首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deep-sea benthic foraminifera are an important and widely used marine proxy to understand paleoceanographic and paleoclimatic changes on regional and global scales, owing to their sensitivity to oceanic and climatic turnovers. Some species of benthic foraminifera are sensitive to changes in water mass properties whereas others are sensitive to organic fluxes and deep-sea oxygenation. Benthic faunal diversity has been found closely linked to food web, bottom water oxygen levels, and substrate and water mass stability. The present study is aimed at analyzing species diversity trends in benthic foraminifera and their linkages with Indian monsoon variability during the Neogene. Species diversity of benthic foraminifera is examined in terms of number of species (S), information function (H), equitability (E) and Sanders’ rarefied values, which were combined with relative abundances of high and low productivity benthic foraminifera at Ocean Drilling Program Hole 730A, Oman margin, western Arabian Sea. The Oman margin offers the best opportunity to understand monsoon-driven changes in benthic diversity since summer monsoon winds have greater impact on the study area. The species diversity was higher during the early Miocene Climatic Optimum (~17.2–16.4 Ma) followed by a decrease during 16.4–13 Ma coinciding with a major increase in Antarctic ice volume and increased formation of Antarctic Bottom Water. All the diversity parameters show an increase during 13–11.6 Ma, a gradual decrease during 11.6–9 Ma and then an increase with a maximum at 7 Ma. Thereafter the values show little change until 1.2 Ma when all the parameters abruptly decrease. The benthic foraminiferal populations and diversity at Hole 730A were mainly driven by the Indian monsoon, and polar waters might have played a minor or no role since early Neogene period as the Arabian Sea is an enclosed basin.  相似文献   

2.
深海研究中的底栖有孔虫:回顾与展望   总被引:4,自引:0,他引:4  
底栖有孔虫在古环境研究中的应用先是用作古水深或水团的标志物。随着新技术的应用,识别出了2种不同的底栖有孔虫微生境:外生种和内生种;认识到甚至深海底栖有孔虫,也能对表层浮游生物勃发的季节性短暂事件作出响应,因为沉降到海底的有机物质供养着底栖有孔虫。目前,底栖有孔虫被广泛应用于估算海洋表层生产力和底层水团的含氧量。回顾了深海底栖有孔虫生态研究的历史和其在古海洋学中的应用,并强调研究、应用中的新方法、新技术。中国已经加入了诸如IODP等深海研究计划,有必要向我国学术界提供底栖有孔虫研究的新方向,以资参考。  相似文献   

3.
New data on the radiolarians and foraminifers (planktonic and benthic) from the lower part of Struganik limestones (Bre??e Section, Western Serbia) are presented. The Afens perapediensis Zone of a new detailed scale based on radiolarians for the Tethyan supra-region was traced for the first time. This allowed classification of the studied deposits to a narrow stratigraphic interval, that is, the upper Santonian. The age of the studied sediments is determined in the Santonian for planktonic foraminifera because of the joint presence of abundant Marginotruncana (extinct in the latest Santonian) and Globotruncana linneiana (d’Orbigny) (which appeared in the early Santonian). The radiolarian and planktonic and benthic foraminifera data agree with one another.  相似文献   

4.
Study of an upper Santonian to upper Campanian hemipelagic succession from the southern part of the Romanian Eastern Carpathians enables us to establish an integrated biostratigraphy based on planktonic foraminifera and calcareous nannofossils and to compare this record with the agglutinated foraminiferal biozonation used for the Carpathians.Benthic foraminiferal assemblages were investigated using several methods, such as agglutinated and calcareous benthic foraminiferal morphogroups, and the benthic foraminiferal oxygen index in order to determine their response to environmental parameters in the basin (correlated with sea-level maxima documented by regional sea-level curves for the Tethys). A pattern of changes in benthic foraminiferal communities associated with increased organic carbon flux and rising sea-levels can be summarized as follows in the studied succession. As sea-level begins to rise there is an increase in the proportion of calcareous benthic foraminifera at the expense of agglutinated foraminifera within the benthic assemblages (earliest Campanian, mid-late Campanian). Once sea-level rises, an increase in the elongate keeled morphotype of agglutinated foraminifera (shallower water forms) can be observed, and if sea-level remains high for an extended period (as in the early Campanian) then an invasion of both agglutinated and benthic calcareous foraminifera characteristic of outer shelf-upper slope environments take place in the basin. The variations in tubular and deep infaunal morphotypes of agglutinated foraminifera are ascribed to varying levels of organic carbon flux.  相似文献   

5.
Large benthic foraminifera are major carbonate components in tropical carbonate platforms, important carbonate producers, stratigraphic tools and powerful bioindicators (proxies) of environmental change. The application of large benthic foraminifera in tropical coral reef environments has gained considerable momentum in recent years. These modern ecological assessments are often carried out by micropalaeontologists or ecologists with expertise in the identification of foraminifera. However, large benthic foraminifera have been under-represented in favour of macro reef-builders, for example, corals and calcareous algae. Large benthic foraminifera contribute about 5% to modern reef-scale carbonate sediment production. Their substantial size and abundance are reflected by their symbiotic association with the living algae inside their tests. When the foraminiferal holobiont (the combination between the large benthic foraminifera host and the microalgal photosymbiont) dies, the remaining calcareous test renourishes sediment supply, which maintains and stabilizes shorelines and low-lying islands. Geological records reveal episodes (i.e. late Palaeocene and early Eocene epochs) of prolific carbonate production in warmer oceans than today, and in the absence of corals. This begs for deeper consideration of how large benthic foraminifera will respond under future climatic scenarios of higher atmospheric carbon dioxide (pCO2) and to warmer oceans. In addition, studies highlighting the complex evolutionary associations between large benthic foraminifera hosts and their algal photosymbionts, as well as to associated habitats, suggest the potential for increased tolerance to a wide range of conditions. However, the full range of environments where large benthic foraminifera currently dwell is not well-understood in terms of present and future carbonate production, and impact of stressors. The evidence for acclimatization, at least by a few species of well-studied large benthic foraminifera, under intensifying climate change and within degrading reef ecosystems, is a prelude to future host–symbiont resilience under different climatic regimes and habitats than today. This review also highlights knowledge gaps in current understanding of large benthic foraminifera as prolific calcium carbonate producers across shallow carbonate shelf and slope environments under changing ocean conditions.  相似文献   

6.
Marine micropaleontology must in the future provide more precise chronologic and paleoenvironmental information, which in turn must be based on better, more consistent taxonomic and distributional data. Better tools for synthesis and standardization of this data are needed, as the ever expanding published literature is rapidly becoming unmanageable by purely manual compilation methods. The micropaleontology group at the ETH has developed a large relational database of marine microfossil data to partially meet this need. It currently contains biogeographic data on the distribution in Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) holes of nearly 8,000 species of Cenozoic planktonic foraminifera, radiolaria, diatoms and calcareous nannofossils. The database also includes full stratigraphic occurrence (range chart) data for these fossil groups from more than 100 selected Neogene holes. A particular feature of the database is that all sample information and species names in the original reports are linked to newly created, updatable, comprehensive age models and synonymy lists which reflect modern chronology and taxonomic usage. Searches of the database automatically make use of this information in producing reports. Species ' occurrences, including first and last occurrence information, can be further analyzed using external spreadsheet and statistics packages; plotted by mapping programs; or displayed by a new program which creates composite age-range charts.  相似文献   

7.
对南海北部大洋钻探184航次1146站晚上新世以来底栖有孔虫属种组合的Q型因子分析, 发现底栖有孔虫组合以2.1Ma, 1.5Ma和0.7Ma为界, 分为Stilostomella-Globocassidulina subglobosa-Nodogenerina, Bulimina alazanensis, Uvigerina perigrina和Melonis barleeanus-Globobulimina affinis-Bulimina aculeata4个组合.结合底层水溶解氧含量和浮游、底栖有孔虫碳同位素分析, 认为底栖有孔虫组合的变化是南海底层水影响所致, 以及南海北部表层和底层海水营养盐含量变化的共同结果.   相似文献   

8.
南极和北极海域的深海钻探(DSDP)和大洋钻探(ODP)研究所取得的成就是举世瞩目的,为人类研究过去全球变化打开了新的视野。它们揭示了北大西洋高纬度海区新近纪的古海洋学和古气候的演化历史,发现了早更新世"41ka世界"千年尺度的气候波动,以及冰期表层水温与深层水的耦合颤动,说明冰期旋回中冰消期气候的不稳定性。检验了新近纪环南极洋流的形成历史,并揭示了南极新生代的气候变冷和冰盖的演变历史,以及证实了南大洋温度变化领先于全球冰量的变化。2004年北极罗蒙诺索脊的综合大洋钻探(IODP)将宣告科学探索时代的到来,其研究将重建北冰洋新生代环境变化和气候的演变历史,展示北冰洋在全球气候变化中的作用。  相似文献   

9.
Biostromes and low-relief bioherms, some of which are characterized by exceptionally large, flat specimens of larger benthic foraminifera, are common in Palaeogene and Miocene carbonates, most notably those deposited along the Neotethys Seaway and tropical Pacific islands. By incorporating insights from palaeoceanographic research and the biology of living larger benthic foraminifera, a scenario is proposed that can account for palaeontological and sedimentological features while augmenting previous interpretations. Sexual reproduction by gamete broadcasting is common in foraminiferal taxa, including extant Nummulitidae and Amphisteginidae. Resultant zygotes can develop into tiny, resistant, easily dispersed propagules that recruit in suitable benthic-environmental conditions. The role of algal symbiosis in the biology of larger benthic foraminifera is well-documented. Palaeoceanographically, such taxa proliferated during times of reduced thermal stratification of the oceans. In regions with exceptionally clear, nutrient-depleted waters, ‘twilight-zone’ light penetration was sufficient, at least intermittently, to support some photosynthesis. On outer-shelf or promontory sites at depths of ca 100 to 200 m, the tiny propagules of larger benthic foraminiferal species, incorporating algal symbionts with the lowest light requirements, could have settled and recruited, growing very slowly, nourished by feeding on bacteria and the limited photosynthate produced by their algal symbionts. Under such conditions, thin microspheric individuals of one or two larger benthic foraminiferal taxa could have survived and grown slowly over several years to very large shell diameters, seldom reproducing asexually. Resulting carbonate accumulation rates would have been very slow, such that even rare disturbances by currents, major storms or internal waves could have produced evidence of winnowing and sedimentary structures. The fossil evidence of such habitats should include biostromes or possibly low-relief bioherms of low diversity assemblages characterized by abundant, exceptionally large, flat, microspheric larger benthic foraminifera.  相似文献   

10.
Temporal changes in benthic foraminiferal morpho-groups were suggested as an effective proxy to reconstruct past monsoon intensity from the Arabian Sea. Here, in order to test the applicability of temporal variation in morpho-groups to reconstruct past monsoon intensity from the Bay of Bengal, we have documented recent benthic foraminiferal distribution from the continental shelf region of the northwestern Bay of Bengal. Based on the external morphology, benthic foraminifera were categorized into rounded symmetrical (RSBF) and angular asymmetrical benthic foraminifera (AABF). Additionally, a few other dominant groups were also identified based on test composition (agglutinated, calcareous) and abundance (Asterorotalids and Nonions). The relative abundance of each group was compared with the ambient physico-chemical conditions, including dissolved oxygen, organic matter, salinity and temperature. We report that the RSBF are abundant in comparatively warm and well oxygenated waters of low salinity, suggesting a preference for high energy environment, whereas AABF dominate relatively cold, hypersaline deeper waters with low dissolved oxygen, indicating a low energy environment. The agglutinated foraminifera, Asterorotalids and Nonions dominate shallow water, low salinity regions, whereas the calcareous benthic foraminiferal abundance increases away from the riverine influx regions. Food availability, as estimated from organic carbon abundance in sediments, has comparatively less influence on faunal distribution in the northwestern Bay of Bengal, as compared to dissolved oxygen, temperature and salinity. We conclude that the factors associated with freshwater influx affect the distribution of benthic foraminiferal morpho-groups in the northwestern Bay of Bengal and thus it can be used to reconstruct past monsoon intensity from the Bay of Bengal.  相似文献   

11.
Ocean Drilling Project (ODP) site 882 (50°22′N, 167°36′E) provides the first high-resolution GRAPE density, magnetic susceptibility, carbonate, opal and foraminifera (planktonic and benthic) stable isotopes records between 3.2 and 2.4 Ma in the Northwest Pacific. We observed a dramatic increase in ice rafting debris at site 882 at 2.75 Ma, which is coeval with that found in the Norwegian Sea, suggesting that the Eurasian Arctic and Northeast Asia were significantly glaciated from 2.75 Ma onwards. Prior to 2.75 Ma planktonic foraminifera δ18O records indicate a warming or freshening trend of 4°C or 2‰ over 80 ka. If this is interpreted as a warm pre-glacial Pliocene North Pacific, it may have provided the additional moisture required to initially build up the northern hemisphere continental ice sheet. The dramatic drop in sea surface temperatures (SST>7.5°C) at 2.75 Ma ended this suggested period of enhanced SST and thus the proposed moisture pump. Moreover, at 2.79 and 2.73 Ma opal mass accumulation rates (MAR) decrease in two steps by five fold and is accompanied by a more gradual long-term decrease in CaCO3 MARs. Evidence from the Southern Ocean (ODP site 704) indicates that just prior to 2.6 Ma there is a massive increase in opal MARs, the opposite to what is found in the North Pacific. This indicates that the intensification of northern hemisphere glaciation was accompanied by a major reorganisation of global oceanic chemical budget, possibly caused by changes in deep ocean circulation. The initiation of northern hemisphere glaciation occurred in the late Miocene with a significant build up of ice on southern Greenland. However, the progressive intensification did not occur until 3.5–3 Ma when the Greenland ice sheet expanded to include northern Greenland. Following this stage we suggest that the Eurasian Arctic and Northeast Asia glaciated at 2.75 Ma, approximately 100 ka before the glaciation of Alaska (2.65 Ma) and 200 ka before the glaciation of the North East American continent (2.54 Ma).  相似文献   

12.
Bulk carbonate content, planktic and benthic foraminiferal assemblages, stable isotope compositions of bulk carbonate and Nuttallides truempyi (benthic foraminifera), and non-carbonate mineralogy were examined across ∼30 m of carbonate-rich Paleogene sediment at Deep Sea Drilling Project (DSDP) Site 259, on Perth Abyssal Plain off Western Australia. Carbonate content, mostly reflecting nannofossil abundance, ranges from 3 to 80% and generally exceeds 50% between 35 and 57 mbsf. A clay-rich horizon with a carbonate content of about 37% occurs between 55.17 and 55.37 mbsf. The carbonate-rich interval spans planktic foraminiferal zones P4c to P6b (∼57–52 Ma), with the clay-rich horizon near the base of our Zone P5 (upper)—P6b. Throughout the studied interval, benthic species dominate foraminiferal assemblages, with scarce planktic foraminifera usually of poor preservation and limited species diversity. A prominent Benthic Foraminiferal Extinction Event (BFEE) occurs across the clay-rich horizon, with an influx of large Acarinina immediately above. The δ13C records of bulk carbonate and N. truempyi exhibit trends similar to those observed in upper Paleocene–lower Eocene (∼57–52 Ma) sediment from other locations. Two successive decreases in bulk carbonate and N. truempyi δ13C of 0.5 and 1.0‰ characterize the interval at and immediately above the BFEE. Despite major changes in carbonate content, foraminiferal assemblages and carbon isotopes, the mineralogy of the non-carbonate fraction consistently comprises expanding clay, heulandite (zeolite), quartz, feldspar (sodic or calcic), minor mica, and pyrolusite (MnO2). The uniformity of this mineral assemblage suggests that Site 259 received similar non-carbonate sediment before, during and after pelagic carbonate deposition. The carbonate plug at Site 259 probably represents a drop in the CCD from ∼57 to 52–51 Ma, as also recognized at other locations.  相似文献   

13.
Concentrations of Fe, Mn, Zn, Cu, Pb, Ni, and Cd were measured in several species and genera of Recent benthic foraminifera from three coastal lagoons, namely Abu-Shaar, Umm al-Huwaytat, and Marsa Shuni lagoons located along the Egyptian Red Sea coast. Spatially significant differences in the metal concentrations of benthic foraminifera were recorded among different sites. However, some foraminiferal species display deformation in their coiling, general shape of chambers and the apertures. Abu-Shaar and Umm al-Huwaytat lagoons are virtually influenced by anthropogenic activities while Marsa Shuni lagoon is affected by natural inputs. Benthic foraminifer shows high concentrations of Fe and Mn, especially in Umm al-Huwaytat lagoon. Foraminiferal black tests support this result and reflect selectivity for iron absorption. Among the metals analyzed, Cd, Pb, and Cu showed significant high concentrations in benthic foraminifera at the study areas. The anthropogenic activities and natural inputs are responsible for the abnormalities in benthic foraminifera. Therefore, benthic foraminifera can be used as a good indicator of the environmental changes.  相似文献   

14.
The Guri Member is a limestone interval at the base of the calcareous marls of the Mishan Formation. It is the youngest hydrocarbon reservoir of the southeast part of the Zagros sedimentary basin. This Member overlaid siliciclastic rocks of Razak Formation and is overlain by green and gray marls of the Mishan Formation. In order to consider the paleoecology and paleoenvironments of the Lower–Middle Miocene (Guri Member), we have studied biostratigraphy and sequence stratigraphy of the Guri Member based on foraminifer and microfacies in two stratigraphic sections including Dorahi–Homag and Chahestan. A total of 33 genera and 56 species of benthic and planktonic foraminifera were identified in two studied stratigraphic sections. Benthic and planktonic foraminifera demonstrate Aquitanian to Langhian age (Early–Middle Miocene) for this Member at the study area. Studied interval has deposited in four facies association including supratidal, lagoon, coral reef, and open sea on a carbonate ramp. Carbonate rocks of the Guri Member have precipitated in two and three depositional sequences at Chahestan and Dorahi–Homag sections, respectively. Sedimentation of marine carbonates of the Guri Member on siliciclastic deposits reflects a major transgression of sea level at Lower to Middle Miocene that led to creating a new sea in the Zagros basin at that age. Increasing siliciclastic influx along with a sea level fall finally caused burying of the carbonate ramp. Except for the beginning of sedimentation of carbonate at the base of both stratigraphic sections (depositional sequence 1), most of the system tracts are not matched to global sea level curve that reflect local effects of the basin. Distribution of foraminifera suggests precipitation in tropical to subtropical in mesotrophic to oligotrophic and eutrophic to oligotrophic conditions. Based on large benthic foraminifera (porcelaneous large benthic foraminifera and hyaline larger benthic foraminifera), water temperature average was determined between 25 and 30 °C that was confirmed by analyzing oxygen and carbon stable isotopes. Finally, we have utilized achieved data to reconstruction and modeling of paleoecology, paleoenvironments, and sea level changes in the southeast part of the Zagros basin.  相似文献   

15.
16.
The Paleocene/Eocene boundary intervals were studied in three outcrops along the Nile Valley: Gabal Taramsa, Gabal Qreiya, and Gabal Nag El Quda in Qena and Esna regions. The planktonic and benthic foraminifera have been examined. The qualitative study of planktonic foraminifera distinguishes eight planktonic biozones from (P4 and P5) Paleocene age to (E1, E2, E3, E4, E5, and E6) Early Eocene age. The analysis of quantitative distribution patterns of benthic foraminifera allows the reconstruction of the paleoenvironmental settings in the studied area. The disappearance or scarce appearance of deeper-water benthic foraminifera (Angulogavelinella avnimelechi and Gavelinella rubiginosus) and increasing dominance of shallow-marine taxa (Buliminides, Loxostomoides applinae) indicate deposition in shallow water environments. The benthic foraminiferal assemblages which dominated by Loxostomoides applinae, Buliminids, and Lenticulina indicate Dysoxic conditions and maximum food levels. The species of mid-way type fauna dominate the assemblages of the studied area; the species of Velasco-type fauna are very rare.  相似文献   

17.
全球变暖和人为活动不断加剧海洋低氧环境发生的频率和范围,低氧对全球海洋底栖生物群落结构造成重大影响。底栖有孔虫能够广泛适应生存在各种海洋低氧环境中,是极少数能适应低氧环境的真核生物之一,底栖有孔虫对低氧环境的响应及适应机制研究是海洋研究领域的前沿和热点话题,至今仍存在很多谜团。本文总结了不同海洋低氧环境活体底栖有孔虫分布特征、活体底栖有孔虫对人为诱导低氧环境的响应、低氧环境下底栖有孔虫外壳化学组成特征、低氧环境下底栖有孔虫的生存机理,期望为后续推进海洋低氧环境下底栖有孔虫相关研究进一步开展提供参考和借鉴。底栖有孔虫作为古海洋环境重建的重要工具,对我们了解全球海洋低氧环境的历史演化进程具有非常重要的意义。展望未来我们需要进一步加强有孔虫细胞生理学和分子生物学对低氧环境的适应机制研究,从系统发生学上认识真核生物对低氧环境适应的历史演化进程,为利用有孔虫作为工具更好地重建和预测海洋低氧环境变化提供理论依据。  相似文献   

18.
Being sensitive to environmental changes, foraminifera have been extensively used to monitor pollution level in the marine environment, including the effect of mining in coastal areas. In the Goa state of India, the rejects from opencast mining on land largely find their way to the estuaries, as washout during monsoon. Additionally, the Mormugao Port at the mouth of the Zuari estuary is the hub of activities due to the transport of ore from hinterland areas by barges and its subsequent loading for export. On the directive of the Supreme Court of India, all the mining-related activities abruptly stopped throughout India, including that in Goa in 2012, and got reinstated in 2015. Therefore, it provided a fit case to test the effectiveness of benthic foraminifera as an indicator of environmental impact due to mining activities. A total of ten surface sediment samples from five locations in Zuari estuary were collected from a depth range of 4.5–8.5 m in the years of 2013 and 2016 and were analyzed for both the living (stained) and dead benthic foraminifera. The year 2013 represents a time interval immediately after the closure of extensive mining activity, and the sampling during 2016 represents minimal mining. The living benthic foraminiferal abundance was higher (19–54/g sediment) during 2013 and decreased substantially during 2016 (3–22/g sediment), suggesting an adverse effect of activities associated with mine closure on benthic foraminifera. Additionally, the relative abundance of Ammonia was also significantly low during the year 2016. The temporal variation in dead foraminifera was, however, different than that of the living foraminifera. The differential response was attributed to the terrigenous dilution as a result of change in sedimentation rate. Therefore, we conclude that living foraminifera correctly incorporate the changes in mining pattern and may be used as an effective tool to monitor the impact of mining. We further suggest that the potential counter effect of terrigenous dilution on total and living benthic foraminiferal population should be considered while interpreting temporal variations in foraminiferal abundance in marginal marine settings.  相似文献   

19.
The marine Oligo-Miocene units of western Taurides, deposited under different tectonic regimes (in Bey Da?lar? platform in foreland and coeval sequences in hinterland), were studied to establish a high-resolution biostratigraphic framework. Biometric study of the full spectrum of larger foraminifera in a regional scale allowed us correlating them with the shallow benthic zonation (SBZ) system introduced by [Cahuzac, B., Poignant, A., 1997. Essai de biozonation de l’Oligo-Miocène dans les bassins européens à l’aide des grands foraminifères néritiques. Bulletin de la Société géologique de France 168, 155–169], and to determine the ages of these sites on zonal precision for the first time. In correlating these assemblages to standard shallow benthic zones, planktonic data were also used whenever possible. Taxa, classified under the genera Nummulites, Miogypsina, Miolepidocyclina, Nephrolepidina, Eulepidina, Heterostegina, Operculina and Cycloclypeus (?) and their assemblages, closely resemble to the fauna described from European basins. These groups characterize the SBZ 22B to 25 zones referring to a time interval from early Chattian to Burdigalian. However, a main gap in late Chattian (SBZ 23) and in early part of the Aquitanian (SBZ 24) is also recorded in the platform succession. In the meantime, rare Eulepidina in the Burdigalian levels suggest a clear Indo-Pacific influence. Based on the discovery of early Chattian (SBZ 22B) deposits (previously mapped under Eocene/Miocene units), the Oligo-Miocene stratigraphy of the Bey Da?lar? platform is also revised. A more precise chronology for regional Miocene transgression is presented based on the miogypsinid evolutionary scale.  相似文献   

20.
Isoleucine epimerization (alle/Ile) ratios have been measured on foraminiferal tests from interglaical sites in the southern North Sea region. In order to evaluate the possibilities of this amino acid method on benthic foraminifera, sites were chosen from areas where the stratigraphy was already well known. The study demonstrates that the isoleucine epimerization reaction in benthic foraminifera can be used for correlation and as a means of relative age estimation within a limited geographic area. Previous suggestions of a Holsteinian age for the Rugrd, Tornskov, and Wacken sites are supported for the Kås Hoved site. The age of most presumed Eemian sites is supported by the amino acid results; the Reighton site also seems to belong in this interglacial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号