首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 280 毫秒
1.
We determined high-resolution three-dimensional P- and S-wave velocity (Vp, Vs) structures beneath Kyushu in Southwest Japan using 177,500 P and 174,025 S wave arrival times from 8515 local earthquakes. A Poisson's ratio structure was derived from the obtained Vp and Vs values. Our results show that significant low-Vp, low-Vs and high Poisson's ratio zones are extensively distributed along the volcanic front in the uppermost mantle, which extend and dip toward the back-arc side in the mantle wedge. In the crust, low-Vp, low-Vs and high Poisson's ratio anomalies exist beneath the active volcanoes. The subducting Philippine Sea slab is clearly imaged as a high-Vp, high-Vs and low Poisson's ratio zone from the Nankai Trough to the back-arc. A thin low-velocity zone is detected above the subducting Philippine Sea slab in the mantle wedge, and earthquakes in the upper mantle are distributed along the transition zone between this thin low-velocity zone and the high-velocity Philippine Sea slab, which may imply that oceanic crust exists on the top of the slab and the forearc mantle wedge is serpentinized due to the slab dehydration. The seismic velocity of the subducting oceanic crust with basaltic or gabbroic composition is lower than that of the mantle according to the previous studies. The serpentinization process could also dramatically reduce the seismic velocity in the forearc mantle wedge.  相似文献   

2.
Qunshu Tang  Ling Chen   《Tectonophysics》2008,455(1-4):43-52
We have used Rayleigh wave dispersion analysis and inversion to produce a high resolution S-wave velocity imaging profile of the crust and uppermost mantle structure beneath the northeastern boundary regions of the North China Craton (NCC). Using waveform data from 45 broadband NCISP stations, Rayleigh wave phase velocities were measured at periods from 10 to 48 s and utilized in subsequent inversions to solve for the S-wave velocity structure from 15 km down to 120 km depth. The inverted lower crust and uppermost mantle velocities, about 3.75 km/s and 4.3 km/s on average, are low compared with the global average. The Moho was constrained in the depth range of 30–40 km, indicating a typical crustal thickness along the profile. However, a thin lithosphere of no more than 100 km was imaged under a large part of the profile, decreasing to only ~ 60 km under the Inner Mongolian Axis (IMA) where an abnormally slow anomaly was observed below 60 km depth. The overall structural features of the study region resemble those of typical continental rift zones and are probably associated with the lithospheric reactivation and tectonic extension widespread in the eastern NCC during Mesozoic–Cenozoic time. Distinctly high velocities, up to ~ 4.6 km/s, were found immediately to the south of the IMA beneath the northern Yanshan Belt (YSB), extending down to > 100-km depth. The anomalous velocities are interpreted as the cratonic lithospheric lid of the region, which may have not been affected by the Mesozoic–Cenozoic deformation process as strongly as other regions in the eastern NCC. Based on our S-wave velocity structural image and other geophysical observations, we propose a possible lithosphere–asthenosphere interaction scenario at the northeastern boundary of the NCC. We speculate that significant undulations of the base of the lithosphere, which might have resulted from the uneven Mesozoic–Cenozoic lithospheric thinning, may induce mantle flows concentrating beneath the weak IMA zone. The relatively thick lithospheric lid in the northern YSB may serve as a tectonic barrier separating the on-craton and off-craton regions into different upper mantle convection systems at the present time.  相似文献   

3.
We construct fine-scale 3D P- and S-wave velocity structures of the crust and upper mantle beneath the whole Japan Islands with a unified resolution, where the Pacific (PAC) and Philippine Sea (PHS) plates subduct beneath the Eurasian (EUR) plate. We can detect the low-velocity (low-V) oceanic crust of the PAC and PHS plates at their uppermost part beneath almost all the Japan Islands. The depth limit of the imaged oceanic crust varies with the regions. High-VP/VS zones are widely distributed in the lower crust especially beneath the volcanic front, and the high strain rate zones are located at the edge of the extremely high-VP/VS zone; however, VP/VS at the top of the mantle wedge is not so high. Beneath northern Japan, we can image the high-V subducting PAC plate using the tomographic method without any assumption of velocity discontinuities. We also imaged the heterogeneous structure in the PAC plate, such as the low-V zone considered as the old seamount or the highly seismic zone within the double seismic zone where the seismic fault ruptured by the earthquake connects the upper and lower layer of the double seismic zone. Beneath central Japan, thrust-type small repeating earthquakes occur at the boundary between the EUR and PHS plates and are located at the upper part of the low-V layer that is considered to be the oceanic crust of the PHS plate. In addition to the low-V oceanic crust, the subducting high-V PAC plate is clearly imaged to depths of approximately 250 km and the subducting high-V PHS zone to depths of approximately 180 km is considered to be the PHS plate. Beneath southwestern Japan, the iso-depth lines of the Moho discontinuity in the PHS plate derived by the receiver function method divide the upper low-V layer and lower high-V layer of our model at depths of 30–50 km. Beneath Kyushu, the steeply subducting PHS plate is clearly imaged to depths of approximately 250 km with high velocities. The high-VP/VS zone is considered as the lower crust of the EUR plate or the oceanic crust of the PHS plate at depths of 25–35 km and the partially serpentinized mantle wedge of the EUR plate at depths of 30–45 km beneath southwestern Japan. The deep low-frequency nonvolcanic tremors occur at all parts of the high-VP/VS zone—within the zone, the seaward side, and the landward side where the PHS plate encounters the mantle wedge of the EUR plate. We prove that we can objectively obtain the fine-scale 3D structure with simple constraints such as only 1D initial velocity model with no velocity discontinuity.  相似文献   

4.
We determine detailed 3-D Vp and Vs structures of the crust and uppermost mantle beneath the Kyushu Island, southwest Japan, using a large number of arrival times from local earthquakes. From the obtained Vp and Vs models, we further calculate Poisson’s ratio images beneath the study area. By using this large data set, we successfully image the 3-D seismic velocity and Poisson’s ratio structures beneath Kyushu down to a depth of 150 km with a more reliable spatial resolution than previous studies. Our results show very clear low Vp and low Vs anomalies in the crust and uppermost mantle beneath the northern volcanoes, such as Abu, Kujyu and Unzen. Low-velocity anomalies are seen in the mantle beneath most other volcanoes. In contrast, there are no significant low-velocity anomalies in the crust or in the upper mantle between Aso and Kirishima. The subducting Philippine Sea slab is imaged generally as a high-velocity anomaly down to a depth of 150 km with some patches of normal to low seismic wave velocities. The Poisson’s ratio is almost normal beneath most volcanoes. The crustal seismicity is distributed in both the high- and low-velocity zones, but most distinctly in the low Poisson’s ratio zone. A high Poisson’s ratio region is found in the forearc crustal wedge above the slab in the junction area with Shikoku and Honshu; this high Poisson’s ratio could be caused by fluid-filled cracks induced by dehydration from the Philippine Sea slab. The Poisson’s ratio is normal to low in the forearc mantle in middle-south Kyushu. This is consistent with the absence of low-frequency tremors, and may indicate that dehydration from the subducting crust is not vigorous in this region.  相似文献   

5.
The POLONAISE'97 (POlish Lithospheric ONset—An International Seismic Experiment, 1997) seismic experiment in Poland targeted the deep structure of the Trans-European Suture Zone (TESZ) and the complex series of upper crustal features around the Polish Basin. One of the seismic profiles was the 300-km-long profile P2 in northwestern Poland across the TESZ. Results of 2D modelling show that the crustal thickness varies considerably along the profile: 29 km below the Palaeozoic Platform; 35–47 km at the crustal keel at the Teisseyre–Tornquist Zone (TTZ), slightly displaced to the northeast of the geologic inversion zone; and 42 km below the Precambrian Craton. In the Polish Basin and further to the south, the depth down to the consolidated basement is 6–14 km, as characterised by a velocity of 5.8–5.9 km/s. The low basement velocities, less than 6.0 km/s, extend to a depth of 16–22 km. In the middle crust, with a thickness of ca. 4–14 km, the velocity changes from 6.2 km/s in the southwestern to 6.8 km/s in the northeastern parts of the profile. The lower crust also differs between the southwestern and northeastern parts of the profile: from 8 km thickness, with a velocity of 6.8–7.0 km/s at a depth of 22 km, to ca.12 km thickness with a velocity of 7.0–7.2 km/s at a depth of 30 km. In the lowermost crust, a body with a velocity of 7.20–7.25 km/s was found above Moho at a depth of 33–45 km in the central part of the profile. Sub-Moho velocities are 8.2–8.3 km/s beneath the Palaeozoic Platform and TTZ, and about 8.1 km/s beneath the Precambrian Platform. Seismic reflectors in the upper mantle were interpreted at 45-km depth beneath the Palaeozoic Platform and 55-km depth beneath the TTZ.

The Polish Basin is an up to 14-km-thick asymmetric graben feature. The basement beneath the Palaeozoic Platform in the southwest is similar to other areas that were subject to Caledonian deformation (Avalonia) such that the Variscan basement has only been imaged at a shallow depth along the profile. At northeastern end of the profile, the velocity structure is comparable to the crustal structure found in other portions of the East European Craton (EEC). The crustal keel may be related to the geologic inversion processes or to magmatic underplating during the Carboniferous–Permian extension and volcanic activity.  相似文献   


6.
A dense seismic network (~100 stations) was operated in the Koyna-Warna region from January 2010 to May 2010, that allow us to collect 400 high-quality local earthquake data of magnitude less than 4. In this region, the fault structure and tectonic setting that accommodate the induced seismicity is not well understood. To investigate the seismotectonics of the region, we have inverted 7826 P- and 7047 S-P arrival times for 3-D Vp and Vp/Vs tomographic models along with hypocenters parameters in the region. Although, Dixit et al. (2014) have performed 3-D local earthquake tomography with double-difference tomography code using catalog differential time data. In this paper, Simulps14 code on the same data set is applied. For better approach P arrival time and S-P travel times are inverted directly for Vp, Vp/Vs variations and earthquake locations. High Vp ~5.9 to 6.5 and low to high Vp/Vs ~1.69-1.74 imaged in the hypocenter region. These features interpreted as a fluid bearing rock mass under high pore pressure. It is also observed that below the trap basement form a local topography depression between the Koyna and Warna Reservoirs. To the South of the Warna reservoir, intense seismic activity defines a major cluster of ~ 5 km width at 3 to7 km deep, located under the trap, where the basement is deepening. Such regions are inferred to be associated with the seismically active faults zones. The obtain velocity anomalies are reliable down to a depth of 10 km. This is also confirmed by the analysis of three resolution parameters viz. Hit count, Derivative Weight sum (DWS) and Resolution Diagonal Elements (RDE).  相似文献   

7.
Several pieces of studies on the January 26, 2001, Bhuj earthquake (Mw 7.6) revealed that the mainshock was triggered on the hidden unmapped fault in the western part of Indian stable continental region that caused a huge loss in the entire Kachchh rift basin of Gujarat, India. Occurrences of infrequent earthquakes of Mw 7.6 due to existence of hidden and unmapped faults on the surface have become one of the key issues for geoscientific research, which need to be addressed for evolving plausible earthquake hazard mitigation model. In this study, we have carried out a detailed autopsy of the 2001 Bhuj earthquake source zone by applying three-dimensional (3-D) local earthquake tomography (LET) method to a completely new data set consisting of 576 local earthquakes recorded between November 2006 and April 2009 by a seismic network consisting of 22 numbers of three-component broadband digital seismograph stations. In the present study, a total of 7560 arrival times of P-wave (3820) and S-wave (3740) recorded at least 4 seismograph stations were inverted to assimilate 3-D P-wave velocity (Vp), S-wave velocity (Vs), and Poisson’s ratio (σ) structures beneath the 2001 Bhuj earthquake source zone for reliable interpretation of the imaged anomalies and its bearing on earthquake hazard of the region. The source zone is located near the triple junction formed by juxtapositions of three Indian, Arabian, and Iranian tectonic plates that might have facilitated the process of brittle failure at a depth of 25 km beneath the KRB, Gujarat, which caused a gigantic loss to both property and persons of the region. There may be several hidden seismogenic faults around the epicentral zone of the 2001 Bhuj earthquake in the area, which are detectable using 3-D tomography to minimize earthquake hazard for a region. We infer that the use of detailed 3-D seismic tomography may offer potential information on hidden and unmapped faults beneath the plate interior to unravel the genesis of such big damaging earthquakes. This study may help in evolving a comprehensive earthquake risk mitigation model for regions of analogous geotectonic settings, elsewhere in the world.  相似文献   

8.
We constructed the S-wave velocity structure of the crust and uppermost mantle (10–100 km) beneath the North China based on the teleseismic data recorded by 187 portable broadband stations deployed in this region. The traditional two-step inversion scheme was adopted. Firstly, we measured the interstation fundamental Rayleigh wave phase velocity of 10–60 s and imaged the phase velocity distributions using the Tarantola inversion method. Secondly, we inverted the 1-D S-wave velocity structure with a grid spacing of 0.25° × 0.25° and constructed the 3-D S-wave velocity structure of the North China. The 3-D S-wave velocity model provides valuable information about the destruction mechanism and geodynamics of the North China Craton (NCC). The S-wave velocity structures in the northwestern and southwestern sides of the North–South Gravity Lineament (NSGL) are obviously different. The southeastern side is high velocity (high-V) while the northeastern side is low velocity (low-V) at the depth of 60–80 km. The upwelling asthenosphere above the stagnated Pacific plate may cause the destruction of the Eastern Block and form the NSGL. A prominent low-V anomaly exists around Datong from 50 to 100 km, which may due to the upwelling asthenosphere originating from the mantle transition zone beneath the Western Block. The upwelling asthenosphere beneath the Datong may also contribute to the destruction of the Eastern Block. The Zhangjiakou-Penglai fault zone (ZPFZ) may cut through the lithosphere and act as a channel of the upwelling asthenosphere. A noticeable low-V zone also exists in the lower crust and upper mantle lid (30–50 km) beneath the Beijing–Tianjin–Tangshan (BTT) region, which may be caused by the upwelling asthenosphere through the ZPFZ.  相似文献   

9.
The lithospheric structure of the western part of the Mediterranean Sea is shown by means of S-velocity maps, for depths ranging from 0 to 35 km, determined from Rayleigh-wave analysis. The traces of 55 earthquakes, which occurred from 2001 to 2003 in and around the study area have been used to obtain Rayleigh-wave dispersion. These earthquakes were registered by 10 broadband stations located on Iberia and the Balearic Islands. The dispersion curves were obtained for periods between 1 and 45 s, by digital filtering with a combination of MFT and TVF filtering techniques. After that, all seismic events were grouped in source zones to obtain a dispersion curve for each source-station path. These dispersion curves were regionalized and after inverted according to the generalized inversion theory, to obtain shear-wave velocity models for rectangular blocks with a size of 1° × 1°. The shear velocity structure obtained through this procedure is shown in the S-velocity maps plotted for several depths. These maps show the existence of lateral and vertical heterogeneity. In these maps is possible to distinguish several types of crust with an average S-wave velocity ranging from 2.6 to 3.9 km/s. The South Balearic Basin (SBB) is more characteristic of oceanic crust than the rest of the western Mediterranean region, as it is demonstrated by the crustal thickness. We also find a similar S-wave velocity (ranging from 2.6 km/s at the surface to 3.2 km/s at 10 km depth) for the Iberian Peninsula coast to Ibiza Island, the North Balearic Basin (NBB) and Mallorca Island. In the lower crust, the shear velocity reaches a value of 3.9 km/s. The base of the Moho is estimated from 15 to 20 km under Iberian Peninsula coast to Ibiza Island, continues towards NBB and increases to 20–25 km beneath Mallorca Island. While, the SBB is characterized by a thinner crust that ranges from 10 to 15 km, and a faster velocity. A gradual increase in velocity from the north to the south (especially in the upper 25 km) is obtained for the western part of the Mediterranean Sea. The base of the crust has a shear-wave velocity value around of 3.9 km/s for the western Mediterranean Sea area. This area is characterized by a thin crust in comparison with the crustal thickness of the eastern Mediterranean Sea area. This thin crust is related with the distensive tectonics that exists in this area. The low S-wave velocities obtained in the upper mantle might be an indication of a serpentinized mantle. The obtained results agree well with the geology and other geophysical results previously obtained. The shear velocity generally increases with depth for all paths analyzed in the study area.  相似文献   

10.
Seismic tomography can provide both fine P-wave and S-wave velocity structures of the crust and upper mantle.In addition,with proper computation,Poisson’s ratio images from the seismic velocities can be determined.However,it is unknown whether Poisson’s ratio images have any advantages when compared with the P-wave and S-wave velocity images.For the purposes of this study,high-resolution seismic tomography under the eastern part of North China region was used to determine detailed 3-D crustal P- and S-wave seismic velocities structure,as well as Poisson’s ratio images.Results of Poisson’s ratio imaging show high Poisson’s ratio(high-PR) anomalies located in the Hengshan-North Taihang-Zhangjiakou(H-NT-Z) region,demonstrating that Poisson’s ratio imaging can provide new geophysical constraints for regional tectonic evolution.The H-NT-Z region shows a prominent and continuous high-PR anomaly in the upper crust.Based on Poisson’s ratio images at different depths, we find that this high-PR anomaly is extending down to the middle crust with thickness up to about 26 km.According to rock physical property measurements and other geological data,this crustal Poisson’s ratio anomaly can be explained by Mesozoic partial melting of the upper mantle and basaltic magma underplating related to the lithospheric thinning of the North China craton.  相似文献   

11.
日本列岛下太平洋俯冲板块的精细结构   总被引:1,自引:0,他引:1  
尽管许多学者对日本列岛下的太平洋俯冲板块做了大量的研究,但板块内部的结构(比如板块厚度,板块内地震波速度随深度的变化以及洋壳的俯冲情况等)仍然不太清楚。利用日本地区密集台网收集到的中深和深发地震到时数据来探讨上述问题。采用三维射线追踪正演模拟法,首先利用333个远震计算得到了日本地区太平洋板块的厚度为85km;然后利用3283个地震(震源深度大于40km)的130227条P波到时进一步研究板块内部的精细结构。结果显示,沿深度方向6个地层段(间隔100km)内的速度扰动值分别为5.5%,4.0%,3.5%,2.5%,2.0%和6.0%,在40~500km范围内速度扰动随深度的增加而减小,这与温度随深度的变化情况相一致。当深度大于500km时,速度扰动突然增大到6.0%,分析认为该异常可能由发生在东亚大陆边缘下方的深发地震无法精确定位导致的。最后利用40~500km深度范围内的近震测试得到日本东北和北海道地区下方洋壳俯冲的深度均为110km,平均厚度分别为7.5km和5km,相对于一维模型的速度扰动分别为1%和-3%。这说明洋壳在俯冲到110km以深时,由于受温度和压力的影响,逐渐脱水、变质,直至与板块融合。通过分析震源与洋壳的位置关系,本研究认为北海道地区比东北地区下方的俯冲洋壳可能含有更多的流体(比如水),导致两地区洋壳内的速度相差如此之大。此外,因为日本南部与洋壳对应的区域多为海洋,观测台站较少,所以本研究无法测试得到该区域内的洋壳俯冲情况。  相似文献   

12.
利用日本气象厅(JMA)以及日本国立大学联合地震观测台网(JUNEC)记录到的3218个地震事件的231918条P波到时资料,反演求得西南日本160km深度范围内的三维P波速度结构。研究表明,在九州地区,俯冲的菲律宾海板块以高速为主要特征,该海洋板块在30~60km深度处的脱水使得弧前地幔楔顶端的橄榄石蛇纹岩化,在120km深度处的脱水使得地幔楔中的岩石局部熔融,融体上升引起该区的火山活动。在本州西部地区大山火山之下,低速异常显著,并伴随低频地震活动,说明该火山可能是个潜在的活火山,将来有喷发的可能性。  相似文献   

13.
The ratio of P- to S-wave velocities (Vp/Vs) is regarded as one of the most diagnostic properties of natural rocks. It has been used as a discriminant of composition for the continental crust and provides valuable constraints on its formation and evolution processes. Furthermore, the spatial and temporal changes in Vp/Vs before and after earthquakes are probably the most promising avenue to understanding the source mechanics and possibly predicting earthquakes. Here we calibrate the variations in Vp/Vs in dry, anisotropic crustal rocks and provide a set of basic information for the interpretation of future seismic data from the Wenchuan earthquake Fault zone Scientific Drilling (WFSD) project and other surveys. Vp/Vs is a constant (φ0) for an isotropic rock. However, most of crustal rocks are anisotropic due to lattice-preferred orientations of anisotropic minerals (e.g., mica, amphibole, plagioclase and pyroxene) and cracks as well as thin compositional layering. The Vp/Vs ratio of an anisotropic rock measured along a selected pair of propagation-vibration directions is an apparent value (φij) that is significantly different from the value for its isotropic counterpart (φ0). The usefulness of apparent Vp/Vs ratios as a diagnostic of crustal composition depends largely on rock seismic anisotropy. A 5% of P- and S-wave velocity anisotropy is sufficient to make it impossible to determine the crustal composition using the conventional criteria (Vp/Vs<1.756 for felsic rocks, 1.756l.944 fluid-tidied porous/fractured or partially molten rocks) if the information about the wave propagation-polarization directions with respect to the tectonic framework is unknown. However, the variations in Vp/Vs measured from borehole seismic experiments can be readily interpreted according to the orientations of the ray path and the polarization of the shear waves with respect to the present-day principal stress directions (I.e., the orientation of cracks) and the frozen fabric (I.e., foliation and lineation).  相似文献   

14.
Crustal heterogeneity and seismotectonics of the region around Beijing, China   总被引:18,自引:0,他引:18  
Jinli Huang  Dapeng Zhao   《Tectonophysics》2004,385(1-4):159-180
A detailed three-dimensional (3-D) P-wave velocity model of the crust and uppermost mantle under the Chinese capital (Beijing) region is determined with a spatial resolution of 25 km in the horizontal direction and 4–17 km in depth. We used 48,750 precise P-wave arrival times from 2973 events of local crustal earthquakes, controlled seismic explosions and quarry blasts. These events were recorded by a new digital seismic network consisting of 101 seismic stations equipped with high-sensitivity seismometers. The data are analyzed by using a 3-D seismic tomography method. Our tomographic model provides new insights into the geological structure and tectonics of the region, such as the lithological variations and large fault zones across the major geological terranes like the North China Basin, the Taihangshan and the Yanshan mountainous areas. The velocity images of the upper crust reflect well the surface geological and topographic features. In the North China Basin, the depression and uplift areas are imaged as slow and fast velocities, respectively. The Taihangshan and Yanshan mountainous regions are generally imaged as broad high-velocity zones, while the Quaternary intermountain basins show up as small low-velocity anomalies. Velocity changes are visible across some of the large fault zones. Large crustal earthquakes, such as the 1976 Tangshan earthquake (M=7.8) and the 1679 Sanhe earthquake (M=8.0), generally occurred in high-velocity areas in the upper to middle crust. In the lower crust to the uppermost mantle under the source zones of the large earthquakes, however, low-velocity and high-conductivity anomalies exist, which are considered to be associated with fluids. The fluids in the lower crust may cause the weakening of the seismogenic layer in the upper and middle crust and thus contribute to the initiation of the large crustal earthquakes.  相似文献   

15.
The aim of this study is to define the Vp and Vp/Vs structure of the fault zone ruptured by the ML 5.1 earthquake of October 15, 1996 which occurred near Reggio Emilia (central-northern Italy). A 1-month-long seismic sequence followed the mainshock and occurred in a small region along the outer border of the northern Apenninic belt, at depth ranging between 10 and 17 km. P- and S-wave arrival times from 304 aftershocks recorded by two local dense seismic arrays installed in the epicentral region have been inverted to obtain one- and three-dimensional velocity models by using state of the art local earthquake tomographic techniques. Velocity models and aftershock relocation help us to infer the seismotectonic of the region. Earthquakes originated along a NW-dipping backthrust of a NE-trending main thrust, composing the western part of the broad Ferrara Arc. A main high Vp and high Vp/Vs region delineates a pop-up structure in the center of the area. The high Vp/Vs within the pop-up structure supports the presence of a zone with increased pore pressure. The hypocentral depth of both mainshock and aftershocks is greater than those usually found for the main seismogenic regions of the Apenninic belt. P-wave velocity values in the seismogenic area, obtained by tomography, are compatible with rocks of the Mesozoic cover and suggest that seismicity occurred within the Mesozoic units stack at present by compressional tectonics.  相似文献   

16.
In February 1978 seismic-refraction profiles were recorded by the U.S. Geological Survey along a 1000 km line across the Arabian Shield in western Saudi Arabia. This report presents a traveltime and relative amplitude study in the form of velocity-depth functions for each individual profile assuming horizontally flat layering. The corresponding cross section of the lithosphere showing lines of equal velocity reaches to a depth of 60–80 km.The crust thickens abruptly from 15 km beneath the Red Sea Rift to about 40 km beneath the Arabian Shield. The upper crust of the western Arabian Shield yields relatively high-velocity material at about 10 km depth underlain by velocity inversions, while the upper crust of the eastern Shield is relatively uniform. The lower crust with a velocity of about 7 km/s is underlain by a transitional crust-mantle boundary. For the lower lithosphere beneath 40 km depth the data indicate the existence of a laterally discontinuous lamellar structure where high-velocity zones are intermixed with zones of lower velocities. Beneath the crust-mantle boundary of the Red Sea rift most probably strong velocity inversions exist. Here, the data do not allow a detailed modelling, velocities as low as 6.0 km/s seem to be encountered between 25 and 44 km depth.  相似文献   

17.
We applied a seismic tomography technique to arrival time data generated by local crustal earthquakes in central Anatolia in order to study the three-dimensional velocity and Vp/Vs structures and their relation with the complex tectonic processes and seismic activity occurring in the study region. The relatively equal and large number of both P- and S-wave arrival times comprising a total of 51,650 arrivals and the relatively uniform distribution of the recording stations imply that the obtained velocity anomalies are reliable features down to a depth of 40 km. This is also evident from the results of the checkerboard resolution test, hit count, and the ray-path coverage. The inversion results indicate the existence of strong lateral heterogeneities in the crust and uppermost mantle beneath central Anatolia. Prominent low-velocity anomalies are clearly imaged at all layers especially beneath existing volcanoes and the active fault segments. Higher-than-average Vp/Vs ratios are widely distributed, indicating the possible existence of over-pressurized fluids that may be responsible for the triggering of the large crustal earthquakes along the north and east Anatolian fault zones. We noticed that the seismic activity occurs mainly at the low-velocity areas and to a lesser extent in some high-velocity zones, perhaps because of the complex tectonics and geological structures. These observations imply that all the zones with velocity anomalies—either low or high—are potential sites for strain energy accumulation and subsequent release. The obtained velocity and Vp/Vs models are consistent with previous geophysical measurements conducted beneath central Anatolia and give much deeper understanding of the current seismotectonic processes occurring in the region.  相似文献   

18.
The VRANCEA99 seismic refraction experiment is part of an international and multidisciplinary project to study the intermediate depth earthquakes of the Eastern Carpathians in Romania. As part of the seismic experiment, a 300-km-long refraction profile was recorded between the cities of Bacau and Bucharest, traversing the Vrancea epicentral region in NNE–SSW direction.

The results deduced using forward and inverse ray trace modelling indicate a multi-layered crust. The sedimentary succession comprises two to four seismic layers of variable thickness and with velocities ranging from 2.0 to 5.8 km/s. The seismic basement coincides with a velocity step up to 5.9 km/s. Velocities in the upper crystalline crust are 5.96.2 km/s. An intra-crustal discontinuity at 18–31 km divides the crust into an upper and a lower layer. Velocities within the lower crust are 6.7–7.0 km/s. Strong wide-angle PmP reflections indicate the existence of a first-order Moho at a depth of 30 km near the southern end of the line and 41 km near the centre. Constraints on upper mantle seismic velocities (7.9 km/s) are provided by Pn arrival times from two shot points only. Within the upper mantle a low velocity zone is interpreted. Travel times of a PLP reflection define the bottom of this low velocity layer at a depth of 55 km. The velocity beneath this interface must be at least 8.5 km/s.

Geologic interpretation of the seismic data suggests that the Neogene tectonic convergence of the Eastern Carpathians resulted in thin-skinned shortening of the sedimentary cover and in thick-skinned shortening in the crystalline crust. On the autochthonous cover of the Moesian platform several blocks can be recognised which are characterised by different lithological compositions. This could indicate a pre-structuring of the platform at Mesozoic and/or Palaeozoic times with a probable active involvement of the Intramoesian and the CapidavaOvidiu faults. Especially the Intramoesian fault is clearly recognisable on the refraction line. No clear indications of the important Trotus fault in the north of the profile could be found. In the central part of the seismic line a thinned lower crust and the low velocity zone in the uppermost mantle point to the possibility of crustal delamination and partial melting in the upper mantle.  相似文献   


19.
In this paper, 3-D velocity images of the crust and upper mantle beneath the Nanbei tectonic zone of China are constructed using P-wave travel time residuals of earthquakes, with the data supplied by China's seismic networks and the International Seismic Centre.During the model parameterization in the tomographic inversion the interpolation function of grid node velocities is used as the space function of velocity, and the velocity function is allowed to be discontinuous. The difficulties caused by large memory demand and high computing cost in solving the system of equations are avoided by utilizing the least squares QR decomposition algorithm. Thus, the stability of the algorithm is ensured. Though resolution images are not derived in the inversion process based on the resolution theory of Backus and Gilbert, a covariance resolution method is put forward by the authors. The resolution analyses have proved the reliability of the image results. 3-D ray tracing is conducted to obtain the ray paths in a s  相似文献   

20.
Based upon the deep seismic sounding profiles carried out in the Tengchong Volcano-Geothermal Area (TVGA), western Yunnan Province of China, a 2-D crustal P velocity structure is obtained by use of finite-difference inversion and forward travel-time fitting method. The crustal model shows that a low-velocity anomaly zone exists in the upper crust, which is related to geothermal activity. Two faults, the Longling–Ruili Fault and Tengchong Fault, on the profile extend from surface to the lower crust and the Tengchong Fault likely penetrates the Moho. Moreover, based on teleseismic receiver functions on a temporary seismic network, S-wave velocity structures beneath the geothermal field show low S-wave velocity in the upper crust. From results of geophysical survey, the crust of TVGA is characterized by low P-wave and S-wave velocities, low resistivity, high heat-flow value and low Q. The upper mantle P-wave velocity is also low. This suggests presence of magma in the crust derived from the upper mantle. The low-velocity anomaly in upper crust may be related to the magma differentiation. The Tengchong volcanic area is located on the northeast edge of the Indian–Eurasian plate collision zone, away from the eastern boundary of the Indian plate by about 450 km. Based on the results of this paper and related studies, the Tengchong volcanoes can be classified as plate boundary volcanoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号