首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kistufell: Primitive Melt from the Iceland Mantle Plume   总被引:5,自引:2,他引:5  
This paper presents new geochemical data from Kistufell (64°48'N,17°13'W), a monogenetic table mountain situated directlyabove the inferred locus of the Iceland mantle plume. Kistufellis composed of the most primitive olivine tholeiitic glassesfound in central Iceland (MgO 10·56 wt %, olivine Fo89·7).The glasses are interpreted as near-primary, high-degree plumemelts derived from a heterogeneous mantle source. Mineral, glassand bulk-rock (glass + minerals) chemistry indicates a low averagemelting pressure (15 kbar), high initial crystallization pressuresand temperatures (10–15 kbar and 1270°C), and eruptiontemperatures (1240°C) that are among the highest observedin Iceland. The glasses have trace element signatures (Lan/Ybn<1, Ban/Zrn 0·55–0·58) indicative ofa trace element depleted source, and the Sr–Nd–Pbisotopic ratios (87Sr/86Sr 0·70304–0·70308,143Nd/144Nd 0·513058–0·513099, 206Pb/204Pb18·343–18·361) further suggest a long-termtrace element depletion relative to primordial mantle. HighHe isotopic ratios (15·3–16·8 R/Ra) combinedwith low 207Pb/204Pb (15·42–15·43) suggestthat the mantle source of the magma is different from that ofNorth Atlantic mid-ocean ridge basalt. Negative Pb anomalies,and positive Nb and Ta anomalies indicate that the source includesa recycled, subducted oceanic crustal or mantle component. PositiveSr anomalies (Srn/Ndn = 1·39–1·50) furthersuggest that this recycled source component involves lower oceaniccrustal gabbros. The  相似文献   

2.
The Cretaceous lava sequence and associated mafic dyke swarmin central–western Madagascar (Mailaka and Bemaraha areas)range in composition from picrite basalts to cordierite–orthopyroxene-bearingrhyodacites (MgO from 14 to 0·6 wt %). Petrographic andchemical data indicate the presence of both tholeiitic and transitionalmagma series, with variable degree of rare earth element enrichment[(La/Nd)n = 1–1·4 for tholeiites vs (La/Nd)n =0·65–1 for transitional rocks]. Initial (at 88Ma) 87Sr/86Sr and  相似文献   

3.
Experimental studies were carried out to evaluate phase relationsinvolving titanite–F–Al-titanite solid solutionin the system CaSiO3–Al2SiO5–TiO2–CaF2. Theexperiments were conducted at 900–1000°C and 1·1–4·0GPa. The average F/Al ratio in titanite solid solution in theexperimental run products is 1·01 ± 0·06,and XAl ranges from 0·33 ± 0·02 to 0·91± 0·05, consistent with the substitution [TiO2+]–1[AlF2+]1.Analysis of the phase relations indicates that titanite solidsolutions coexisting with rutile are always low in XAl, whereasthe maximum XAl of titanite solid solution occurs with fluoriteand either anorthite or Al2SiO5. Reaction displacement experimentswere performed by adding fluorite to the assemblage anorthite+ rutile = titanite + kyanite. The reaction shifts from 1·60GPa to 1·15 ± 0·05 GPa at 900°C, from1·79 GPa to 1·375 ± 0·025 GPa at1000°C, and from 1·98 GPa to 1·575 ±0·025 GPa at 1100°C. The data show that the activityof CaTiSiO4O is very close to the ideal molecular activity model(XTi) at 1100°C, but shows a negative deviation at 1000°Cand 900°C. The results constrain  相似文献   

4.
La Pacana is one of the largest known calderas on Earth, andis the source of at least two major ignimbrite eruptions witha combined volume of some 2700 km3. These ignimbrites have stronglycontrasting compositions, raising the question of whether theyare genetically related. The Toconao ignimbrite is crystal poor,and contains rhyolitic (76–77 wt % SiO2) tube pumices.The overlying Atana ignimbrite is a homogeneous tuff whose pumiceis dacitic (66–70 wt % SiO2), dense (40–60% vesicularity)and crystal rich (30–40 % crystals). Phase equilibriaindicate that the Atana magma equilibrated at temperatures of770–790°C with melt water contents of 3·1–4·4wt %. The pre-eruptive Toconao magma was cooler (730–750°C)and its melt more water rich (6·3–6·8 wt% H2O). A pressure of 200 MPa is inferred from mineral barometryfor the Atana magma chamber. Isotope compositions are variablebut overlapping for both units (87Sr/86Sri 0·7094–0·7131;143Nd/144Nd 0·51222–0·51230) and are consistentwith a dominantly crustal origin. Glass analyses from Atanapumices are similar in composition to those in Toconao tubepumices, demonstrating that the Toconao magma could representa differentiated melt of the Atana magma. Fractional crystallizationmodelling suggests that the Toconao magma can be produced by30% crystallization of the observed Atana mineral phases. Toconaomelt characteristics and intensive parameters are consistentwith a volatile oversaturation-driven eruption. However, thelow H2O content, high viscosity and high crystal content ofthe Atana magma imply an external eruption trigger. KEY WORDS: Central Andes; crystal-rich dacite; eruption trigger; high-silica rhyolite; zoned magma chamber  相似文献   

5.
We present elemental and isotopic (Sr–Nd–Pb–Hf–Os–He)data on primitive alkalic lavas from the Prinsen af Wales Bjerge,East Greenland. Stratigraphical, compositional and 40Ar–39Ardata indicate that this inland alkalic activity was contemporaneouswith the upper parts of the main tholeiitic plateau basaltsand also post-dated them. The alkalic rocks show a marked crustalinfluence, indicating establishment of new magmatic plumbingsystems distinct from the long-lived coastal systems that fedthe relatively uncontaminated plateau basalts. The least contaminatedlavas have high 3He/4He isotope ratios (R/RA 12·4–18·5),sub-chondritic 187Os/188Osi (0·120–0·126),low  相似文献   

6.
Major and trace element and Sr–Nd–Pb isotopic variationsin mafic volcanic rocks hve been studied in a 220 km transectacross the Kamchatka arc from the Eastern Volcanic Front, overthe Central Kamchatka Depression to the Sredinny Ridge in theback-arc. Thirteen volcanoes and lava fields, from 110 to 400km above the subducted slab, were sampled. This allows us tocharacterize spatial variations and the relative amount andcomposition of the slab fluid involved in magma genesis. TypicalKamchatka arc basalts, normalized for fractionation to 6% MgO,display a strong increase in large ion lithophile, light rareearth and high field strength elements from the arc front tothe back-arc. Ba/Zr and Ce/Pb ratios, however, are nearly constantacross the arc, which suggests a similar fluid input for Baand Pb. La/Yb and Nb/Zr increase from the arc front to the back-arc.Rocks from the Central Kamchatka Depression range in 87Sr/86Srfrom 0·70334 to 0·70366, but have almost constantNd isotopic compositions (143Nd/144Nd 0·51307–0·51312).This correlates with the highest U/Th ratios in these rocks.Pb-isotopic ratios are mid-ocean ridge basalt (MORB)-like butdecrease slightly from the volcanic front to the back-arc. Theinitial mantle source ranged from N-MORB-like in the volcanicfront and Central Kamchatka Depression to more enriched in theback-arc. This enriched component is similar to an ocean-islandbasalt (OIB) source. Variations in (CaO)6·0–(Na2O)6·0show that degree of melting decreases from the arc front tothe Central Kamchatka Depression and remains constant from thereto the Sredinny Ridge. Calculated fluid compositions have asimilar trace element pattern across the arc, although minordifferences are implied. A model is presented that quantifiesthe various mantle components (variably depleted N-MORB-mantleand enriched OIB-mantle) and the fluid compositions added tothis mantle wedge. The amount of fluid added ranges from 0·7to 2·1%. The degree of melting changes from  相似文献   

7.
A hybrid pyroxene-bearing Weinsberg type granitoid of the SouthBohemian batholith (Austria) consists of two independent mineralassemblages that were formed during two different magmatic events.The older, inherited assemblage forms unevenly distributed millimetre-sizedmulti-grain patches of quartz + mesoperthitic alkali feldspar+ andesine/bytownite + clinopyroxene (XMg = 0·50–0·54)+ orthopyroxene (XMg = 0·35–0·42) ±ilmenite ± accessories. It is interpreted to representremnants of a mangeritic igneous rock with a superimposed granulite-faciesre-equilibration texture characterized by unzoned pyroxenesand plagioclase. The enclosing younger assemblage with alkalifeldspar + oligoclase/andesine + quartz + biotite ± accessoriescrystallized from a biotite-bearing granitic melt with feldsparsexhibiting typical magmatic zoning. Coexisting with the inheritedassemblage are zircons with a characteristic typology (S23 toD, mean J4). Zircons belonging to the granitic assemblage, onthe other hand, show a distinctly different typology (L2 toS5, mean L4) or are anhedral. A Cambrian age of formation andsubsequent re-equilibration of the inherited assemblage is inferredfrom a mean U/Pb and 207Pb/206Pb evaporation age of 523 ±5 Ma for the J4 zircons. Granitic L4 zircons show a mean 207Pb/206Pbevaporation age of 355 ± 9 Ma, interpreted as the ageof zircon growth during a Carboniferous partial melting eventin the lower crust. Granite emplacement at 345 ± 5 Mais inferred from U/Pb analysis of the anhedral zircon population.The comparably low radiogenic common Pb isotope compositionof megacrystic alkali feldspars suggests that at least somedomains of these crystals are inherited from the older, pyroxene-bearingmineral assemblage. Rb/Sr whole-rock dating is thus severelyjeopardized by the presence of the inherited alkali feldsparcrystals, leading to widely scattering data points and errorchronages of no geological significance. KEY WORDS: Austria; Bohemian Massif; geochronology; granites; Pb–Sr isotopes  相似文献   

8.
Vico volcano has erupted potassic and ultrapotassic magmas,ranging from silica-saturated to silica-undersaturated types,in three distinct volcanic periods over the past 0·5Myr. During Period I magma compositions changed from latiteto trachyte and rhyolite, with minor phono-tephrite; duringPeriods II and III the erupted magmas were primarly phono-tephriteto tephri-phonolite and phonolite; however, magmatic episodesinvolving leucite-free eruptives with latitic, trachytic andolivine latitic compositions also occurred. In Period II, leucite-bearingmagmas (87Sr/86Srinitial = 0·71037–0·71115)were derived from a primitive tephrite parental magma. Modellingof phonolites with different modal plagioclase and Sr contentsindicates that low-Sr phonolitic lavas differentiated from tephri-phonoliteby fractional crystallization of 7% olivine + 27% clinopyroxene+ 54% plagioclase + 10% Fe–Ti oxides + 4% apatite at lowpressure, whereas high-Sr phonolitic lavas were generated byfractional crystallization at higher pressure. More differentiatedphonolites were generated from the parental magma of the high-Srphonolitic tephra by fractional crystallization of 10–29%clinopyroxene + 12–15% plagioclase + 44–67% sanidine+ 2–4% phlogopite + 1–3% apatite + 7–10% Fe–Tioxides. In contrast, leucite-bearing rocks of Period III (87Sr/86Srinitial= 0·70812–0·70948) were derived from a potassictrachybasalt by assimilation–fractional crystallizationwith 20–40% of solid removed and r = 0·4–0·5(where r is assimilation rate/crystallization rate) at differentpressures. Silica-saturated magmas of Period II (87Sr/86Srinitial= 0·71044–0·71052) appear to have been generatedfrom an olivine latite similar to some of the youngest eruptedproducts. A primitive tephrite, a potassic trachybasalt andan olivine latite are inferred to be the parental magmas atVico. These magmas were generated by partial melting of a veinedlithospheric mantle sources with different vein–peridotite/wall-rockproportions, amount of residual apatite and distinct isolationtimes for the veins. KEY WORDS: isotope and trace element geochemistry; polybaric differentiation; veined mantle; potassic and ultrapotassic rocks; Vico volcano; central Italy  相似文献   

9.
The volcanic activity of Mts Bambouto and Oku (Western Highlands)and of the Ngaoundere Plateau, in the continental sector ofthe Cameroon Volcanic Line, Equatorial West Africa, ranges inage from Oligocene to Recent. It is characterized by basanitic,alkali basaltic and transitional basaltic series. Mineral chemistry,major and trace element bulk-rock compositions, and geochemicalmodelling suggest that the magmatic series evolved mainly atlow pressure (2–4 kbar) through fractional crystallizationof clinopyroxene and olivine ± magnetite, at moderatelyhydrated (H2O = 0·5–1 wt %) and QFM (quartz–fayalite–magnetite)to QFM + 1 fO2 conditions. Basalts from Ngaoundere (Mioceneto Quaternary) and from the early activity (31–14 Ma)of the Western Highlands have incompatible trace element andSr–Nd isotopic compositions similar to those of oceanicCameroon Line basalts, pointing to a similar asthenosphericmantle source. By contrast, the late (15–4 Ma) WesternHighlands basanites and alkali basalts have anomalously highconcentrations of Sr, Ba and P, and low concentrations of Zr,which are exclusive features of continental Cameroon basalts.The genesis of these latter magmas is consistent with derivationfrom an incompatible element enriched, amphibole-bearing lithosphericmantle source. Western Highlands basalts show a continuous spectrumfrom high to low Sr–Ba–P compositions, and may resultfrom variable amounts of mixing between melts derived from ananhydrous lherzolite source (asthenospheric component) and meltsfrom an amphibole-bearing peridotite source (lithospheric HSrcomponent). New 40Ar/39Ar ages for Mts Oku and Bambouto basalts,combined with previous 40Ar/39Ar and K/Ar ages of basaltic andsilicic volcanics, and with volcanic stratigraphy, suggest aNE–SW younging of the peak magmatic activity in the WesternHighlands. This SW younging trend, extending from the Oligocenevolcanism in northern Cameroon (e.g. Mt Oku) to the still activeMt Cameroon, suggests that the African plate is moving abovea deep-seated mantle thermal anomaly. However, the age and locationof the Ngaoundere volcanism does not conform to the NE–SWyounging trend, implying that the continental sector of theCameroon Volcanic Line cannot be easily interpreted as the surfaceexpression of a single hotspot system. KEY WORDS: Cameroon Line basalts;40Ar/39Ar geochronology; lithospheric and asthenospheric mantle source; hotspot  相似文献   

10.
Pelitic xenoliths derived from amphibolite grade basement rocksoccur within a Pleistocene, trachytic, pyroclastic unit of theWehr volcano, East Eifel, West Germany: With increasing temperatureand/or prolonged heating at high temperature, quartz-plagioclaseand micaceous layers of the xenoliths have undergone meltingto form buchites and thermal reconstitution by dehydration reactions,melting and crystallization to form restites respectively. Thexenoliths provide detailed evidence of melting, high temperaturedecomposition of minerals, nucleation and growth of new phasesand P-T-fo2 conditions of contact metamorphism of basement rocksby the Wehr magma. Melting begins at quartz-oligoclase (An17·3Ab82·3Or0·4-An20·0Ab78·1Or1·9)grain boundaries in quartz-plagioclase rich layers and the amountof melting is controlled by H2O and alkalis released duringdehydroxylation/oxidation of associated micas. Initially, glasscompositions are heterogeneous, but with increasing degreesof melting they become more homogeneous and are similar to S-typegranitic minimum melts with SiO2 between 71 and 77 wt. per cent;A/(CNK) ratios of 1·2–1·4; Na2O < 2·95and normative corundum contents of 1·9–4·0per cent. Near micas plagioclase melts by preferential dissolutionof the NaAlSi3O8 component accompanied by a simultaneous increasein CaAl2Si2O8 (up to 20 mol. per cent An higher than the bulkplagioclase composition) at the melting edge. With increasingtemperature the end product of fractional melting is the formationand persistence of refractory bytownite (An78–80) in thosexenoliths where extensive melting has taken place. Initial stage decomposition of muscovite involves dehydroxylation(H2O and alkali loss). At higher temperatures muscovite breaksdown to mullite, sillimanite, corundum, sanidine and a peraluminousmelt. Mullite (40–43 mol. per cent SiO2) and sillimanite(49 mol. per cent SiO2) are Fe2O3 and TiO2 rich (up to 6·1–0·84and 3·6–0·24 wt. per cent respectively).Al-rich mullite (up to 77 wt. per cent Al2O3) occurs with corundumwhich has high Fe2O3 and TiO2 (up to 6·9 and 2·1wt. per cent respectively). Annealing at high temperatures andreducing conditions results in the exsolution of mullite fromsillimanite and ilmenite from corundum. Glass resulting fromthe melting of muscovite in the presence of quartz is peraluminous(A/(CNK) = 1·3) with SiO2 contents of 66–69 percent and normative corundum of 4 per cent. Sanidine (An1·9Ab26·0Or72·1-An1·3Ab15·9Or82·9)crystallized from the melt. Dehydroxylation and oxidation of biotite results in a decreaseof K2O from 8·6 to less than 1 wt. per cent and oxidetotals (less H2O + contents) from 96·5 to 88·6,exsolution of Al-magnetite, and a decrease in the Fe/(Fe + Mg)ratio from 0·41 to 0·17. Partial melting of biotitein the presence of quartz/plagioclase to pleonaste, Al-Ti magnetite,sanidine(An2·0Ab34·9Or63·1) and melt takesplace at higher temperatures. Glass in the vicinity of meltedbiotite is pale brown and highly peraluminous (A/CNK = 2·1)with up to 6 wt. per cent MgO+FeO(total iroq) and up to 10 percent normative corundum. Near liquidus biotite with higher Al2O3and TiO2 than partially melted biotite crystallized from themelt. Ti-rich biotites (up to 6 wt. per cent TiO2) occur withinthe restite layers of thermally reconstituted xenoliths. Meltingof Ti-rich biotite and sillimanite in contact with the siliceousmelt of the buchite parts of xenoliths resulted in the formationof cordierite (100 Mg/(Mg+Fe+Mn) = 76·5–69·4),Al-Ti magnetite and sanidine, and development of cordierite/quartzintergrowths into the buchite melt. Growth of sanidine enclosedrelic Ca-plagioclase to form patchy intergrowths in the restitelayers. Cordierite (100 Mg/(Mg+Fe+Mn) = 64–69), quartz,sillimanite, mullite, magnetite and ilmenite, crystallized fromthe peraluminous buchite melt. Green-brown spinels of the pleonaste-magnetite series have awide compositional variation of (mol. per cent) FeAl2O4—66·6–45·0;MgAl2O4—53·0–18·7; Fe3O4—6·9–28·1;MnAl2O4—1·2–1·5; Fe2TiO4—0·6–6·2.Rims are generally enriched in the Fe3O4 component as a resultof oxidation. Compositions of ilmenite and magnetite (single,homogeneous and composite grains) are highly variable and resultfrom varying degrees of high temperature oxidation that is associatedwith dehydroxylation of micas and melting. Oxidation mainlyresults in increasing Fe3+, Al and decreasing Ti4+, Fe2+ inilmenite, and increasing Fe2+, Ti4+ and decreasing Fe3+ in associatedmagnetite. A higher degree of oxidation is reached with exsolutionof rutile from ilmenite and formation of titanhematite and withexsolution of pleonaste from magnetite. Ti-Al rich magnetite(5·1–7·5 and 8·5–13·5wt. per cent respectively) and ilmenite crystallized from meltsin buchitic parts of the xenoliths. Chemical and mineralogic evidence indicates that even with extensivemelting the primary compositions of individual layers in thexenoliths remained unmodified. Apparently the xenoliths didnot remain long enough at high temperatures for desilicationand enrichment in Al2O3, TiO2, FeO, Fe2O3, and MgO that resultsby removal of a ‘granitic’ melt, and/or by interactionwith the magma, to occur. T °C-fo2 values calculated from unoxidized magnetite/ilmenitegive temperatures ranging from 615–710°C for contactmetamorphism and the beginning of melting, and between 873 and1054°C for the crystallization of oxides and mullite/sillimanitefrom high temperature peraluminous melts. fo2 values of metamorphismand melting were between the Ni-NiO and Fe2O3-Fe3O4 buffer curves.The relative abundance of xenolith types, geophysical evidenceand contact metamorphic mineralogy indicates that the xenolithswere derived from depths corresponding to between 2–3kb Pload = Pfluid. The xenoliths were erupted during the latestphreatomagmatic eruption from the Wehr volcano which resultedin vesiculation of melts in partially molten xenoliths causingfragmentation and disorientation of solid restite layers.  相似文献   

11.
Quartz–calcite sandstones experienced the reaction calcite+ quartz = wollastonite + CO2 during prograde contact metamorphismat P = 1500 bars and T = 560°C. Rocks were in equilibriumduring reaction with a CO2–H2O fluid with XCO2 = 0·14.The transition from calcite-bearing, wollastonite-free to wollastonite-bearing,calcite-free rocks across the wollastonite isograd is only severalmillimeters wide. The wollastonite-forming reaction was drivenby infiltration of quartz–calcite sandstone by chemicallyreactive H2O-rich fluids, and the distribution of wollastonitedirectly images the flow paths of reactive fluids during metamorphism.The mapped distribution of wollastonite and modeling of an O-isotopeprofile across a lithologic contact indicate that the principaldirection of flow was layer-parallel, directed upward, withany cross-layer component of flow <0·1% of the layer-parallelcomponent. Fluid flow was channeled at a scale of 1–100m by pre-metamorphic dikes, thrust and strike-slip faults, foldhinges, bedding, and stratigraphic contacts. Limits on the amountof fluid, based on minimum and maximum estimates for the displacementof the wollastonite reaction front from the fluid source, are(0·7–1·9) x 105 cm3 fluid/cm2 rock. Thesharpness of the wollastonite isograd, the consistency of mineralthermobarometry, the uniform measured 18O–16O fractionationsbetween quartz and calcite, and model calculations all arguefor a close approach to local mineral–fluid equilibriumduring the wollastonite-forming reaction. KEY WORDS: contact metamorphism, fluid flow, wollastonite, oxygen isotopes, reaction front  相似文献   

12.
Blue Mountain is a central-type alkali ultrabasic-gabbro ringcomplex (lxl7middot;5 km) introducing Upper Jurassic sediments,Marlborough, New Zealand. The ultrabasic-gabbroic rocks containlenses of kaersutite pegmatite and sodic syenite pegmatite andare intruded by ring dykes of titanaugite-ilmenite gabbro andlamprophyre. The margin of the intrusion is defined by a ringdyke of alkali gabbro. The plutonic rocks are cut by a swarmof hornblendebiotite-rich lamprophyre dykes. Thermal metamorphismhas converted the sediments to a hornfels ranging in grade fromthe albite-epidote hornfels facies to the upper limit of thehornblende hornfels facies. The rocks are nepheline normative and consist of olivine (Fo82–74),endiopside (Ca45Mg48Fe7–Ca36Mg55Fe9), titanaugite (Ca40Mg50Fe10–Ca44Mg39Fe17),plagioclase (An73–18), and ilmenitetitaniferous magnetite,with various amounts of titaniferous hornblende and titanbiotite.There is a complete gradation between endiopside and titanaugitewith the coupled substitution Ry+2+Si;;(Ti+4+Fe+3+Al+3 and asympathetic increase in CaAl2SiO6 (0·2–10·2percent) and CaTiAl2O6 (2·1–8·1 per cent)with fractionation. Endiopside shows a small, progressive Mgenrichment along a trend subparallel to the CaMgSi2O6–Mg2Si2O6boundary, and titanaugite is enriched in Ca and Fe+2+Fe+3 withdifferentiation. Oscillatory zoning between endiopside and titanaugiteis common. Exsolved ilmenite needles occur in the most Fe-richtitanaugites. The amphiboles show the trend: titaniferous hornblende(1·0–57middot;7 per cent TiO2) kaersutite (6·4per cent TiO2) Fe-rich hastingsite (18·0–19·1per cent FeO as total Fe). Biotite is high in TiO2 (6·6–7·8per cent). Ilmenite and titaniferous magnetite (3·5–10·6per cent TiO2) are typically homogeneous grains; their compositioncan be expressed in terms of R+2RO3:R+2O:R2+3O4. The intrusion of igneous rocks was probably controlled by subterraneanring fracturing. Subsidence of the country rock within the ringfracture provided space for periodic injections of magma froma lower reservoir up the initial ring fracture to form the BlueMountain rocks at a higher level. Downward movement of the floorof the intrusion during crystallization caused inward slumpingof the cumulates which affected the textural, mineralogical,and chemical evolution of the rocks in different parts of theintrusion. The order of mineral fractionation is reflected by the chemicalvariation in the in situ ultrabasic-gabbroic rocks and the successiveintrusions of titanaugite-ilmenite gabbro and lamprophyre ringdykes, marginal alkali gabbro and lamprophyre dyke swarm. Aninitial decrease, then increase in SiO2; a steady decrease inMgO, CaO, Ni, and Cr: an initial increase, then decrease inFeO+Fe2O3, TiO2, MnO, and V; almost linear increase in A12O3and late stage increase in alkalis and P2O3, implies fractionationof olivine and endiopside, followed by titanaugite and Fe-Tioxides, followed by plagioclase, hornblende, biotite, and apatite.Reversals in the composition of cumulus olivine and endiopsideand Solidification Index, indicate that the ultrabasic-gabbroicsequence is composed of four main injections of magma. The ultrabasic rocks crystallized under conditions of high PH2Oand fairly high, constant  相似文献   

13.
Experiments defining the distribution of H2O [Dw = wt % H2O(melt)/wt% H2O(crd)]) between granitic melt and coexisting cordieriteover a range of melt H2O contents from saturated (i.e. coexistingcordierite + melt + vapour) to highly undersaturated (cordierite+ melt) have been conducted at 3–7 kbar and 800–1000°C.H2O contents in cordierites and granitic melts were determinedusing secondary ion mass spectrometry (SIMS). For H2O vapour-saturatedconditions Dw ranges from 4·3 to 7 and increases withrising temperature. When the system is volatile undersaturatedDw decreases to minimum values of 2·6–5·0at moderate to low cordierite H2O contents (0·6–1·1wt %). At very low aH2O, cordierite contains less than 0·2–0·3wt % H2O and Dw increases sharply. The Dw results are consistentwith melt H2O solubility models in which aH2O is proportionalto Xw2 (where Xw is the mole fraction of H2O in eight-oxygenunit melt) at Xw  相似文献   

14.
In this work we investigate the olivine-phyric basalt suiteof the Aphanasey Nikitin Rise, an intraplate volcanic structureformed during the Late Cretaceous in the Indian Ocean. The parentalmelt of the basalt suite has a hypersthene-normative tholeiiticcomposition with low H2O content (0·3–0·5wt %) and high SiO2/Al2O3 (3·5). The basalt suite ischaracterized by Nb, Ta, Th and U depletion, and uniquely low206Pb/204Pb and 143Nd/144Nd among the Cretaceous tholeiiticbasalts of the Indian Ocean. Our modelling demonstrates thatfractional crystallization of depleted mantle-derived melt andlower continental crust assimilation is a suitable model forthe genesis of the parental magma of this suite. The continentalcrustal material involved is characterized by long-term Rb,U and Th depletion and probably remained isolated for >109years in cratonic Gondwanan lithosphere. On a broader scale,two geochemical groups can be distinguished among tholeiitesformed in the Indian Ocean basin during the period 115–75Ma, from the Aphanasey Nikitin Rise, the southern Kerguelenand Naturaliste plateaux and the Broken Ridge. Both groups havea compositional range from hypersthene-normative basalt to basalticandesite and are characterized by Nb–Ta depletion, extremelylow  相似文献   

15.
The spinel–garnet transition in Cr/Al-enriched peridotiticbulk compositions is known from experimental investigationsto occur at 20–70 kbar, within the pressure range sampledby kimberlites. We show that the Cr2O3–CaO compositionsof concentrate garnets from kimberlite have maximum Cr/Ca arrayscharacterized by Cr2O3/CaO 0·96–0·81, andinterpret the arrays as primary evidence of chromite–garnetcoexistence in Cr-rich harzburgitic or lherzolitic bulk compositionsderived from depth within the lithosphere. Under Cr-saturatedconditions on a known geotherm, each Cr/Ca array implicitlydelineates an isobar inside a garnet Cr2O3–CaO diagram.This simplification invites a graphical approach to calibratean empirical Cr/Ca-in-pyrope barometer. Carbonaceous chromite–garnetharzburgite xenoliths from the Roberts Victor kimberlite tightlybracket a graphite–diamond constraint (GDC) located atCr2O3 = 0·94CaO + 5·0 (wt %), representing a pivotalcalibration corresponding to 43 kbar on a 38 mW/m2 conductivegeotherm. Additional calibration points are established at 14,17·4 and 59·1 kbar by judiciously projecting garnetcompositions from simple-system experiments onto the same geotherm.The garnet Cr/Ca barometer is then simply formulated as follows(in wt %):
if Cr2O3 0·94CaO + 5, then P38 (kbar) = 26·9+ 3·22Cr2O3 – 3·03CaO, or
if Cr2O3 <0·94CaO + 5, then P38 (kbar) = 9·2+ 36[(Cr2O3+ 1·6)/(CaO + 7·02)].
A small correction to P38 values, applicable for 35–48mW/m2 conductive geotherms, is derived empirically by requiringconventional thermobarometry results and garnet concentratecompositions to be consistent with the presence of diamondsin the Kyle Lake kimberlite and their absence in the Zero kimberlite.We discuss application of the P38 barometer to estimate (1)real pressures in the special case where chromite–garnetcoexistence is known, (2) minimum pressures in the general casewhere Cr saturation is unknown, and (3) the maximum depth ofdepleted lithospheres, particularly those underlying Archaeancratons. A comparison with the PCr barometer of Ryan et al.(1996, Journal of Geophysical Research 101, 5611–5625)shows agreement with P38 at 55 ± 2 kbar, and 6–12%higher PCr values at lower P38. Because the PCr formulationsystematically overestimates the 43 kbar value of the GDC by2–6 kbar, we conclude that the empirical Cr/Ca-in-garnetbarometer is preferred for all situations where conductive geothermsintersect the graphite–diamond equilibrium. KEY WORDS: Cr-pyrope; chromite; P38 barometer; mantle petrology; lithosphere thickness  相似文献   

16.
The recognition in Skye of olivine tholeiite lava flows, withlow alkali (1·7–1·9 per cent Na2O, 0·04–0·14per cent K2O) and high calcium (12·7 per cent CaO), isreported. An account of their mineralogy and petrology, sevenmajor element analyses, some trace element data, and the resultsof one atmosphere melting experiments are presented. These lavas,quite distinct from the plateau lavas in Skye, are postulatedas representing the early stages of a central cone volcano inS.W. Skye and thought to be closely related to the parentalmagmas of the Cuillins layered basic intrusion complex. * Present address: Department of Earth & Space Sciences, S.U.N.Y. at Stony Brook, N.Y. 11794, U.S.A.  相似文献   

17.
Macquarie Island is an exposure above sea-level of part of thecrest of the Macquarie Ridge. The ridge marks the Australia–Pacificplate boundary south of New Zealand, where the plate boundaryhas evolved progressively since Eocene times from an oceanicspreading system into a system of long transform faults linkedby short spreading segments, and currently into a right-lateralstrike-slip plate boundary. The rocks of Macquarie Island wereformed during spreading at this plate boundary in Miocene times,and include intrusive rocks (mantle and cumulate peridotites,gabbros, sheeted dolerite dyke complexes), volcanic rocks (N-to E-MORB pillow lavas, picrites, breccias, hyaloclastites),and associated sediments. A set of Macquarie Island basalticglasses has been analysed by electron microprobe for major elements,S, Cl and F; by Fourier transform infrared spectroscopy forH2O; by laser ablation–inductively coupled plasma massspectrometry for trace elements; and by secondary ion mass spectrometryfor Sr, Nd and Pb isotopes. An outstanding compositional featureof the data set (47·4–51·1 wt % SiO2, 5·65–8·75wt % MgO) is the broad range of K2O (0·1–1·8wt %) and the strong positive covariation of K2O with otherincompatible minor and trace elements (e.g. TiO2 0·97–2·1%;Na2O 2·4–4·3%; P2O5 0·08–0·7%;H2O 0·25–1·5%; La 4·3–46·6ppm). The extent of enrichment in incompatible elements in glassescorrelates positively with isotopic ratios of Sr (87Sr/86Sr= 0·70255–0·70275) and Pb (206Pb/204Pb =18·951–19·493; 207Pb/204Pb = 15·528–15·589;208Pb/204Pb = 38·523–38·979), and negativelywith Nd (143Nd/144Nd = 0·51310–0·51304).Macquarie Island basaltic glasses are divided into two compositionalgroups according to their mg-number–K2O relationships.Near-primitive basaltic glasses (Group I) have the highest mg-number(63–69), and high Al2O3 and CaO contents at a given K2Ocontent, and carry microphenocrysts of primitive olivine (Fo86–89·5).Their bulk compositions are used to calculate primary melt compositionsin equilibrium with the most magnesian Macquarie Island olivines(Fo90·5). Fractionated, Group II, basaltic glasses aresaturated with olivine + plagioclase ± clinopyroxene,and have lower mg-number (57–67), and relatively low Al2O3and CaO contents. Group I glasses define a seriate variationwithin the compositional spectrum of MORB, and extend the compositionalrange from N-MORB compositions to enriched compositions thatrepresent a new primitive enriched MORB end-member. Comparedwith N-MORB, this new end-member is characterized by relativelylow contents of MgO, FeO, SiO2 and CaO, coupled with high contentsof Al2O3, TiO2, Na2O, P2O5, K2O and incompatible trace elements,and has the most radiogenic Sr and Pb regional isotope composition.These unusual melt compositions could have been generated bylow-degree partial melting of an enriched mantle peridotitesource, and were erupted without significant mixing with commonN-MORB magmas. The mantle in the Macquarie Island region musthave been enriched and heterogeneous on a very fine scale. Wesuggest that the mantle enrichment implicated in this studyis more likely to be a regional signature that is shared bythe Balleny Islands magmatism than directly related to the hypotheticalBalleny plume itself. KEY WORDS: mid-ocean ridge basalts; Macquarie Island; glass; petrology; geochemistry  相似文献   

18.
The effects of source composition and source evolution duringprogressive partial melting on the chemistry of mantle-derivedmid-ocean ridge basalt (MORB) melts were tested using a comprehensivegeochemical and Sr–Nd–Pb isotopic dataset for fresh,magnesian basaltic glasses from the Miocene Macquarie Islandophiolite, SW Pacific. These glasses: (1) exhibit clear parent–daughterrelationships; (2) allow simple reconstruction of primary meltcompositions; (3) show exceptional compositional diversity (e.g.K2O/TiO2 0·09–0·9; La/Yb 1·5–22;206Pb/204Pb 18·70–19·52); (4) preserve changesin major element and isotope compositions, which are correlatedwith the degree of trace element enrichment (e.g. La/Sm). Conventionalmodels for MORB genesis invoke melting of mantle that is heterogeneouson a small scale, followed by binary mixing of variably lithophileelement-enriched melt batches. This type of model fails to explainthe compositions of the Macquarie Island glasses, principallybecause incompatible element ratios (e.g. Nb/U, Sr/Nd) and Pbisotope ratios vary non-systematically with the degree of enrichment.We propose that individual melt batches are produced from instantaneous‘parental’ mantle parageneses, which change continuouslyas melting and melt extraction proceeds. This concept of a ‘dynamicsource’ combines the models of small-scale mantle heterogeneitiesand fractional melting. A dynamic source is an assemblage oflocally equilibrated mantle solids and a related melt fraction.Common MORB magmas that integrate the characteristics of numerousmelt batches therefore tend to conceal the chemical and isotopicidentity of a dynamic source. This study shows that isotoperatios of poorly mixed MORB melts are a complex function ofthe dynamic source evolution, and that the range in isotoperatios within a single MORB suite does not necessarily requiremixing of diverse components. KEY WORDS: mid-ocean ridge basalt; Macquarie Island; radiogenic isotopes; mantle; geochemistry  相似文献   

19.
Eclogite xenoliths from the Colorado Plateau, interpreted asfragments of the subducted Farallon plate, are used to constrainthe trace element and Sr–Nd–Pb isotopic compositionsof oceanic crust subducted into the upper mantle. The xenolithsconsist of almandine-rich garnet, Na-clinopyroxene, lawsoniteand zoisite with minor amounts of phengite, rutile, pyrite andzircon. They have essentially basaltic bulk-rock major elementcompositions; their Na2O contents are significantly elevated,but K2O contents are similar to those of unaltered mid-oceanridge basalt (MORB). These alkali element characteristics areexplained by spilitization or albitization processes on thesea floor and during subduction-zone metasomatism in the fore-arcregion. The whole-rock trace element abundances of the xenolithsare variable relative to sea-floor-altered MORB, except forthe restricted Zr/Hf ratios (36·9–37·6).Whole-rock mass balances for two Colorado Plateau eclogite xenolithsare examined for 22 trace elements, Rb, Cs, Sr, Ba, Y, rareearth elements, Pb, Th and U. Mass balance considerations andmineralogical observations indicate that the whole-rock chemistriesof the xenoliths were modified by near-surface processes afteremplacement and limited interaction with their host rock, aserpentinized ultramafic microbreccia. To avoid these secondaryeffects, the Sr, Nd and Pb isotopic compositions of mineralsseparated from the xenoliths were measured, yielding 0·70453–0·70590for 87Sr/86Sr, –3·1 to 0·5 for Nd and 18·928–19·063for 206Pb/204Pb. These isotopic compositions are distinctlymore radiogenic for Sr and Pb and less radiogenic for Nd thanthose of altered MORB. Our results suggest that the MORB-likeprotolith of the xenoliths was metasomatized by a fluid equilibratedwith sediment in the fore-arc region of a subduction zone andthat this metasomatic fluid produced continental crust-likeisotopic compositions of the xenoliths. KEY WORDS: Colorado Plateau; eclogite xenolith; geochemistry; subducted oceanic crust  相似文献   

20.
Crystallization experiments were performed at 200 MPa in thetemperature range 1150–950°C at oxygen fugacitiescorresponding to the quartz–fayalite–magnetite (QFM)and MnO–Mn3O4 buffers to assess the role of water andfO2 on phase relations and differentiation trends in mid-oceanridge basalt (MORB) systems. Starting from a primitive (MgO9·8 wt %) and an evolved MORB (MgO 6·49 wt %),crystallization paths with four different water contents (0·35–4·7wt % H2O) have been investigated. In primitive MORB, olivineis the liquidus phase followed by plagioclase + clinopyroxene.Amphibole is present only at water-saturated conditions below1000°C, but not all fluid-saturated runs contain amphibole.Magnetite and orthopyroxene are not stable at low fO2 (QFM buffer).Residual liquids obtained at low fO2 show a tholeiitic differentiationtrend. The crystallization of magnetite at high fO2 (MnO–Mn3O4buffer) results in a decrease of melt FeO*/MgO ratio, causinga calc-alkaline differentiation trend. Because the magnetitecrystallization temperature is nearly independent of the H2Ocontent, in contrast to silicate minerals, the calc-alkalinedifferentiation trend is more pronounced at high water contents.Residual melts at 950°C in a primitive MORB system havecompositions approaching those of oceanic plagiogranites interms of SiO2 and K2O, but have Ca/Na ratios and FeO* contentsthat are too high compared with the natural rocks, implyingthat fractionation processes are necessary to reach typicalcompositions of natural oceanic plagiogranites. KEY WORDS: differentiation; MORB; oxygen fugacity; water activity; oceanic plagiogranite  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号