首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
植物中汞的研究进展   总被引:9,自引:1,他引:9  
植物生态系统中汞的环境过程是生物地球化学循环过程的重要组成部分,且与整个生态系统中各物种的生存和发展密切相关。本文介绍了植物中汞生物地球化学循环的进展,包括汞对植物的生物毒性、植物中汞的来源、分布与迁移转化、植物大气间汞的交换过程及其研究方法,以及植被在生态系统间汞循环中的重要作用,最后简要介绍今后的研究重点和热点。  相似文献   

2.
水体内藻类的生物地球化学   总被引:3,自引:0,他引:3  
藻类对水体内生命元素的转化及其分布、迁移的影响.是目前水体内藻类生物地球化学研究的重点内容。藻通过光合作用和生物矿化,控制着C、N、Si、P、S、Ca等元素在水体内的循环;驱动着C和S在水体和大气之间的交换,进而影响大气中的C和S。藻生物积累及其对环境变化的及时反馈,使藻类成为地球化学环境变化的生物指示物。本文对水体内藻类的生物地球化学进行了综述。  相似文献   

3.
DNDC模型的研究进展及其在高寒生态系统的应用展望   总被引:1,自引:0,他引:1  
刘放  吴明辉  杨梅学  陈生云 《冰川冻土》2020,42(4):1321-1333
DNDC(Denitrification-Decomposition, 反硝化-分解)模型是建立在元素丰度、 耦合、 循环和动力四个概念之上的生物地球化学模型。作为将生物地球化学理论应用于当前生态环境问题的桥梁, DNDC模型通过计算反硝化和有机质分解来模拟生态系统中碳氮循环过程, 其最终目的是计算目标生态系统中不同库间的温室气体排放通量。经过二十多年的发展, DNDC模型已成为目前国际上最成功的生物地球化学模型之一。文章阐述了DNDC模型的发展历程、 科学结构、 模型验证及校正, 总结了DNDC模型在生态系统应用中的主要研究进展及不足之处, 并对DNDC模型在高寒生态系统中的应用提出展望。  相似文献   

4.
冯新斌  王训  孙广义  袁巍 《地球科学》2022,47(11):4098-4107
汞是联合国环境规划署重点管控的全球性污染物.植被是联结大气圈与土壤圈的关键纽带,在全球汞生物地球化学循环中扮演着举足轻重的角色.植被生态系统是全球大气重要的汞汇,但由于大气?植被?土壤的汞界面交换过程及植物组织中汞的分布、来源与迁移转化规律及驱动机制认识不清,致使当前的全球汞生物地球化学循环模型缺失植被过程模块,无法厘定全球植被的大气汞汇通量.近年来迅速发展的汞同位素地球化学、同步辐射和微气象汞通量观测等新方法,为多层次解析不同类型植被与土壤及大气界面汞交换过程,阐明植物组织中汞的分布、来源与迁移规律提升了可能,能为进一步解决当前森林生态系统汞的生物地球化学循环的研究难点提供独辟蹊径的视角.   相似文献   

5.
元素地球化学场及其地学意义   总被引:6,自引:0,他引:6  
陈国能 《地球化学》1998,27(6):566-574
有关岩浆花岗岩成因的原地重熔说,揭示了各种化学元素在内生过程中的迁移规律。据此并结合元素在周期表中的位置,得出了元素地球化学场的概念,元素地球化学场不但总结了元素在原地重熔过程中的聚散趋势,而且揭示了元素自身组构与其空间分布规律的关系,展示出三个不同层次的地质断面,即花岗岩体上部和顶部盖层断面,大陆地壳断面及地球球体断面。  相似文献   

6.
环境地球化学是环境科学和地球化学交叉发展而形成的一门边缘学科,本文阐明了环境地球化学的学科性质以及六条基本任务.介绍了生命圈(大气圈、水圈、生物圈及岩石圈上部)的组成、演化及其环境意义,同时阐明了化学元素的环境地球化学分类.  相似文献   

7.
土壤-青菜系统中125I的生物地球化学迁移及其动态变化   总被引:1,自引:0,他引:1  
采用同位素示踪技术研究了土壤-青菜生态系统中125I的生物地球化学迁移与转化机制,并运用箱式模型分析了125I的动态变化.研究结果表明,引入土壤的125I随深度而衰减,绝大部分滞留在土壤0~10 cm表层内,125I的滞留量与土壤质地有关;青菜通过根部能很快吸收土壤中的125I,并可将大部分转运至地上部分,青菜各部位125I的富集系数为根》茎》叶柄》叶,嫩叶中富集的125I明显大于老叶;土壤和青菜中125I的动态分布服从指数变化方程,土壤和青菜中的碘可以相向迁移,青菜中碘的积累量即为土壤和青菜中碘迁移量的差值.  相似文献   

8.
硅的生物地球化学循环研究进展   总被引:2,自引:0,他引:2  
生命元素硅在陆地生态系统和水生生态系统中都扮演着重要的角色。它的生物地球化学循环与全球碳循环和全球气候交化密切相关。因此,近年来逐渐成为研究的热点。本文概述了近年来国内外有关硅的生物地球化学循环的研究进展,包括陆地和海洋中硅的生物地球化学循环过程及人类活动对硅循环的影响等方面,指出日前研究中存在的问题,展望了研究的重点。  相似文献   

9.
生物地球化学作为地学的一门分支学科,是研究生物及其产物在自然界物质循环中的作用,研究无机质与有机质关系、能量输入与生物能量储存关系、能量释放和地球上主要矿物循环的科学。早在1548年Giordano Bruno提出循环发展的思想后,三十年代苏联学者维尔拉斯基提出了生物地球化学的概念。由于受到科学技术的限制,发展相当缓慢。直到近年来,由于生物学和地球化学研究领域的发展而迅速崛起,并在生物成矿论、元素循环和环境等方面取得了重大进展,才受到了人们的重视。  相似文献   

10.
生物地球化学循环是地球系统物质循环的核心,是维系地表生态系统稳定和人类社会可持续发展的重要基础。然而,气候变化以及人类的过度干扰可能会显著改变表层地球系统中的生物地球化学循环过程,尤其是脆弱的喀斯特生态系统。特殊的多孔隙关键带结构也加速了喀斯特地区物质循环及其对外界环境变化的响应,影响了不同尺度的物质循环和生物地球化学过程。本研究主要综述了宏观尺度(气候变化)、中尺度(人类活动)和微观尺度(微生物活动)的环境变化对喀斯特地区生物地球化学循环的影响。结果表明多要素变化导致喀斯特地区物质循环受到强烈影响,气候变化、人类活动和微生物活动及其耦合关系对喀斯特地区生物地球化学循环的调控作用具有重要意义。最后,本研究强调了现有研究的局限性并指出未来研究的挑战与方向,即未来应从系统研究(如地球关键带)的视角出发,将多尺度观测-分析与综合模型集成研究并举,从而构建多源多尺度耦合的过程和系统模型,进而为阐明喀斯特系统的演变规律和动力学机制、实现喀斯特地区的生态保护和高质量发展提供理论基础。   相似文献   

11.
全球变化与陆地生态系统研究:回顾与展望   总被引:16,自引:2,他引:16  
全球变化与陆地生态系统相互关系的研究是国际地圈-生物圈计划(IGBP)的核心研究计划之一,也是整个全球变化的研究核心领域之一。该计划自上世纪八十年代启动以来,已经取得了一系列重要的研究成果,对于推动全球变化研究发挥了重要作用。中国学者在全球变化与陆地生态系统研究领域也开展了许多工作并取得了重要成绩。按照我国科学技术和社会经济发展的需求,本文提出了未来我国在该领域的研究重点,包括(1)中国陆地生态系统重要生命元素的代谢及其耦合机制研究;(2)全球变化敏感区域或重要样带上陆地生态系统对全球变化的影响研究;(3)我国的C、N、P、S生物地球化学循环与全球变化的关系研究;(4)发展中国特色的区域植被动态模型。  相似文献   

12.
阐述了21世纪第一个十年生物地球化学领域的重要研究进展和未来可能的重点发展方向。在近代陆-海系统碳循环的库和通量上已经取得了重要进展,并发现了一些参与氮、硫循环新的微生物功能群。阐述了显生宙生物大灭绝期间碳循环异常的特点及其可能的原因,但对氮、硫循环的了解比较薄弱。地球早期的碳、硫循环与生命起源、大气和海洋水化学条件的关系已经取得重要认识。生物地球化学过程可以通过生态毒理,以及大气成分和海洋水化学条件的改变影响生命系统。微生物地球化学功能的微区、原位、痕量示踪等技术得到快速发展。未来将加强地质历史时期碳、氮、硫循环的定量分析以及空间变化的研究,各种元素循环之间的相互关系及其界面过程、极端环境的生物地球化学过程将进一步受到重视。生命科学领域重要技术的引入将提升生物地球化学过程的研究。  相似文献   

13.
河流可溶性有机氮研究进展   总被引:3,自引:0,他引:3  
河流DON不但记录了流域侵蚀的过程,还记录着DON的生物地球化学信息,河流可溶性有机氮其流动是流域生态系统氮循环的重要组成部分。本文综述了河流可溶性有机氮的性质、来源、环境效应、时空变化以及同位素技术应用的最新研究进展,并指出今后河流DON的研究方向。  相似文献   

14.
Nitrogen (N) is one of the primary nutrients required to build biomass and is therefore in high demand in aquatic ecosystems. Estuaries, however, are frequently inundated with high concentrations of anthropogenic nitrogen, which can lead to substantially degraded water quality. Understanding drivers of biogeochemical N cycling rates and the microbial communities responsible for these processes is critical for understanding how estuaries are responding to human development. Estuaries are notoriously complex ecosystems: not only do individual estuaries by definition encompass gradients of salinity and other changing environmental conditions, but differences in physical parameters (e.g., bathymetry, hydrodynamics, tidal flushing) lead to a tremendous amount of variability in estuarine processes between ecosystems, as well. Here, we review the current knowledge of N cycling processes in estuaries carried out by bacteria and archaea, including both biogeochemical rate measurements and molecular characterizations of N cycling microbial communities. Particular attention is focused on identifying key environmental factors associated with distinct biogeochemical or microbial regimes across numerous estuaries. Additionally, we describe novel metabolisms or organisms that have recently been discovered but have not yet been fully explored in estuaries to date. While the majority of research has been conducted in the benthos, we also describe data from estuarine water columns. Understanding both the common patterns and the differences between estuaries has important implications for how these critical ecosystems respond to changing environmental conditions.  相似文献   

15.
Understanding ecosystem processes from a functional point of view is essential to study relationships among climate variability, biogeochemical cycles, and surface-atmosphere interactions. Increasingly during the last decades, the eddy covariance (EC) method has been applied in terrestrial, marine and urban ecosystems to quantify fluxes of greenhouse gases (e.g., CO2, H2O) and energy (e.g., sensible and latent heat). Networks of EC systems have been established in different regions and have provided scientific information that has been used for designing environmental and adaptation policies. In this context, this article outlines the conceptual and technical framework for the establishment of an EC regional network (i.e., MexFlux) to measure the surface-atmosphere exchange of heat and greenhouse gases in Mexico. The goal of the network is to improve our understanding of how climate variability and environmental change influence the dynamics of Mexican ecosystems. First, we discuss the relevance of CO2 and water vapor exchange between terrestrial ecosystems and the atmosphere. Second, we briefly describe the EC basis and present examples of measurements in terrestrial and urban ecosystems of Mexico. Finally, we describe the conceptual and operational goals at short-, medium-, and long-term scales for continuity of the MexFlux network.  相似文献   

16.
磷是生命体的必需元素,也是粮食生产的重要限制因素。磷的生物地球化学循环不仅调控着海洋的初级生产力,而且影响着全球气候系统,并决定着磷矿资源的形成和分布,与地球上生命的生存繁衍息息相关。当前“地球系统科学”理论将大气圈、水圈、岩石圈(地壳和上地幔)和生物圈等子系统有机整合,为研究磷的生物地球化学循环提供了更加广阔的视野。基于已有研究,结合“地球系统科学”理论观点,针对磷的生物化学循环获得了以下重要认识: 磷在地质历史时期的演化决定了现今磷在全球范围内(陆地生态系统与海洋生态系统)的循环模式;人类的工业和农业活动作为重要的地质营力,改变了磷的生物地球化学循环过程,造成了磷矿枯竭的资源危机及水体富营养化的环境问题;解决磷短缺的资源危机问题和磷过剩的环境污染问题的关键在于调控引起这些问题的生物地球化学循环过程。  相似文献   

17.
陆地硅的生物地球化学循环研究进展   总被引:2,自引:0,他引:2  
地球表层硅(Si)的生物地球化学循环与大气CO2浓度变化、大洋生物泵作用以及海岸带富营养化等过程密切相关,因此成为全球环境变化研究的核心问题之一。在地质时间尺度上,硅酸盐矿物的化学风化是地球表层所有次生Si的来源。陆地生态系统各次生Si库具有不同的形成机制和驱动因子,这导致各Si库的贮存量和循环周期存在明显差异。土壤Si库中的黏土矿物Si、溶解硅(DSi)和淀积在其他矿物表面的无定形Si都源自硅酸盐矿物的化学风化过程;植物生长过程中吸收土壤中的DSi形成生物Si,然后经微生物分解过程返还给土壤;地表径流将流域陆源Si以悬移质Si和DSi的形式输入河流、海洋。迄今,陆地不同形态Si库的大小及其对全球Si循环的贡献仍不确定。因此,在研究陆地Si的生物地球化学循环过程中,综合考虑各种地表过程及其耦合作用是非常必要的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号