised by a velocity gradient from about 6.7 km/s at 25 km, to 7.7 km/s at 40–42 km, and a transition to an upper mantle velocity of 8.03–8.12 km/s at 41.5–43.5 km depth.

Across the central Lachlan Fold Belt, velocities generally increase from 5.6 km/s at the surface to 6.0 km/s at 14.5 km depth, with a higher‐velocity zone (5.95 km/s) in the depth range 2.5–7.0 km. In the lower crust, velocities increase from 6.3 km/s at 16 km depth to 7.2 km/s at 40 km depth, then increase to 7.95 km/s at 43 km. A steeper gradient is evident at 26.5–28 km depth, where the velocity is about 6.6—6.8 km/s. Under part of the area an upper mantle low‐velocity zone in the depth range 50–64 km is interpreted from strong events recorded at distances greater than 320 km.

There is no substantial difference in the Moho depth across the boundary between the Sydney Basin and the Lachlan Fold Belt, consistent with the Basin overlying part of the Fold Belt. Pre‐Ordovician rocks within the crust suggest fragmented continental‐type crust existed E of the Precambrian craton and that these contribute to the thick crustal section in SE Australia.  相似文献   

7.
长江中下游庐江-枞阳火山岩矿集区深部结构与成矿作用   总被引:32,自引:16,他引:16  
为探测长江中下游成矿带庐江-枞阳白垩纪火山岩盆地和铁、硫矿集区深部构造和地壳结构,探讨成矿深部控制条件,作者完成了穿越火山岩盆地的深反射地震剖面(150km,记录30s)和罗河铁矿区浅层高分辨反射地震剖面(20km),以及平行剖面的大地电磁、高精度重磁剖面,揭示了矿集区全地壳精细结构和电磁结构,同时开展区域构造测量和火山岩年代学研究,获得了新的认识。证实"耳状"的庐-枞火山岩盆地是一个沿北东向罗河断裂向东侧发育的非对称火山盆地,排除了另一半被断在西侧红层之下的判断;罗河断裂是一条切穿MOHO的深断裂,倾向南东,是引导地幔流体和岩浆上涌和喷发的通道,在中地壳形成岩浆房(反射亮斑);鉴别出多层界面,火山岩-侏罗系厚度约4~5km(其中火山岩厚度约3km),三叠系-震旦系变形层底界深度大致18~20km,变质基底组成中下地壳,MOHO平缓向北西倾,深度33~31km;追踪郯-庐断裂带的深部产状,陡立延伸到MOHO,宽约10km。从而揭示了早白垩系(132~127Ma)庐-枞火山岩矿集区深部过程与成矿、控矿作用。  相似文献   

8.
深地震反射剖面揭示了庐枞矿集区全地壳的精细结构,在研究火山岩盆地的深部构造、探讨成矿深部过程等方面取得了新认识。从长江至大别山下,Moho由30km左右加深至33km左右,罗河矿下方Moho错断大约3km。庐枞火山岩盆地是一个沿着罗河断裂向东发育的"耳状"非对称盆地,并不存在另外一半隐伏在红层之下的盆地。罗河铁矿对应Moho错断处,处在构造的转换带上。罗河断裂之下存在近于透明的弱反射区域,可能是地幔流体和岩浆上涌、喷发的通道。郯庐断裂、罗河-缺口断裂、长江断裂是庐枞地区的三个重要断裂。郯庐断裂带为不对称花束状构造,近于直立,切穿地壳。小岭矿与龙桥矿可能产出在一个隆起的火成岩体的两翼。  相似文献   

9.
The study addresses the space distribution of lithospheric density contrasts in 3D and 2D surface (spherical) sources of gravity anomalies to depths of 120 km below the geoid surface and their relationship with shallow deformation and Archean, Early Paleozoic, and Late Mesozoic geodynamic environments. The lithospheric section in northeastern Transbaikalia and the Upper Amur region includes two layers of low-density gradients attendant with low seismic velocities and low electrical resistivity. The lower layer at depths of 80–120 km is attributed to an asthenospheric upwarp that extends beneath the North Asian craton from the Emuershan volcanic belt and the Songliao basin. The concentric pattern of density contrasts in the middle and lower crust beneath the Upper Amur region may be produced by the activity of the Aldan-Zeya plume, which spatially correlates with the geometry of the asthenospheric upwarp as well as with the regional seismicity field, magnetic and heat flow anomalies, and stresses caused by large earthquakes and recent vertical crustal movements. The relationship between shallow and deep structures in the crust and upper mantle bears signature of horizontal displacement (subduction) of the lower crust of the Baikal-Vitim and Amur superterranes beneath the North Asian craton.  相似文献   

10.
新疆西天山伊犁地块晚古生代火山岩地质特征及构造意义   总被引:8,自引:0,他引:8  
对新疆西天山伊犁盆地晚古生代火山岩时空分布和地质特征、岩石化学等进行系统总结,认为该盆地晚古生代火山岩主要由晚泥盆世至早二叠世的火山岩组成,其形成与南北天山洋盆演化有关.晚泥盆—早石炭世大哈拉军山组火山岩为天山南北洋盆大洋板块俯冲而成的钙碱性火山岩,晚石炭世伊什基里克组火山岩为挤压环境向拉张环境过渡的钙碱性火山岩和碱性火山岩,早二叠世乌郎组火山岩为后造山具裂谷特征的双峰式火山岩组合.  相似文献   

11.
西准噶尔晚古生代残余洋盆消亡时间与构造背景研究   总被引:18,自引:9,他引:9  
徐新  周可法  王煜 《岩石学报》2010,26(11):3206-3214
准噶尔西北缘克拉玛依蛇绿岩套及其上覆陆相火山-沉积岩系的研究表明,西准噶尔晚古生代残余洋盆是继承早古生代洋盆发生的,沉积作用基本连续,但同位素年代学研究表现出明显的早古生代和晚古生代两个阶段。残余洋盆的消亡是一个"软碰撞"过程,残余洋盆整体隆升消亡后,经历了329~320Ma、310~295Ma及290Ma三次构造-岩浆事件,爆发三期陆相火山喷发,形成巴塔玛依内山组、哈尔加吾组、卡拉岗组三个陆相火山-沉积岩系,准噶尔西北缘的佳木河组是跨越石炭-早二叠世包括多期火山-沉积作用的产物。晚古生代侵入岩经历了由小型浅成闪长岩、石英闪长岩、花岗闪长岩系列向大型深成富碱花岗岩系列的转化,可能是花岗闪长质过渡型地壳向花岗质成熟大陆壳转化的深部作用过程的反映。  相似文献   

12.
We present results from a 484 km wide-angle seismic profile acquired in the northwest part of the South China Sea (SCS) during OBS2006 cruise. The line that runs along a previously acquired multi-channel seismic line (SO49-18) crosses the continental slope of the northern margin, the Northwest Subbasin (NWSB) of the South China Sea, the Zhongsha Massif and partly the oceanic basin of the South China Sea. Seismic sections recorded on 13 ocean-bottom seismometers were used to identify refracted phases from the crustal layer and also reflected phases from the crust-mantle boundary (Moho). Inversion of the traveltimes using a simple start model reveals crustal images in the study area. The velocity model shows that crustal thickness below the continental slope is between 14 and 23 km. The continental part of the line is characterized by gentle landward mantle uplift and an abrupt oceanward one. The velocities in the lower crust do not exceed 6.9 km/s. With the new data we can exclude a high-velocity lower crustal body (velocities above 7.0 km/s) at the location of the line. We conclude that this part of the South China Sea margin developed by a magma-poor rifting. Both, the NWSB and the Southwest Sub-basin (SWSB) reveal velocities typical for oceanic crust with crustal thickness between 5 and 7 km. The Zhongsha Massif in between is extremely stretched with only 6–10 km continental crust left. Crustal velocity is below 6.5 km/s; possibly indicating the absence of the lower crust. Multi-channel seismic profile shows that the Yitongansha Uplift in the slope area and the Zhongsha Massif are only mildly deformed. We considered them as rigid continent blocks which acted as rift shoulders of the main rift subsequently resulting in the formation of the Northwest Sub-basin. The extension was mainly accommodated by a ductile lower crustal flows, which might have been extremely attenuated and flow into the oceanic basin during the spreading stage. We compared the crustal structures along the northern margin and found an east-west thicken trend of the crust below the continent slope. This might be contributed by the east-west sea-floor spreading along the continental margin.  相似文献   

13.
许继峰  王强 《地学前缘》2003,10(4):401-406
Adakitic火成岩可以通过几种不同的岩浆作用方式产生,其中下地壳镁铁质岩石的直接部分熔融和拆沉下地壳的部分熔融可能是两种重要的adakitic火成岩形成方式。在一个大陆厚地壳背景,adakitic火成岩的产生指示了它们的岩浆源区位于大于40 km的下地壳之中,因此,暗示该大陆地壳的最小厚度超过40 km。青藏高原腹地的羌塘地区分布有40 Ma左右的“低镁”和“高镁”adakitic安山岩-英安岩-流纹岩,它们应分别是青藏高原厚大陆地壳下部镁铁质岩石直接部分熔融和拆沉的下地壳脱水熔融的产物。这套adakitic火山岩的厘定指示出在40 Ma左右时,青藏羌塘地区或更大范围的大陆地壳已经加厚到超过40 km,其地表在当时或稍后可能已经开始了隆升。  相似文献   

14.
The Rwenzori mountains in western Uganda, with a maximum elevation of more than 5,000 m, are located within the Albertine rift valley. We have deployed a temporary seismic network on the Ugandan side of the mountain range to study the seismic velocity structure of the crust and upper mantle beneath this section of the rift. We present results from a receiver-function study revealing a simple crustal structure along the eastern rift flank with a more or less uniform crustal thickness of about 30 km. The complexity of inner-crustal structures increases drastically within the Rwenzori block. We apply different inversion techniques to obtain reliable results for the thickness of the crust. The observations expose a significantly thinner crust beneath the Rwenzori range with thickness values ranging from about 20–28 km beneath northern and central parts of the mountains. Our study therefore indicates the absence of a crustal root beneath the Rwenzori block. Beneath the Lake Edward and Lake George basins we detect the top of a layer of significantly reduced S-wave velocity at 15 km depth. This low-velocity layer may be attributed to the presence of partial melt beneath a region of recent volcanic activity.  相似文献   

15.
We herein present a new seismic refraction/wide-angle reflection profile that crosses the Songpan–Ganzi terrane, the Animaqing suture zone and the eastern Kunlun mountains (comprised of the South Kunlun and Middle Kunlun blocks separated by the Middle Kunlun fault). The profile is 380 km long and extends from Moba to Guide in eastern Tibet. The crustal thickness is about 62 km under the Songpan–Ganzi terrane, 62–64 km under the South Kunlun, and 60 km under the Middle Kunlun block. The Songpan–Ganzi flysch seems to be present up to a depth of 15 km south of the Animaqing suture zone, and up to a depth of 10 km in the Middle Kunlun block, with thicknesses elsewhere that depend on assumptions about the likely lithologies. The profile exhibits clear lateral variations both in the upper and lower crust, which are indicative of different crustal blocks juxtaposed by the Kunlun fault system. Whether or not the Songpan–Ganzi flysch was originally deposited on oceanic crust, at the longitude of our profile (100°E) it is now underlain by continental crust, and the presence of continental crust beneath the Songpan–Ganzi terrane and of a continental arc under the South Kunlun block suggest Paleozoic continent–continent arc collision in the eastern Kunlun Mountains. Comparison of crustal velocity columns from all wide-angle seismic profiles across the eastern Kunlun mountains indicates a remarkable west-to-east change in the Moho topography across the Kunlun fault system (15–20 km Moho step at 95°E, but only 2–5 km along our profile at 100°E). Lower-crustal thickness of the Kunlun terranes is rather uniform, about 35 km, from 80°–95°E, which suggests that similar thrust-thickening processes have played a role where the Qaidam Basin abuts the Kunlun fault, but thins to 20–25 km at 100°E, east of the Qaidam Basin. The increased crustal thickness from 93° to 98°E compared to that at 100°E may be due to the differences in the thickness of the crust of the two plates before their collision, and/or largely achieved by thickening of the lower crust, perhaps indicating a crustal flow mechanism operating more strongly in the western region.  相似文献   

16.
庐江-枞阳矿集区深部结构与成矿   总被引:22,自引:1,他引:21  
为探测长江中下游成矿带庐江?枞阳白垩纪火山岩盆地和铁、硫矿集区深部构造和地壳结构, 探讨成矿深部控制条件, 作者完成了穿越火山岩盆地的深反射地震剖面(记录30 s)和罗河铁矿区浅层高分辨反射地震剖面, 揭示了矿集区全地壳精细结构, 同时开展区域构造测量和应力场反演研究, 获得了新的认识。证实“耳状”的庐?枞火山岩盆地是一个沿北东向罗河断裂向东发育的非对称火山盆地, 排除了另一半被断在西侧红层之下的判断;罗河断裂是一条切穿MOHO的深断裂, 倾向南东, 是引导地幔流体和岩浆上涌和喷发的通道;鉴别出多层界面, 火山岩?侏罗系砂岩厚约4?5 km(其中火山岩厚度约3 km), 三叠系?震旦系变形层底界深度大致18?20 km, 变质基底组成中下地壳, MOHO平缓向西北倾, 深度33?31 km;追踪郯?庐断裂带的深部产状, 陡立延伸到MOHO, 宽约10 km。  相似文献   

17.
The vast Laptev and East Siberian shelves in the eastern Russian Arctic, largely covered by a shallow sea and buried beneath sea ice for 9 months of the year, remain one of the least studied parts of continental crust of the Earth and represent a big unknown when performing pre-Cenozoic reconstructions of the Arctic. The De Long Islands provide an important window into the geology of this area and are a key for understanding the Early Paleozoic history of the Amerasian Arctic. Four of them (Jeannette, Henrietta, Bennett and Zhokhov islands) were studied using structural data, petrographic and geochemical analyses and U–Pb zircon age dating to offer the following new constraints for the Early Paleozoic paleogeography of the Arctic realm. The basement beneath the De Long Islands is of Late Neoproterozoic to earliest Cambrian age, about 670–535 Ma. In the Early Paleozoic, the De Long Islands were located along the broad Timanian margin of Baltica, with a clastic sediment provenance from the Timanian, Grenville–Sveconorwegian, and Baltic Shield domains. The Cambro-Ordovician volcaniclastic successions on Jeannette and Henrietta islands formed part of a continental volcanic arc with a corresponding back-arc basin located to the south (in present co-ordinates). On the continent-ward side of the back-arc basin, shallow marine shelf clastic and carbonate rocks were deposited, which are exposed today on Bennett Island in the south-west of the archipelago (in modern coordinates). The De Long Islands together with other continental blocks, such as Severnaya Zemlya, Arctic Alaska–Chukotka, and the Alexander Terrane, formed the contiguous active continental margin of Baltica during the Early Paleozoic. Today however, these terranes are spread out over a distance of 5000 km across the Arctic and eastern Pacific margins due to the subsequent opening of a series of Late Paleozoic, Mesozoic and Cenozoic oceanic basins.  相似文献   

18.
The northeast of the Russian Arctic is a deep-water basin underlain by the Lomonosov and Mendeleev Ridges, with the Makarov basin in between. In most of this area, the water depth is ~1–4 km and the crust is thick (20–30 km), with a well-pronounced granitic layer. Therefore, some researchers regard this crust as continental. Others think that this is the oceanic crust, the same as that on the hotspots like Iceland in the Atlantic or Ontong Java in the Pacific. After their activity stops, such structures must subside as a result of the crust and mantle cooling, in the same way as the oceanic crust on a spreading axis. As regards the Lomonosov and Mendeleev Ridges, they subsided in quite a different way. In the absence of volcanism, they remained near sea level, almost not subsiding, for a long time (at least 70 and 190 myr, respectively). Since the late Early Miocene, these areas subsided rapidly and deep-water sediments overlay shallow-water ones. In the same epoch, the Makarov basin subsided rapidly, which also used to lie near sea level. Its subsidence was several times that which could have taken place over the same period of time as a result of lithosphere cooling on an extinct hotspot. Such tectonic movements were possible only for the continental crust. The data on the structure of the sedimentary cover preclude considerable lithospheric stretching in these areas. Therefore, the rapid subsidence is accounted for by the transformation of gabbro in the lower crust into denser rocks (garnet granulites and eclogites), catalyzed by infiltration of a mantle-derived fluid flows. Dense, deeply metamorphosed mafic rocks with a thickness of up to 10–20 km and P-wave velocities of ~8 km/s underlie the Moho in the area under study.  相似文献   

19.
南海南部地壳结构的重力模拟及伸展模式探讨   总被引:1,自引:0,他引:1       下载免费PDF全文
对南海南部地壳结构研究有助于揭示南海完整的演化历史。本研究对南海南部获取的两条多道地震剖面进行了地震 解释,并对重力数据进行了壳幔密度反演。其中 NH973-1 测线始于南海西南次海盆,覆盖了南沙中部的北段;NH973-2 测 线始于南海东部次海盆,穿越礼乐滩东侧。反演结果显示,莫霍面埋深在海盆区 10~11 km,陆缘区 15~21 km 左右,洋壳向 陆壳莫霍面深度迅速增加。海盆区厚度在 6~7 km,为典型的洋壳;陆缘区地壳厚度在 15~19 km,为减薄型地壳。进一步研 究表明(1)在西南次海盆残余扩张脊之下,莫霍面比两侧略深;(2)在礼乐滩外侧海盆区有高值重力异常体,推测为洋壳与深 部岩浆混合的块体;(3)南沙区域上地壳存在高密度带,且横向上岩性可能变化。南海南部陆缘未发现有下地壳高速层,有 比较一致的构造属性和拉张样式,为非火山型陆缘。我们对两条测线陆缘的伸展因子进行了计算,发现上地壳脆性拉伸因 子与全地壳拉伸因子存在差异,其陆缘的拉张模式在纵向上是不均匀一的。  相似文献   

20.
The Cauvery–Palar basin is a major peri-cratonic rift basin located along the Eastern Continental Margin of India (ECMI) that had formed during the rift-drift events associated with the breakup of eastern Gondwanaland (mainly India–Sri Lanka–East Antarctica). In the present study, we carry out an integrated analysis of the potential field data across the basin to understand the crustal structure and the associated rift tectonics. The composite-magnetic anomaly map of the basin clearly shows the onshore-to-offshore structural continuity, and presence of several high-low trends related to either intrusive rocks or the faults. The Curie depth estimated from the spectral analysis of offshore magnetic anomaly data gave rise to 23 km in the offshore Cauvery–Palar basin. The 2D gravity and magnetic crustal models indicate several crustal blocks separated by major structures or faults, and the rift-related volcanic intrusive rocks that characterize the basin. The crustal models further reveal that the crust below southeast Indian shield margin is ~36 km thick and thins down to as much as 13–16 km in the Ocean Continent Transition (OCT) region and increases to around 19–21 km towards deep oceanic areas of the basin. The faulted Moho geometry with maximum stretching in the Cauvery basin indicates shearing or low angle rifting at the time of breakup between India–Sri Lanka and the East Antarctica. However, the additional stretching observed in the Cauvery basin region could be ascribed to the subsequent rifting of Sri Lanka from India. The abnormal thinning of crust at the OCT is interpreted as the probable zone of emplaced Proto-Oceanic Crust (POC) rocks during the breakup. The derived crustal structure along with other geophysical data further reiterates sheared nature of the southern part of the ECMI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号