首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Gouldsboro Granite forms part of the Coastal Maine Magmatic Province, a region characterized by granitic plutons that are intimately linked temporally and petrogenetically with abundant co-existing mafic magmas. The pluton is complex and preserves a felsic magma chamber underlain by contemporaneous mafic magmas; the transition between the two now preserved as a zone of chilled mafic sheets and pillows in granite. Mafic components have highly variably isotopic compositions as a result of contamination either at depth or following injection into the magma chamber. Intermediate dikes with identical isotopic compositions to more mafic dikes suggest that closed system fractionation may be occurring in deeper level chambers prior to injection to shallower levels. The granitic portion of the pluton has the highest Nd isotopic composition (εNd = + 3.0) of plutons in the region whereas the mafic lithologies have Nd isotopic compositions (εNd = + 3.5) that are the lowest in the region and similar to the granite and suggestive of prolonged interactions and homogenization of the two components. Sr and Nd isotopic data for felsic enclaves are inconsistent with previously suggested models of diffusional exchange between the contemporaneous mafic magmas and the host granite to explain highly variable alkali contents. The felsic enclaves have relatively low Nd isotopic compositions (εNd = + 2 – + 1) indicative of the involvement of a third, lower εNd melt during granite petrogenesis, perhaps represented by pristine granitic dikes contemporaneous with the nearby Pleasant Bay Layered Intrusion. The dikes at Pleasant Bay and the felsic enclaves at Gouldsboro likely represent remnants of the silicic magmas that originally fed and replenished the overlying granitic magma chambers. The large isotopic (and chemical) contrasts between the enclaves and granitic dikes and granitic magmas may be in part a consequence of extended interactions between the granitic magmas and co-existing mafic magmas by mixing, mingling and diffusion. Alternatively, the granitic magmas may represent an additional crustal source. Using granitic rocks such as these with abundant evidence for interactions with mafic magmas complicate their use in constraining crustal sources and tectonic settings. Fine-grained dike rocks may provide more meaningful information, but must be used with caution as these may also have experienced compositional changes during mafic–felsic interactions.  相似文献   

2.
A. Dini  G. Gianelli  M. Puxeddu  G. Ruggieri   《Lithos》2005,81(1-4):1-31
Extensive, mainly acidic peraluminous magmatism affected the Tuscan Archipelago and the Tuscan mainland since late Miocene, building up the Tuscan Magmatic Province (TMP) as the Northern Apennine fold belt was progressively thinned, heated and intruded by mafic magmas. Between 3.8 and 1.3 Ma an intrusive complex was built on Larderello area (Tuscan mainland) by emplacement of multiple intrusions of isotopically and geochemically distinct granite magmas. Geochemical and isotopic investigations were carried out on granites cored during drilling exploration activity on the Larderello geothermal field. With respect to the other TMP granites the Larderello intrusives can be classified as two-mica granites due to the ubiquitous presence of small to moderate amounts of F-rich magmatic muscovite. They closely resemble the almost pure crustal TMP acidic rocks and do not show any of the typical petrographic features commonly observed in the TMP hybrid granites (enclaves, patchy zoning of plagioclase, amphibole clots). On the basis of major and trace elements, as well as REE patterns, two groups of granites were proposed: LAR-1 granites (3.8–2.3 Ma) originated by biotite-muscovite breakdown, and LAR-2 granites (2.3–1.3 Ma) generated by muscovite breakdown. At least three main crustal sources (at 14–23 km depth), characterized by distinct εNd(t) and 87Sr/86Sr values, were involved at different times, and the magmas produced were randomly emplaced at shallow levels (3–6 km depth) throughout the entire field. The partial melting of a biotite-muscovite-rich source with low εNd(t) value (about −10.5) produced the oldest intrusions (about 3.8–2.5 Ma). Afterwards (2.5–2.3 Ma), new magmas were generated by another biotite-rich source having a distinctly higher εNd(t) value (−7.9). Finally, a muscovite-rich source with high εNd(t) (about −8.9) gave origin to the younger group of granites (2.3–1.0 Ma). The significant Sr isotope disequilibrium recorded by granites belonging to the same intrusion is interpreted, as due to the short residence time of magmas in the source region followed by their rapid transfer to the emplacement level. Partial melting was probably triggered by multiple, small-sized mafic intrusions, distributed over the last 3.8 Ma that allowed temporary overstepping of biotite- and muscovite-dehydration melting reactions into an already pre-heated crust. Dilution in time of the magmatic activity probably prevented melt mingling and homogenization at depth, as well as the formation of a single, homogeneous, hybrid pluton at the emplacement level. Moreover the high concentrations of fluxing elements (B, F, Li) estimated for the LAR granites modified melt properties by reducing solidus temperatures, decreasing viscosity and increasing H2O solubility in granite melts. The consequences were a more efficient, fast, magma extraction and transfer from the source, and a prolonged time of crystallization at the emplacement level. These key factors explain the long-lived hydrothermal activity recorded in this area by both fossil (Plio-Quaternary ore deposits) and active (Larderello geothermal field) systems.  相似文献   

3.
Late Neoproterozoic bimodal dyke suites are abundant in the Arabian–Nubian Shield. In southern Israel this suite includes dominant alkaline quartz porphyry dykes, rare mafic dykes, and numerous composite dykes with felsic interiors and mafic margins. The quartz porphyry chemically corresponds to A-type granite. Composite dykes with either abrupt or gradational contacts between the felsic and mafic rocks bear field, petrographic and chemical evidence for coexistence and mixing of basaltic and rhyolitic magmas. Mixing and formation of hybrid intermediate magmas commenced at depth and continued during emplacement of the dykes. Oxygen isotope ratios of alkali feldspar in quartz porphyry (13 to 15‰) and of plagioclase in trachydolerite (10–11‰) are much higher than their initial magmatic ratios predicted by equilibrium with unaltered quartz (8 to 9‰) and clinopyroxene (5.8‰). The elevation of δ18O in alkali feldspar and plagioclase, and extensive turbidization and sericitization call for post-magmatic low-temperature (≤ 100 °C) water–rock interaction. Hydrous alteration of alkali feldspar, the major carrier of Rb and Sr in the quartz–porphyry, also accounts for the highly variable and unusually high I(Sr) of 0.71253 to 0.73648.

The initial 143Nd/144Nd ratios, expressed by εNd(T) values, are probably unaltered and show small variation in mafic and felsic rocks within a narrow range from + 1.4 to + 3.3. The Nd isotope signature suggests either a common mantle source for the mafic and silicic magmas or a juvenile crustal source for the felsic rocks (metamorphic rocks from the Elat area). However, oxygen isotope ratios of zircon in quartz porphyry [δ18O(Zrn) = 6.5 to 7.2‰] reveal significant crustal contribution to the rhyolite magma, suggesting that mafic and A-type silicic magmas are not co-genetic, although coeval. Comparison of 18O/16O ratios in zircon allows to distinguish two groups of A-type granites in the region: those with mantle-derived source, δ18O(Zrn) ranging from 5.5 to 5.8‰ (Timna and Katharina granitoids) and those with major contribution of the modified juvenile crustal component, δ18O(Zrn) varying from 6.5 to 7.2‰ (Elat quartz porphyry dykes and the Yehoshafat alkaline granite). This suggests that A-type silicic magmas in the northern ANS originated by alternative processes almost coevally.  相似文献   


4.
Radiogenic isotope data (initial Nd, Pb) and elemental concentrations for the Mooselookmeguntic igneous complex, a suite of mainly granitic intrusions in New Hampshire and western Maine, are used to evaluate petrogenesis and crustal variations across a mid-Paleozoic suture zone. The complex comprises an areally subordinate monzodiorite suite [377±2 Ma; εNd (at 370 Ma)=−2.7 to −0.7; initial 207Pb/204Pb=15.56–15.58] and an areally dominant granite [370±2 Ma; εNd (at 370 Ma)=−7.0 to −0.6; initial 207Pb/204Pb=15.55–15.63]. The granite contains meter-scale enclaves of monzodiorite, petrographically similar to but older than that of the rest of the complex [389±2 Ma; εNd (at 370 Ma)=−2.6 to +0.3; initial 207Pb/204Pb 15.58, with one exception]. Other granite complexes in western Maine and New Hampshire are 30 Ma older than the Mooselookmeguntic igneous complex granite, but possess similar isotopic signatures.

Derivation of the monzodioritic rocks of the Mooselookmeguntic igneous complex most likely occurred by melting of Bronson Hill belt crust of mafic to intermediate composition. The Mooselookmeguntic igneous complex granites show limited correlation of isotopic variations with elemental concentrations, precluding any significant presence of mafic source components. Given overlap of initial Nd and Pb isotopic compositions with data for Central Maine belt metasedimentary rocks, the isotopic heterogeneity of the granites may have been produced by melting of rocks in this crustal package or through a mixture of metasedimentary rocks with magmas derived from Bronson Hill belt crust.

New data from other granites in western Maine include Pb isotope data for the Phillips pluton, which permit a previous interpretation that leucogranites were derived from melting heterogeneous metasedimentary rocks of the Central Maine belt, but suggest that granodiorites were extracted from sources more similar to Bronson Hill belt crust. Data for the Redington pluton are best satisfied by generation from sources in either the Bronson Hill belt or Laurentian basement. Based on these data, we infer that Bronson Hill belt crust was more extensive beneath the Central Maine belt than previously recognized and that mafic melts from the mantle were not important to genesis of Devonian granite magma.  相似文献   


5.
Elizabeth Y. Anthony   《Lithos》2005,80(1-4):61-74
This review, in honor of Ilmari Haapala's retirement, reflects on lessons learned from studies of three granitic systems in western North America: (1) Mesoproterozoic samples from west Texas and east New Mexico; (2) Laramide granitic systems associated with porphyry-copper deposits in Arizona; and (3) granites of the Colorado Mineral Belt. The studies elucidate relationships amongst tectonic setting, source material, and magma chemistry.

Mesoproterozoic basement samples are from two different felsic suites with distinct elemental and isotopic compositions. The first suite, the “plutonic province”, is dominantly magnesian, calc-alkalic to alkali-calcic, and metaluminous. It has low K2O/Na2O and Rb/Sr, and Nd model ages of 1.56 to 1.40 Ga. The second suite, the “Panhandle igneous complex”, is magnesian, metaluminous, alkalic, and is part of the Mesoproterozoic belt of magmatism that extends from Finland to southwestern United States. Samples from the Panhandle igneous complex demonstrate three episodes of magmatism: the first pulse was intrusion of quartz monzonite at 1380 to 1370 Ma; the second was comagmatic epizonal granite and rhyolite at 1360 to 1350 Ma. Both of these rock types are high-K to slightly ultra-high-K. The third pulse at 1338 to 1330 Ma was intrusion of ultra-high-K quartz syenite. Nd model ages (1.94 to 1.52 Ga) are distinct from those of the “plutonic province” and systematically older than crystallization ages, implying a substantial crustal input to the magmas.

At the Sierrita porphyry-copper deposit in the Mazatzal Province of southeastern Arizona, trace element, Sr, and Nd isotopic compositions were determined for a suite of andesitic and rhyolitic rocks (67 Ma) intruded by granodiorite and granite. Isotopic composition and chemical evolution are well correlated throughout the suite. Andesite has the least negative initial εNd (−4.3) and lowest 87Sr/86Sri (0.7069). It is also the oldest and chemically most primitive, having low concentrations of Rb, SiO2, and high concentrations of transition elements. These parameters change through the system to the youngest unit (granite), which has the most negative εNd (−8.5), the highest 87Sr/86Sri (0.7092), and is chemically most evolved. Correlation between chemical and Nd isotopic evolution probably resulted from a continuous process of progressive assimilation, in which mafic magmas invade and incorporate continental crust. Deposits in Arizona with εNd values more negative than the −8.5 of Sierrita lie in the older Yavapai province in the northwestern part of the state. The difference in the most negative epsilon Nd implies that Nd isotopic signature is sensitive to the age of the Precambrian domain.

The granites from the Colorado Mineral Belt were emplaced during the transition from Laramide convergence to mid-Tertiary extension. Three different groups of granites are recognized. The first is Laramide and was formed during assimilation-fractional crystallization involving lower crustal mafic source materials; the second and third groups are mid-Tertiary and represent intracrustal melting of heterogeneous sources. This change in source regions and melt regimes in transition from convergence to extension is fundamental to the Mesozoic and Cenozoic evolution of western North America.  相似文献   


6.
The major and trace elements and Sr–Nd–Pb isotopes of the host rocks and the mafic microgranular enclaves (MME) gathered from the Dölek and Sariçiçek plutons, Eastern Turkey, were studied to understand the underlying petrogenesis and geodynamic setting. The plutons were emplaced at  43 Ma at shallow depths ( 5 to 9 km) as estimated from Al-in hornblende geobarometry. The host rocks consist of a variety of rock types ranging from diorite to granite (SiO2 = 56.98–72.67 wt.%; Mg# = 36.8–50.0) populated by MMEs of gabbroic diorite to monzodiorite in composition (SiO2 = 53.21–60.94 wt.%; Mg# = 44.4–53.5). All the rocks show a high-K calc-alkaline differentiation trend. Chondrite-normalized REE patterns are moderately fractionated and relatively flat [(La/Yb)N = 5.11 to 8.51]. They display small negative Eu anomalies (Eu/Eu = 0.62 to 0.88), with enrichment of LILE and depletion of HFSE. Initial Nd–Sr isotopic compositions for the host rocks are εNd(43 Ma) = − 0.6 to 0.8 and mostly ISr = 0.70482–0.70548. The Nd model ages (TDM) vary from 0.84 to 0.99 Ga. The Pb isotopic ratios are (206Pb/204Pb) = 18.60–18.65, (207Pb/204Pb) = 15.61–15.66 and (208Pb/204Pb) = 38.69–38.85. Compared with the host rocks, the MMEs are relatively homogeneous in isotopic composition, with ISr ranging from 0.70485 to 0.70517, εNd(43 Ma) − 0.1 to 0.8 and with Pb isotopic ratios of (206Pb/204Pb) = 18.58–18.64, (207Pb/204Pb) = 15.60–15.66 and (208Pb/204Pb) = 38.64–38.77. The MMEs have TDM ranging from 0.86 to 1.36 Ga. The geochemical and isotopic similarities between the MMEs and their host rocks indicate that the enclaves are of mixed origin and are most probably formed by the interaction between the lower crust- and mantle-derived magmas. All the geochemical data, in conjunction with the geodynamic evidence, suggest that a basic magma derived from an enriched subcontinental lithospheric mantle, probably triggered by the upwelling of the asthenophere, and interacted with a crustal melt that originated from the dehydration melting of the mafic lower crust at deep crustal levels. Modeling based on the Sr–Nd isotope data indicates that  77–83% of the subcontinental lithospheric mantle involved in the genesis. Consequently, the interaction process played an important role in the genesis of the hybrid granitoid bodies, which subsequently underwent a fractional crystallization process along with minor amounts of crustal assimilation, en route to the upper crustal levels generating a wide variety of rock types ranging from diorite to granite in an extensional regime.  相似文献   

7.
Late Triassic granitoids in the Songpan-Garzê Fold Belt (SGFB), on the eastern margin of the Tibetan Plateau, formed at 230 to 220 Ma and can be divided into two groups. Group 1 are high-K calc-alkaline rocks with adakitic affinities (K-adakites), with Sr > 400 ppm, Y < 11 ppm, strongly fractionated REE patterns ((La/Yb)N = 32–105) and high K2O/Na2O (≈ 1). Group 2 are ordinary high-K calc-alkaline I-types with lower Sr (< 400 ppm), higher Y (> 18 ppm) and weakly fractionated REE patterns ((La/Yb)N < 20). Rocks of both groups have similar negative Eu anomalies (Eu/Eu = 0.50 to 0.94) and initial 87Sr/86Sr (0.70528 to 0.71086), but group 1 rocks have higher εNd(t) (− 1.01 to − 4.84) than group 2 (− 3.11 to − 6.71). Calculated initial Pb isotope ratios for both groups are: 206Pb/204Pb = 18.343 to 18.627, 207Pb/204Pb = 15.610 to 15.705 and 208Pb/204Pb = 38.269 to 3759. Group 1 magmas were derived through partial melting of thickened and then delaminated TTG-type, eclogitic lower crust, with some contribution from juvenile enriched mantle melts. Group 2 magmas were generated by partial melting of shallower lower crustal rocks. The inferred magma sources of both groups suggest that the basement of the SGFB was similar to the exposed Kangding Complex, and that the SGFB was formed in a similar manner to the South China basement. Here, passive margin crust was greatly thickened and then delaminated, all within a very short time interval ( 20 Myr). Such post-collisional crustal thickening could be the tectonic setting for the generation of many adakitic magmas, especially where there is no spatial and temporal association with subduction.  相似文献   

8.
The Atesina Volcanic District, the Monte Luco volcanics, and the Cima d'Asta, Bressanone-Chiusa, Ivigna, Monte Croce and Monte Sabion intrusions, in the central-eastern Southern Alps, form a wide calc-alkaline association of Permian age (ca. 280–260 Ma). The magmatism originated during a period of post-orogenic extensional/transtensional faulting which controlled the magma ascent and emplacement. The magmatic products are represented by a continuum spectrum of rock types ranging from basaltic andesites to rhyolites, and from gabbros to monzogranites, with preponderance of the acidic terms. They constitute a metaluminous to weakly peraluminous series showing mineralogical, petrographic and chemical characteristics distinctive of the high-K calc-alkaline suites. In the MORB-normalized trace element diagrams, the most primitive volcanic and plutonic rocks (basaltic andesites and gabbros with Mg No.=66 to 70; Ni=25 to 83 ppm; Cr=248 to 679 ppm) show LILE and LREE enriched patterns with troughs at Nb–Ta and Ti, a distinctive feature of subduction-related magmas. Field, petrographic, geochemical and isotopic evidence (initial 87Sr/86Sr ratios from 0.7057 to 0.7114; εNd values from −2.7 to −7.4; ∂18O values between 7.6 and 9.5‰) support a hybrid nature for both volcanic and plutonic rocks, originating through complex interactions between mantle-derived magmas and crustal materials. Only the scanty andalusite–cordierite and orthopyroxene–cordierite bearing peraluminous granites in the Cima d'Asta and Bressanone-Chiusa intrusive complexes can be interpreted as purely crustal melts (initial 87Sr/86Sr=0.7143–0.7167; initial εNd values between −7.9 and −9.6, close to average composition of the granulitic metasedimentary crust from the Ivrea Zone in the western Southern Alps). Although the Permian magmatism shows geochemical characteristics similar to those of arc-related suites, palaeogeographic restorations, and geological and tectonic evidence, seem not to support any spatial and/or temporal connection with subduction processes. The magmatism is post-collisional and post-orogenic, and originated in a regime of lithospheric extension and attenuation affecting the whole domain of the European Hercynian belt. A change in the convergence direction between Gondwana and Laurasia, combined with the effects of gravitational collapse of the Hercynian chain, could have been the driving mechanism for lithosphere extension and thinning, as well as for upwelling of hot asthenosphere that caused thermal perturbation and magma generation. In the above context, the calc-alkaline affinity and the orogenic-like signature of the Permian magmatism might result from extensive contamination of basaltic magmas, likely derived from enriched lithospheric mantle source(s), with felsic crustal melts.  相似文献   

9.
The three layered intrusions studied in the Laouni area have been emplaced within syn-kinematic Pan-African granites and older metamorphic rocks. They have crystallized at the end of the regional high-temperature metamorphism, but are free from metamorphic recrystallization, revealing a post-collisional character. The cumulate piles can be interpreted in terms of two magmatic liquid lines of descent: one is tholeiitic and marked by plagioclase–olivine–clinopyroxene cumulates (troctolites or olivine bearing gabbros), while the other is calc-alkaline and produced orthopyroxene–plagioclase rich cumulates (norites). One intrusion (WL (West Laouni)-troctolitic massif), shows a Lower Banded Zone where olivine-chromite orthocumulates are interlayered with orthopyroxene-rich and olivine–plagioclase–clinopyroxene cumulates, whereas the Upper Massive Zone consists mainly of troctolitic and gabbroic cumulates. The other two massifs are more homogeneous: the WL-noritic massif has a calc-alkaline differentiation trend whereas the EL (East Laouni)–troctolitic massif has a tholeiitic one. Separated pyroxene and plagioclase display similar incompatible trace element patterns, regardless of the cumulate type. Calculated liquids in equilibrium with the two pyroxenes for both noritic and troctolitic cumulates are characterized by negative Nb, Ta, Zr and Hf anomalies and light REE enrichment inherited from the parental magmas. Troctolitic cumulates have mantle-derived δ18O (+5 to +6‰), initial 87Sr/86Sr (Sri=0.7030 to 0.7054), Nd (+5 to −1) values whereas noritic cumulates are variably enriched in δ18O (+7 to +9‰), show negative Nd (−7 to −12) and slightly higher Sri (0.7040–0.7065). Based on field, isotopic ratios are interpreted as resulting from a depleted mantle source (Sri=0.7030; Nd=+5.1; δ18O=+5.1‰) having experience short term incompatible element enrichment and variable crustal contamination. The mantle magma was slightly contaminated by an Archaean lower crust in troctolitic cumulates, more strongly and with an additional contamination by an Eburnian upper crust in noritic cumulates. Lower crust input is recorded mainly by Sr and Nd isotopes and upper crust input by O isotopes. This is probably due to the different water/rock ratios of these two crust types. Assimilation of low amounts (<10%) of quartz-bearing felsic rocks, coming from both lower and upper crust, can explain the rise of SiO2 activity, the enrichment in 18O and 87Sr and the lowering of Nd in the noritic cumulates compared to troctolitic ones. The geodynamic model proposed to account for the Laouni tholeiitic magmatism involves a late Pan-African asthenospheric rise due to a rapid lithospheric thinning associated with functioning of shear zones, which allowed tholeiitic magmas to reach high crustal levels while experiencing decreasing degrees of crustal contamination with time.  相似文献   

10.
The eastern part of the Guiana Shield, northern Amazonian Craton, in South America, represents a large orogenic belt developed during the Transamazonian orogenic cycle (2.26–1.95 Ga), which consists of extensive areas of Paleoproterozoic crust and two major Archean terranes: the Imataca Block, in Venezuela, and the here defined Amapá Block, in the north of Brazil.

Pb-evaporation on zircon and Sm–Nd on whole rock dating were provided on magmatic and metamorphic units from southwestern Amapá Block, in the Jari Domain, defining its long-lived evolution, marked by several stages of crustal accretion and crustal reworking. Magmatic activity occurred mainly at the Meso-Neoarchean transition (2.80–2.79 Ga) and during the Neoarchean (2.66–2.60 Ga). The main period of crust formation occurred during a protracted episode at the end of Paleoarchean and along the whole Mesoarchean (3.26–2.83 Ga). Conversely, crustal reworking processes have dominated in Neoarchean times. During the Transamazonian orogenic cycle, the main geodynamic processes were related to reworking of older Archean crust, with minor juvenile accretion at about 2.3 Ga, during an early orogenic phase. Transamazonian magmatism consisted of syn- to late-orogenic granitic pulses, which were dated at 2.22 Ga, 2.18 Ga and 2.05–2.03 Ga. Most of the εNd values and TDM model ages (2.52–2.45 Ga) indicate an origin of the Paleoproterozoic granites by mixing of juvenile Paleoproterozoic magmas with Archean components.

The Archean Amapá Block is limited in at southwest by the Carecuru Domain, a granitoid-greenstone terrane that had a geodynamic evolution mainly during the Paleoproterozoic, related to the Transamazonian orogenic cycle. In this latter domain, a widespread calc-alkaline magmatism occurred at 2.19–2.18 Ga and at 2.15–2.14 Ga, and granitic magmatism was dated at 2.10 Ga. Crustal accretion was recognized at about 2.28 Ga, in agreement with the predominantly Rhyacian crust-forming pattern of the eastern Guiana Shield. Nevertheless, TDM model ages (2.50–2.38 Ga), preferentially interpreted as mixed ages, and εNd < 0, point to some participation of Archean components in the source of the Paleoproterozoic rocks. In addition, the Carecuru Domain contains an oval-shaped Archean granulitic nucleus, named Paru Domain. In this domain, Neoarchean magmatism at about 2.60 Ga was produced by reworking of Mesoarchean crust, as registered in the Amapá Block. Crustal accretion events and calc-alkaline magmatism are recognized at 2.32 Ga and at 2.15 Ga, respectively, as well as charnockitic magmatism at 2.07 Ga.

The lithological association and the available isotopic data registered in the Carecuru Domain suggests a geodynamic evolution model based on the development of a magmatic arc system during the Transamazonian orogenic cycle, which was accreted to the southwestern border of the Archean Amapá Block.  相似文献   


11.
Dirk Küster  Ulrich Harms 《Lithos》1998,45(1-4):177-195
Potassic metaluminous granitoids with enrichments of HFS elements constitute part of widespread post-collisional magmatism related to the Late Neoproterozoic Pan-African orogeny in northeastern Africa (Sudan, Ethiopia, Somalia) and Madagascar. The plutons were emplaced between 580 and 470 Ma and comprise both subsolvus and hypersolvus biotite–granite, biotite–hornblende–granite, quartz–monzonite and quartz–syenite. Pyroxene-bearing granitoids are subordinate. Basic dikes and enclaves of monzodioritic composition are locally associated with the granitoid plutons. Granitoids emplaced in pre-Neoproterozoic crust have Sri-ratios between 0.7060 and 0.7236 and Nd(t) values between −15.8 and −5.6 while those emplaced in, or close to the contact with, juvenile Neoproterozoic crust have lower Sri-ratios (0.7036–0.7075) and positive Nd(t) values (4.6). However, it is unlikely that the potassic granitoids represent products of crustal melting alone. The association with basic magmas derived from subduction-modified enriched mantle sources strongly suggests that the granitoids represent hybrid magmas produced by interaction and mixing of mantle and crust derived melts in the lower crust. The most intense period of this potassic granitoid magmatism occurred between 585 and 540 Ma, largely coeval with HT granulite facies metamorphism in Madagascar and with amphibolite facies retrogression in northeastern Africa (Somalia, Sudan). Granitoid magmatism and high-grade metamorphism are probably both related to post-collisional lithospheric thinning, magmatic underplating and crustal relaxation. However, the emplacement of potassic granites continued until about 470 Ma and implies several magmatic pulses associated with different phases of crustal uplift and cooling. The potassic metaluminous granites are temporally and spatially associated with post-collisional high-K calc-alkaline granites with which they share many petrographical, geochemical and isotopical similarities, except the incompatible element enrichments. The resemblance indicates a strongly related petrogenesis of both granite associations.  相似文献   

12.
Leone Melluso  John J. Mahoney  Luigi Dallai   《Lithos》2006,89(3-4):259-274
Near-primitive picritic basalts in the northwestern Deccan Traps have MgO > 10 wt.% and consist of two groups (low-Ti and high-Ti) with markedly different incompatible element and Nd–Sr–Pb isotope characteristics. Many elemental characteristics of the low-Ti picritic basalts are similar to those of transitional or normal ocean ridge basalts. However, values of ratios like Ba/Nb (13–30) and Ce/Pb (4–11), and isotopic ratios (e.g., εNd(t) + 0.3 to − 6.3, (207Pb/204Pb)t 15.63–15.75 at (206Pb/204Pb)t 18.19–18.84, δ18Oolivine as high as + 6.2‰) are far-removed from ocean-ridge-type values, indicating a significant contribution from continental crust. The crustal signature could represent crustal contamination of ascending magmas; alternatively, it could represent a minor component within the Indian lithospheric mantle of anciently subducted sedimentary material or fluids derived from subducted material. In contrast, the high-Ti picritic basalts are chemically and isotopically rather similar to recent shield lavas of the Réunion hotspot (e.g., εNd(t) + 2 to + 4) and to volcanic rocks along the postulated pre-Deccan track of this hotspot in Pakistan. Neither type of picritic basalt is parental to the voluminous flows comprising the bulk of the Deccan Traps. However, many of the Deccan primary magmas could have been derived from mixtures of a high-Ti-type, Réunion-like source component and a component more similar to, or even more incompatible-element-depleted than, average ocean-ridge mantle.  相似文献   

13.
The Main Central Thrust (MCT) is a tectono-metamorphic boundary between the Higher Himalayan crystallines (HHC) and Lesser Himalayan metasediments (LHS), reactivated in the Tertiary, but which had already formed as a collisional boundary in the Early Paleozoic. To investigate the nature of the MCT, we analyzed whole-rock Nd isotopic ratios of rocks from the MCT and surrounding zones in the Taplejung–Ilam area of far-eastern Nepal, Annapurna–Galyang area of central Nepal, and Maikot–Barekot area of western Nepal. We define the MCT zone as a ductile–brittle shear zone between the upper MCT (UMCT) and lower MCT (LMCT). The protoliths of the MCT zone may provide critical constraints on the tectonic evolution of the Himalaya. The LHS is lithostratigraphically divided into the upper and lower units. In the Taplejung–Ilam area, different lithologic units and their εNd (0) values are as follows; HHC (− 10.0 to − 18.1), MCT zone (− 18.5 to − 26.2), upper LHS unit (− 17.2), and lower LHS unit (− 22.0 to − 26.9). There is a distinct gap in the εNd (0) values across the UMCT except for the southern frontal edge of the Ilam nappe. In the Annapurna–Galyang and Maikot–Barekot areas, different lithologic units and their εNd (0) values are as follows; HHC (− 13.9 to − 17.7), MCT zone (− 23.8 to − 26.2 except for an outlier of − 12.4), upper LHS unit (− 15.6 to − 26.8), and lower LHS unit (− 24.9 to − 26.8). These isotopic data clearly distinguish the lower LHS unit from the HHC. Combining these data with the previously published data, the lowest εNd (0) value in the HHC is − 19.9. We regard rocks with εNd (0) values below − 20.0 as the LHS. In contrast, rocks with those above − 19.9 are not always the HHC, and some parts of them may belong to the LHS due to the overlapping Nd isotopic ratio between the HHC and LHS. Most rocks of the MCT zone have Nd isotopic ratios similar to those of the LHS, but very different from those of the HHC. The spatial patterns in the distribution of εNd (0) value around the UMCT suggest no substantial structural mixing of the HHC and LHS during the UMCT activities in the Tertiary. A discontinuity in the spatial distribution of εNd (0) values is laterally continuous along the UMCT throughout the Himalayas. These facts support the theory that the UMCT was originally a material boundary between the HHC and LHS, suggesting the MCT zone was mainly developed with undertaking a role of sliding planes during overthrusting of the HHC in the Tertiary.  相似文献   

14.
The central pluton within the Neoproterozoic Katharina Ring Complex (area of Gebel Mussa, traditionally believed to be the biblical Mt. Sinai) shows a vertical compositional zoning: syenogranite makes up the bulk of the pluton and grades upwards to alkali-feldspar granites. The latters form two horizontal subzones, an albite–alkali feldspar (Ab–Afs) granite and an uppermost perthite granite. These two varieties are chemically indistinguishable. Syenogranite, as compared with alkali-feldspar granites, is richer in Ca, Sr, K, Ba and contains less SiO2, Rb, Y, Nb and U; Eu/Eu* values are 0.22–0.33 for syenogranite and 0.08–0.02 for alkali-feldspar granites. The δ18O (Qtz) is rather homogeneous throughout the pluton, 8.03–8.55‰. The δ18O (Afs) values in the syenogranite are appreciably lower relative to those in the alkali–feldspar granites: 7.59–8.75‰ vs. 8.31–9.12‰. A Rb–Sr isochron (n = 9) yields an age of 593 ± 16 Ma for the Katharina Ring Complex (granite pluton and ring dikes).

The alkali–feldspar granites were generated mainly by fractional crystallization of syenogranite magma. The model for residual melt extraction and accumulation is based on the estimated extent of crystallization ( 50 wt.%), which approximates the rigid percolation threshold for silicic melts. The fluid-rich residual melt could be separated efficiently by its upward flow through the rigid clusters of crystal phase. Crystallization of the evolved melt started with formation of hypersolvus granite immediately under the roof. Fluid influx from the inner part of the pluton to its apical zone persisted and caused increase of PH2O in the magma below the perthite granite zone. Owing to the presence of F and Ca in the melt, PH2O of only slightly more than 1 kbar allows crystallization of subsolvus Ab–Afs granite. Abundance of turbid alkali feldspars and their 18O/16O enrichment suggest that crystallization of alkali-feldspar granites was followed by subsolvus fluid–rock interaction; the δ18O (Fsp) values point to magmatic origin of fluids.

The stable and radiogenic isotope data [δ18O (Zrn) = 5.82 ± 0.06‰, ISr = 0.7022 ± 0.0064, εNd (T) values are + 3.6 and + 3.9] indicate that the granite magma was generated from a ‘juvenile’ source, which is typical of the rocks making up most of the Arabian–Nubian shield.  相似文献   


15.
S. Jung   《Lithos》2005,84(3-4):168-184
The overwhelming part of the continental crust in the high-grade part of the Damara orogen of Namibia consists of S-type granites, metasedimentary rocks and migmatites. At Oetmoed (central Damara orogen) two different S-type granites occur. Their negative εNd values (− 3.3 to − 5.9), moderately high initial 87Sr/86Sr ratios (0.714–0.731), moderately high 206Pb/204Pb (18.21–18.70) and 208Pb/204Pb (37.74–37.89) isotope ratios suggest that they originated by melting of mainly mid-Proterozoic metasedimentary material. Metasedimentary country rocks have initial εNd of − 4.2 to − 5.6, initial 87Sr/86Sr of 0.718–0.725, 206Pb/204Pb ratios of 18.32–18.69 and 208Pb/204Pb ratios of 37.91–38.45 compatible with their variation in Rb/Sr, U/Pb and Th/Pb ratios. Some migmatites and residual metasedimentary xenoliths tend to have more variable εNd values (initial εNd: − 4.2 to − 7.1), initial Sr isotope ratios (87Sr/86Sr: 0.708–0.735) and less radiogenic 206Pb/204Pb (18.22–18.53) and 208Pb/204Pb (37.78–38.10) isotope compositions than the metasedimentary rocks. On a Rb–Sr isochron plot the metasedimentary rocks and various migmatites plot on a straight line that corresponds to an age of c. 550 Ma which is interpreted to indicate major fractionation of the Rb–Sr system at that time. However, initial 87Sr/86Sr ratios of the melanosomes of the stromatic migmatites (calculated for their U–Pb monazite and Sm–Nd garnet ages of c. 510 Ma) are more radiogenic (87Sr/86Sr: 0.725) than those obtained on their corresponding leucosomes (87Sr/86Sr: 0.718) implying disequilibrium conditions during migmatization that have not lead to complete homogenization of the Rb–Sr system. However, the leucosomes have similar Nd isotope characteristics than the inferred residues (melanosomes) indicating the robustness of the Sm–Nd isotope system during high-grade metamorphism and melting. On a Rb–Sr isochron plot residual metasedimentary xenoliths show residual slopes of c. 66 Ma (calculated for an U–Pb monazite age of 470 Ma) again indicating major fractionation of Rb/Sr at c. 540 Ma. However, at 540 Ma, these xenoliths have unradiogenic Sr isotope compositions of c. 0.7052, indicating depleted metasedimentary sources at depth. Based on the distinct Pb isotope composition of the metasedimentary rocks and S-type granites, metasedimentary rocks similar to the country rocks are unlikely sources for the S-type granites. Moreover, a combination of Sr, Nd, Pb and O isotopes favours a three-component mixing model (metasedimentary rocks, altered volcanogenic material, meta-igneous crust) that may explain the isotopic variabilty of the granites. The mid-crustal origin of the different types of granite emphasises the importance of recycling and reprocessing of pre-existing differentiated material and precludes a direct mantle contribution during the petrogenesis of the orogenic granites in the central Damara orogen of Namibia.  相似文献   

16.
扬子西缘晚中元古代—早新元古代岩浆岩对扬子陆块构造演化以及Rodinia超大陆的汇聚和裂解至关重要。本文获得扬子西缘会理群天宝山组玄武质凝灰岩和盐边群渔门组角闪安山岩SHRIMP锆石U-Pb年龄分别为(1 035±15) Ma和(884±9) Ma。天宝山组玄武质凝灰岩属于碱性玄武岩系列,富集大离子亲石元素和高场强元素,具有正的εNd(t)值(4.6),表现出与洋岛玄武岩相似的地球化学特征。天宝山组火山岩来自以石榴子石和尖晶石为稳定区的地幔橄榄岩1%~5%的部分熔融。渔门组角闪安山岩属于钙碱性岛弧玄武岩系列,以富集大离子亲石元素和轻稀土,亏损高场强元素为特征,具有明显的Nb、Ta、Ti负异常,εNd(t)值为1.1~2.8。渔门组火山岩来自以石榴子石和尖晶石为稳定区的地幔橄榄岩5%~15%的部分熔融。构造背景判别图解指示天宝山组玄武质凝灰岩形成于被动大陆边缘板内裂谷盆地,而渔门组角闪安山岩形成于活动大陆边缘岛弧环境。根据本文获得的年代学及地球化学数据,笔者认为扬子西缘与大陆裂谷相关的天宝山组火山岩和与板块俯冲有关的渔门组火山岩,记录了新元古代早期构造动力学背景由板内裂谷转为洋-陆俯冲的变化。  相似文献   

17.
T. Andersen  W.L. Griffin  A.G. Sylvester   《Lithos》2007,93(3-4):273-287
Laser ablation ICPMS U–Pb and Lu–Hf isotope data on granitic-granodioritic gneisses of the Precambrian Vråvatn complex in central Telemark, southern Norway, indicate that the magmatic protoliths crystallized at 1201 ± 9 Ma to 1219 ± 8 Ma, from magmas with juvenile or near-juvenile Hf isotopic composition (176Hf/177Hf = 0.2823 ± 11, epsilon-Hf > + 6). These data provide supporting evidence for the depleted mantle Hf-isotope evolution curve in a time period where juvenile igneous rocks are scarce on a global scale. They also identify a hitherto unknown event of mafic underplating in the region, and provide new and important limits on the crustal evolution of the SW part of the Fennoscandian Shield. This juvenile geochemical component in the deep crust may have contributed to the 1.0–0.92 Ga anorogenic magmatism in the region, which includes both A-type granite and a large anorthosite–mangerite–charnockite–granite intrusive complex. The gneisses of the Vråvatn complex were intruded by a granitic pluton with mafic enclaves and hybrid facies (the Vrådal granite) in that period. LAM-ICPMS U–Pb data from zircons from granitic and hybrid facies of the pluton indicates an intrusive age of 966 ± 4 Ma, and give a hint of ca. 1.46 Ga inheritance. The initial Hf isotopic composition of this granite (176Hf/177Hf = 0.28219 ± 13, epsilon-Hf = − 5 to + 6) overlaps with mixtures of pre-1.7 Ga crustal rocks and juvenile Sveconorwegian crust, lithospheric mantle and/or global depleted mantle. Contributions from ca. 1.2 Ga crustal underplate must be considered when modelling the petrogenesis of late Sveconorwegian anorogenic magmatism in the region.  相似文献   

18.
The varying geochemical and petrogenetic nature of A-type granites is a controversial issue. The oxidized, magnetite-series A-type granites, defined by Anderson and Bender [Anderson, J.L., Bender, E.E., 1989. Nature and origin of Proterozoic A-type granitic magmatism in the southwestern United States of America. Lithos 23, 19–52.], are the most problematic as they do not strictly follow the original definition of A-type granites, and approach calc-alkaline and I-type granites in some aspects. The oxidized Jamon suite A-type granites of the Carajás province of the Amazonian craton are compared with the magnetite-series granites of Laurentia, and other representative A-type granites, including Finnish rapakivi and Lachlan Fold Belt A-type granites, as well as with calc-alkaline, I-type orogenic granites. The geochemistry and petrogenesis of different groups of A-types granites are discussed with an emphasis on oxidized A-type granites in order to define their geochemical signatures and to clarify the processes involved in their petrogenesis. Oxidized A-type granites are clearly distinguished from calc-alkaline Cordilleran granites not only regarding trace element composition, as previously demonstrated, but also in their major element geochemistry. Oxidized A-type granites have high whole-rock FeOt/(FeOt + MgO), TiO2/MgO, and K2O/Na2O and low Al2O3 and CaO compared to calc-alkaline granites. The contrast of Al2O3 contents in these two granite groups is remarkable. The CaO/(FeOt + MgO + TiO2) vs. CaO + Al2O3 and CaO/(FeOt + MgO + TiO2) vs. Al2O3 diagrams are proposed to distinguish A-type and calc-alkaline granites. Whole-rock FeOt/(FeOt + MgO) and the FeOt/(FeOt + MgO) vs. Al2O3 and FeOt/(FeOt + MgO) vs. Al2O3/(K2O/Na2O) diagrams are suggested for discrimination of oxidized and reduced A-type granites. Experimental data indicate that, besides pressure, the nature of A-type granites is dependent of ƒO2 conditions and the water content of magma sources. Oxidized A-type magmas are considered to be derived from melts with appreciable water contents (≥ 4 wt.%), originating from lower crustal quartz-feldspathic igneous sources under oxidizing conditions, and which had clinopyroxene as an important residual phase. Reduced A-type granites may be derived from quartz-feldspathic igneous sources with a metasedimentary component or, alternatively, from differentiated tholeiitic sources. The imprint of the different magma sources is largely responsible for the geochemical and petrological contrasts between distinct A-type granite groups. Assuming conditions near the NNO buffer as a minimum for oxidized granites, magnetite-bearing granites formed near FMQ buffer conditions are not stricto sensu oxidized granites and a correspondence between oxidized and reduced A-type granites and, respectively, magnetite-series and ilmenite-series granites is not always observed.  相似文献   

19.
This paper reports the integrated application of petrographic and Sm–Nd isotopic analyses for studying the provenance of the Neoproterozoic Maricá Formation, southern Brazil. This unit encompasses sedimentary rocks of fluvial and marine affiliations. In the lower fluvial succession, sandstones plot in the “craton interior” and “transitional continental” fields of the QFL diagram. Chemical weathering probably caused the decrease of the 147Sm/144Nd ratios to 0.0826 and 0.0960, consequently lowering originally > 2.0 Ga TDM ages to 1.76 and 1.81 Ga. 143Nd/144Nd ratios are also low (0.511521 to 0.511633), corresponding to negative εNd present-day values (− 21.8 and − 19.6). In the intermediate marine succession, sandstones plot in the “dissected arc” field, reflecting the input of andesitic clasts. Siltstones and shales reveal low 143Nd/144Nd ratios (0.511429 to 0.511710), εNd values of − 18.1 and − 23.6, and TDM ages of 2.16 and 2.37 Ga. Sandstones of the upper fluvial succession have “dissected arc” and “recycled orogen” provenance. 143Nd/144Nd isotopic ratios are also relatively low, from 0.511487 to 0.511560, corresponding to εNd values of − 22.4 and − 21.0 and TDM of 2.07 Ga. A uniform granite–gneissic basement block of Paleoproterozoic age, with subordinate volcanic rocks, is suggested as the main sediment source of the Maricá Formation.  相似文献   

20.
It has been suggested that large areas of the Earth's lithospheric mantle undergo pervasive dehydration melting during the impact of mantle plumes and the Early-Cretaceous Paraná-Etendeka continental flood-basalt (CFB) province has repeatedly been cited as evidence of this phenomenon. During the Cretaceous, however, southern Brazil experienced two phases of mafic magmatism. These igneous events occurred ~50?Ma apart and therefore represent distinct episodes of melt genesis in the underlying mantle. The first phase of magmatism, in the Early Cretaceous, included the emplacement of lava flows associated with the Paraná-Etendeka CFB province and also the intrusion of small-volume mafic alkaline magmas (e.g. Anitápolis, Jacupiranga and Juquiá) in the Dom Feliciano and Ribeira mobile belts. During the Late Cretaceous, both sodic and potassic mafic magmas were emplaced on the margin of the adjacent Luis-Alves craton and intrude the flood-basalts at Lages. On the basis of variations in incompatible trace-element concentrations (e.g. Ba?=?1000 to 2000?ppm), initial 87Sr/86Sr ratios (0.7048–0.7064) and ?Nd values (?3 to ?12), we suggest that all of the Late-Cretaceous mafic potassic magmas were derived from the subcontinental lithospheric mantle (SCLM) which was metasomatically enriched during the Proterozoic. We propose that these relatively low temperature, volatile-rich, mafic melts provide direct evidence that the underlying SCLM did not melt wholesale during the previous Early-Cretaceous Paraná-Etendeka CFB event. Late-Cretaceous melting of the SCLM beneath southern Brazil may have been caused by heat conduction from either: (1) ponded ~132?Ma Tristan plume-head material; or (2) ~85?Ma Trindade plume-head material channelled southwards between the thick cratonic keels of the Amazonas and São Francisco cratons. The Late-Cretaceous magmatism appears to have been contemporaneous with uplift across southern Brazil and Paraguay; we suggest that both of these phenomena represent the widespread effects of the impact of the Trindade mantle plume on the base of the SCLM. Plate margin stresses and lithospheric extension associated with the opening of the South Atlantic may also have changed the geothermal gradient beneath southern Brazil and contributed to mantle melting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号