首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A methodology to estimate a methane emission in a waste landfill site was developed. The methane flux at a waste landfill site in summer, autumn, and winter was within the following ranges: from −1.3×10−2 to 16, from −6.4×10−2 to 7.5, and from −1.6×10−3 to 1.5×10−2 g-CH4 m−2 h−1, respectively. In those seasons, the mean methane emission rate and coefficient of variation were 1.1 g-CH4 m−2 h−1 ±290%, 0.57 g-CH4 m−2 h−1 ±347%, and 5.4×10−2 g-CH4 m−2 h−1 ±370%, respectively. These results simultaneously showed that fluctuations of methane emission from the landfill surface were both of spatial and temporal variability. In each season, an exponential relationship was observed between the methane flux density and the ground temperature. Total methane emissions were estimated to be 5.7×10−2, 7.1×10−3, and 1.7×10−3 g-CH4 m−2 h−1 in the summer, autumn, and winter surveys, respectively, using a temperature surrogated-kriging method. The results of this study would improve upon the labor-intensive closed-chamber method, and could be a more practical way to estimate methane emissions from waste landfills.  相似文献   

2.
Nitrogen addition to soil can play a vital role in influencing the losses of soil carbon by respiration in N-deficient terrestrial ecosystems. The aim of this study was to clarify the effects of different levels of nitrogen fertilization (HN, 200 kg N ha−1 year−1; MN, 100 kg N ha−1 year−1; LN, 50 kg N ha−1 year−1) on soil respiration compared with non-fertilization (CK, 0 kg N ha−1 year−1), from July 2007 to September 2008, in temperate grassland in Inner Mongolia, China. Results showed that N fertilization did not change the seasonal patterns of soil respiration, which were mainly controlled by soil heat-water conditions. However, N fertilization could change the relationships between soil respiration and soil temperature, and water regimes. Soil respiration dependence on soil moisture was increased by N fertilization, and the soil temperature sensitivity was similar in the treatments of HN, LN, and CK treatments (Q 10 varied within 1.70–1.74) but was slightly reduced in MN treatment (Q 10 = 1.63). N fertilization increased soil CO2 emission in the order MN > HN > LN compared with the CK treatment. The positive effects reached a significant level for HN and MN (P < 0.05) and reached a marginally significant level for LN (P = 0.059 < 0.1) based on the cumulative soil respiration during the 2007 growing season after fertilization (July–September 2007). Furthermore, the differences between the three fertilization treatments and CK reached the very significant level of 0.01 on the basis of the data during the first entire year after fertilization (July 2007–June 2008). The annual total soil respiration was 53, 57, and 24% higher than in the CK plots (465 g m−2 year−1). However, the positive effects did not reach the significant level for any treatment in the 2008 growing season after the second year fertilization (July–September 2008, P > 0.05). The pairwise differences between the three N-level treatments were not significant in either year (P > 0.05).  相似文献   

3.
The extent of authigenic alteration of biogenic and reactive silica in Pearl River estuarine sediments has been estimated using wet-chemical digestion methods. Results show relatively constant distributions of biogenic and reactive Si horizontally and vertically. Based on three core measurements, the biogenic and total reactive Si average 77.91 and 264.77 μmol Si g−1, respectively. Their extents of authigenic alteration are correspondingly estimated as ~55.6 and ~70.6%. The average biogenic Si accumulation rate is calculated as 1.91 × 109 mol Si year−1, which translates into storage of ~7.15% of the annual riverine dissolved silica input. By contrast, the total reactive Si accumulation rate is as high as 6.49 × 109 mol Si year−1, improving annual riverine silicic acid storage to ~24.19%. Detailed investigation is required for a good understanding of early diagenetic process of biogenic and reactive silica in this subtropical area.  相似文献   

4.
Among several salt lakes in the Thar Desert of western India, the Sambhar is the largest lake producing about 2 × 105 tons of salt (NaCl) annually. The “lake system” (lake waters, inflowing river waters, and sub-surface brines) provides a unique setting to study the geo-chemical behavior of uranium isotopes (238U, 234U) in conjunction with the evolution of brines over the annual wetting and evaporation cycles. The concentration of 238U and the total dissolved solids (TDS) in lake water increase from ~8 μg L−1 and ~8 g L−1 in monsoon to ~1,400 μg L−1 and 370 g L−1, respectively, during summer time. The U/TDS ratio (~1 μg g−1 salt) and the 234U/238U activity ratio (1.65 ± 0.05), however, remain almost unchanged throughout the year, except when U/TDS ratio approaches to 3.8 at/or beyond halite crystallization. These observations suggest that uranium behaves conservatively in the lake waters during the annual cycle of evaporation. Also, uranium and salt content (TDS) are intimately coupled, which has been used to infer the origin and source of salt in the lake basin. Furthermore, near uniform ratios in evaporating lake waters, when compared to the ratio in seawater (~0.1 μg g−1 salt and 1.14 ± 0.02, respectively), imply that aeolian transport of marine salts is unlikely to be significant source of salt to the lake in the present-day hydrologic conditions. This inference is further consistent with the chemical composition of wet-precipitation occurring in and around the Sambhar lake. The seasonal streams feeding the lake and groundwaters (within the lake’s periphery) have distinctly different ratios of U/TDS (2–69 μg g−1 salt) and 234U/238U (1.15–2.26) compared to those in the lake. The average U/TDS ratio of ~1 μg g−1 salt in lake waters and ~19 μg g−1 salt in river waters suggest dilution of the uranium content by the recycled salt and/or removal processes presently operating in the lake during the extraction of salt for commercial use. Based on mass-balance calculations, a conservative estimate of "uranium sink" (in the form of bittern crust) accounts for ~5 tons year−1 from the lake basin, an estimate similar to its input flux from rivers, i.e., 4.4 tons year−1.  相似文献   

5.
Gediz Basin is one of the regions where intense agricultural activities take place in Western Turkey. Erosion and soil degradation have long been causing serious problems to cultivated fields in the basin. This work describes the application of two different 137Cs models for estimating soil erosion rates in cultivated sites of the region. Soil samples were collected from five distinct cultivated regions subject to soil erosion. The variations of 137Cs concentrations with depth in soil profiles were investigated. Soil loss rates were calculated from 137Cs inventories of the samples using both proportional model (PM) and simplified mass balance model (SMBM). When PM was used, erosion and deposition rates varied from −15 to −28 t ha−1 year−1 and from +5 to +41 t ha−1 year−1, respectively; they varied from −16 to −33 t ha−1 year−1 and from +5 to +55 t ha−1 year−1 with SMBM. A good agreement was observed between the results of two models up to 30 t ha−1 year−1 soil loss and gain in the study area. Ulukent, a small representative agricultural field, was selected to compare the present data of 137Cs techniques with the results obtained by universal soil loss equation (USLE) applied in the area before.  相似文献   

6.
The influences of exposure to the atmosphere on ammonium cycle in the intertidal surface sediments were in situ studied with a geochemical approach at a typical station in the Yangtze Estuary during three tidal cycles in September 2003. During an about 8-h emersion period of each diurnal tide, six high-resolution vertical profiles of adsorbed and dissolved ammonium were measured. It was observed that both adsorbed and dissolved ammonium generally had an increasing trend in sediment cores during the exposure. The rate of ammonium regeneration in sediments was estimated using the accumulation amount of ammonium including adsorbed and soluble fractions during the daytime emersion. The calculation result showed that there was relatively high ammonification rate (˜500 nmol N cm−3 day−1), which reflected that organic nitrogen in sediments was quickly decomposed with a residence time of ˜52.7 days. Due to the dramatic temperature difference observed in sediment profiles, free convection was considered an important mechanism of regulating the efflux of produced ammonium into overlying waters. The total estimated amount of regenerated ammonium was ˜1.35×105 t N year−1 in the intertidal flat of the Yangtze Estuary, which occupied 7.6% of the total inorganic nitrogen annually transported to the estuarine ecosystem.  相似文献   

7.
The Narmada River flows through the Deccan volcanics and transports water and sediments to the adjacent Arabian Sea. In a first-ever attempt, spatial and temporal (annual, seasonal, monthly and daily) variations in water discharge and sediment loads of Narmada River and its tributaries and the probable causes for these variations are discussed. The study has been carried out with data from twenty-two years of daily water discharge at nineteen locations and sediment concentrations data at fourteen locations in the entire Narmada River Basin. Water flow in the river is a major factor influencing sediment loads in the river. The monsoon season, which accounts for 85 to 95% of total annual rainfall in the basin, is the main source of water flow in the river. Almost 85 to 98% of annual sediment loads in the river are transported during the monsoon season (June to November). The average annual sediment flux to the Arabian Sea at Garudeshwar (farthest downstream location) is 34.29×106 t year−1 with a water discharge of 23.57 km3 year−1. These numbers are the latest and revised estimates for Narmada River. Water flow in the river is influenced by rainfall, catchment area and groundwater inputs, whereas rainfall intensity, geology/soil characteristics of the catchment area and presence of reservoirs/dams play a major role in sediment discharge. The largest dam in the basin, namely Sardar Sarovar Dam, traps almost 60–80% of sediments carried by the river before it reaches the Arabian Sea.  相似文献   

8.
Studying spatial and temporal variation of soil loss is of great importance because of global environmental concerns. Understanding the spatial distribution of soil erosion and deposition in the high-cold steppe is important for designing soil and water conservation measures. Measured 137Cs losses (Bq m−2) from long-term high altitude (4,000 m above sea level) watershed plots on the Qinghai–Tibet plateau and derived soil erosion estimates (Mg ha−1 year−1) were significantly correlated to directly measured soil losses from the same plots, over the same period (1963–2005). The local reference inventory was estimated to be 2,468 Bq m−2. The result of analyzing 137Cs distribution and its intensity in the soil profiles in this area shows similarities to 137Cs distribution in other areas. 137Cs is basically distributed in the topsoil layer of 0–0.3 m. Soil erosions vary greatly in the entire sampled area, ranging from 5.5 to 23 Mg ha−1 year−1, with an average of 16.5 Mg ha−1 year−1 which is a moderate rate of erosion.  相似文献   

9.
The dissolved fluoride (F) in the Lower Ganges-Brahmaputra-Meghna (GBM) river system, Bengal basin, Bangladesh, was studied during 1991–1993 to determine its distribution and source in the basin, and its annual flux to the Bay of Bengal. The concentration of dissolved F varied between 2 and 11 μmol l−1 with statistically significant variations both spatially and temporally in the basin. Such variations are attributable to the geology of the individual subbasins (Ganges, Brahmaputra and Meghna), dilution by rainwater during monsoon and groundwater contribution to the river systems during dry season. Correlation coefficients among F and major cations and anions suggest diverse inorganic processes responsible for regulating the concentration of F in these river systems. However, fluorite seems to be one of the major sources of dissolved F. The concentration of F in the Lower GBM river system is low compared to the rivers draining Deccan Plateau and arid regions of the subcontinent, for example, Yamuna and its tributaries. However, it is within the range of most of the other Peninsular and Himalayan rivers. The GBM system contributes about 115×103 tonnes year−1 of dissolved F into the Bay of Bengal, and thus accounts for about 3% of the global F flux to the oceans annually. Received: 19 May 1999 · Accepted: 11 October 1999  相似文献   

10.
According to records of 17 meteorological stations distributed in the study area, climate change of the middle Inner Mongolia in northern China was analyzed in this paper. Based on SPOT VGT data, combined with field investigation, local vegetation change was detected in the last 10 years. The results show that annual mean air temperature obviously rose, while precipitation slightly decreased in fluctuation in the study area during the last 50 years. Air temperature increasing rates are +0.318°C 10 year−1 during 1960-2009 and +0.423°C 10 year−1 during 1980–2009, while precipitation decreasing rates are −2.91 mm 10 year−1 during 1960–2009. There were five different dry or wet periods from the 1960s to the 2000s in order, and the wetter 1990s and the drier 2000s changed dramatically in the study area. Local climate totally tend to warm–dry conditions during the last 50 years. According to coefficient of variation (Cv) of yearly growing-season cumulative NDVI value and yearly NDVI maximum in pixel scale, vegetation had experienced huge temporal and spatial variation during the last 10 years. Recently, frequent droughts and dust storms seriously affected local agriculture and grazing activities, and resulted in heavy economic loss, especially over the drought period of 1999–2001. Faced with those drought disasters accompanied with strong dust storms, the local authorities proposed the enclosing-transferring strategy and made great efforts to adapt overt climate change and improve environment, including making selective emigration, decreasing livestock numbers, fencing grasslands and building forage production bases with irrigation instruments and actively adjusting industry structure. However, some effects and potential problems of this adaptation strategy still need to be comprehensively assessed further in longer time scales and aimed at different sub-regions.  相似文献   

11.
We measured seasonal variations in microzooplankton grazing in Long Island Sound (LIS) and San Francisco Bay (SFB). There was consistent evidence of nutrient limitation in LIS, but not SFB. We found higher chlorophyll a concentrations in LIS compared with SFB. In spite of differences in phytoplankton, there were no differences in microzooplankton abundance (summer: LIS, 12.4 ± 1.8 × 103 indiv. L−1; SFB, 14.1 ± 3.0 × 103 indiv. L−1), biomass (summer: LIS, 30.4 ± 5.0 μg C L−1; SFB, 26.3 ± 5.9 μg C L−1), or grazing rates (summer: LIS, 0.66 ± 0.19 day−1; SFB, 0.65 ± 0.18 day−1) between the two estuaries. In common with many other investigators, we found many instances of saturated as well as insignificant grazing. We suggest that saturation in some cases may result from high particle loads in turbid estuarine systems and that insignificant grazing may result from extreme saturation of the grazing response due to the need to process non-food particles.  相似文献   

12.
Weathering fluxes of arsenic from a small catchment in Slovak Republic   总被引:1,自引:1,他引:0  
Inputs of As to a small catchment due to chemical weathering of bedrock, mechanical weathering of bedrock, and atmospheric precipitation were 71.53, 23.98 and 0.02 g ha−1 year−1, respectively. The output fluxes of As due to mechanical erosion of soil, biological uptake, stream discharge, and groundwater flow were 6.32, 4.77, 0.37 and 0.02 g ha−1 year−1, respectively. The results indicate that arsenic accumulates in soil and regolith with a very high rate. This is attributed to the selective weathering and erosion with respect to arsenic and fixation of arsenic in the secondary solids produced by weathering. The output fluxes of As in stream and groundwater in Vydrica catchment in Slovak Republic (0.39 g ha−1 year−1) based on muscovite–biotite granites and granodiorites were much lower compared to catchments in a gold district in the Czech Republic. These results may be ascribed to the low levels of arsenic pollution measured in Vydrica catchment. The arsenic fluxes were estimated by calculation of mechanical and chemical weathering rates of the bedrocks in Vydrica catchment from mass balance data on sodium and silica. The justification of the steady state of Na and Si is that neither of the elements is appreciably accumulated in plants and in exchangeable pool of ions in soil.  相似文献   

13.
The basal area and productivity of managrove wetlands are described in relation to selected soil properties to understand the general pattern of optimum forest stature at the mouth of estuaries in the Everglades, such as the Shark River Slough, Florida (U.S.). The basal area of mangroves decreases from 40.4 m2 ha−1 and 39.7 m2 ha−1 at two stations 1.8 km and 4.1 km from the estuary mouth to 20.7 m2 ha−1 and 19.6 m2 ha−1 at two sites 9.9 km and 18.2 km from the mouth, respectively. The gradient in basal area at these four sites is mostly the result of approximately 34 yr of growth since Hurricane Donna. Wood productivity is higher in the lower estuary (10.7 Mg ha−1 yr−1 and 12.0 Mg ha−1 yr−1) than in the upper estuary (3.2 Mg ha−1 yr−1 and 4.2 Mg ha−1 yr−1). Porewater salinity among these four mangrove sites during seasonal sampling in 1994 and 1995 ranged from 1.6 g kg−1 to 33.5 g kg−1, while sulfide was generally<0.15 mM at all sites. These soil values indicate that abiotic stress cannot explain the decrease in forest structure along this estuarine gradient. Concentrations of nitrogen (N) and phosphorus (P) are more closely related to patterns of forest development, with higher soil fertility at the mouth of the estuary as indicated by higher concentrations of extractable ammonium, total soil P, and available P, along with higher ammonium production rates. The more fertile sites of the lower estuary are dominated by Laguncularia racemosa, whereas the less fertile sites in the intermediate and upper estuary are dominated by Rhizophora mangle. Relative N mineralization per unit of total N is higher in the lower estuary and is related positively to concentrations of available P, indicating the importance of turnover rates and nutrient interactions to soil fertility. Concentrations of Ca-bound P per volume soil in the lower estuary is 40-fold higher than in the upper estuary, and along with an increase in residual P in the upper estuary, indicate a shift from mineral to organic P along the estuarine gradient. Mineral inputs to the mouth of Shark River estuary from the Gulf of Mexico (rather than upland inputs) apparently control the patterns of mangrove structure and productivity.  相似文献   

14.
Zakynthos, an island of 408 km2 in the Ionian Sea, is completely dependent on its groundwater resources for fulfilling the demands of the water supplies. The use of groundwater resources has become particularly intensive during the last decades because of the intense urbanization, the tourist development and the irrigated land expansion that took place. The main aquifers are developed in limestones (karstic), sandstones of neogene deposits (confined) and alluvial deposits (phreatic). This paper focuses on the assessment of their hydrogeological characteristics and the groundwater quality. For this investigation, groundwater level measurements, drilling data, pumping tests and chemical analyses of groundwater samples were used. The average annual consumption that is abstracted from the aquifer systems, is 4.9 × 106 m3 year−1. The exploitable groundwater reserves were estimated to be 3.3 × 106 m3 year−1. In the last decades, the total abstractions exceed the natural recharge, due to the tourist development; therefore the aquifer systems are not used safely. The results of chemical analyses showed a deterioration of the groundwater quality. According to the analyses the shallow alluvial aquifer and the confined aquifer are polluted by nitrates at concentrations in excess of 25 mg L−1. High sulphate concentrations might be related to the dissolution of gypsum. Seawater intrusion phenomena are recorded in coastal parts of aquifer systems. The increased Cl concentrations in karstic aquifer indicate signs of overexploitation. Strengths, weaknesses, opportunities and threats (SWOT) analysis was applied in order to evaluate the SWOT of the groundwater resources. Moreover, some recommendations are made to assist the rational management that aim at improving the sustainability of the groundwater resources of Zakynthos Island.  相似文献   

15.
A field study was conducted to determine the effect of landscape spatial pattern and micro-topography on nutrient transfer via runoff from two catchments into Yuqiao Reservoir in north China. The surface runoff discharge was measured during rainfall events and water samples were analyzed in 2004 and 2005. The mean annual total nitrogen (TN) and total phosphorus (TP) exports per unit area from Caogezhuang catchment (C catchment) were 1.048 and 0.561 kg ha−1 year−1, respectively, while the TN and TP exports from Taohuasi catchment (T catchment) were 0.158 and 0.027 kg ha−1 year−1. In both catchments, village and vineyard shared the highest nutrient export ability due to the accumulated animal waste and heavy application of fertilizer and manure. In T catchment, the distance of village and vineyard was about 1,500 m away from the receiving water and in between were woodland and cropland. In the hydrological pathway, there were sink landscape structures of small stone dams, roadside swale, vegetated filter strip and dry ponds, which could detain water and nutrients. In C catchment, the distance between the village and the receiving water was about 200 m, and the hydrological pathway was compacted roads and ditches with no sink structures. It is suggested that the distance between the pollution source area and the receiving water and the micro-topographical features were the main factors to control the great difference in nutrient export rates.  相似文献   

16.
A gabbro-diorite plutonic complex from the Southeast Obudu Plateau, representing limited volumes of magma, was studied for its trace and rare-earth element characteristics, in an attempt to document its genetic and geodynamic history. Geochemical studies indicate that the gabbro samples are characterized by variable concentrations and low averages of such index elements as Cr (40×10-6–200×10-6; av. 80×10-6), Ni (40×10-6–170×10-6; 53.33×10-6) and Zr (110×10-6–240×10-6; 116.67×10-6); variable and high average...  相似文献   

17.
A study of Halodule wrightii in a shallow subtropical Texas lagoon was performed to obtain seasonal data on its physiological ecology. Leaf production and biomass dynamics of H. wrightii were intensively monitored along with the underwater light environment at a 1.2-m depth study site over a 21-month period from June 1995 to February 1997. The annual photosynthetically active radiation (PAR) flux of 6,764 mol m−2 year−1 was more than twice as high as 2,400 mol m−2 year−1, the minimum annual PAR required for maintenance of growth. As light intensity declined, blade chlorophyll a/b ratios increased suggesting that the plants were photo-adapting. Seasonal trends were evident in shoot growth and biomass. Compared to other Halodule populations in Texas, H. wrightii in LLM displayed slow growth and low biomass, high leaf tissue N content, and low C/N ratio but high N/P ratio of 38 suggesting that the plants were phosphorus-limited.  相似文献   

18.
The Jinding Pb-Zn deposit in Yunnan Province is the representative of a Cd-enriched area and mining activities lead to the release of Cd into the hypergenic ecosystem, resulting in Cd pollution. The concentrations of Cd vary greatly from one type to another type of rocks in the mining district. In the host rock, Cd concentrations range from 50×10^-6 to 650×10^-6 with an average of 310×10^-6. In primary ores, Cd concentrations range from 14×10^-6 to 2800×10^-6 with an average of 767×10^-6. However, in oxidized ores, Cd concentrations are highest, varying within the range of 110×10^-6 to 8200×10^-6 , averaging 1661×10^-6. It is shown that the oxidized ores are the main carder and environmental source of Cd. Leaching test showed that Pb/Zn ores are easy to oxidize and thereafter release Cd and other harmful elements. These leached elements in the leachate may be precipitated rapidly in the order of Zn〉Pb〉Cd. As for the concentration distribution of Cd in the Bijiang River, it is estimated to be 15.7 μg/L Cd in water, 49.3 mg/L in suspended substances, and 203.7 mg/L in sediments. The average value of Cd in soil from the polluted area is 83.0 mg/kg. Natural weathering of Cd-rich rocks and minerals imposes a potential environmental risk on the aquatic ecosystem of the Bijiang catchment.  相似文献   

19.
Respiration and calcification rates of the Pacific oyster Crassostrea gigas were measured in a laboratory experiment in the air and underwater, accounting for seasonal variations and individual size, to estimate the effects of this exotic species on annual carbon budgets in the Bay of Brest, France. Respiration and calcification rates changed significantly with season and size. Mean underwater respiration rates, deducted from changes in dissolved inorganic carbon (DIC), were 11.4 μmol DIC g−1 ash-free dry weight (AFDW) h−1 (standard deviation (SD), 4.6) and 32.3 μmol DIC g−1 AFDW h−1 (SD 4.1) for adults (80–110 mm shell length) and juveniles (30–60 mm), respectively. The mean daily contribution of C. gigas underwater respiration (with 14 h per day of immersion on average) to DIC averaged over the Bay of Brest population was 7.0 mmol DIC m−2 day−1 (SD 8.1). Mean aerial CO2 respiration rate, estimated using an infrared gas analyzer, was 0.7 μmol CO2 g−1 AFDW h−1 (SD 0.1) for adults and 1.1 μmol CO2 g−1 AFDW h−1 (SD 0.2) for juveniles, corresponding to a mean daily contribution of 0.4 mmol CO2 m−2 day−1 (SD 0.50) averaged over the Bay of Brest population (with 10 h per day of emersion on average). Mean CaCO3 uptake rates for adults and juveniles were 4.5 μmol CaCO3 g−1 AFDW h−1 (SD 1.7) and 46.9 μmol CaCO3 g−1 AFDW h−1 (SD 29.2), respectively. The mean daily contribution of net calcification in the Bay of Brest C. gigas population to CO2 fluxes during immersion was estimated to be 2.5 mmol CO2 m−2 day−1 (SD 2.9). Total carbon release by this C. gigas population was 39 g C m−2 year−1 and reached 334 g C m−2 year−1 for densely colonized areas with relative contributions by underwater respiration, net calcification, and aerial respiration of 71%, 25%, and 4%, respectively. These observations emphasize the substantial influence of this invasive species on the carbon cycle, including biogenic carbonate production, in coastal ecosystems.  相似文献   

20.
The thermal expansion of gehlenite, Ca2Al[AlSiO7], (up to T=830 K), TbCaAl[Al2O7] (up to T=1100 K) and SmCaAl[Al2O7] (up to T=1024 K) has been determined. All compounds are of the melilite structure type with space group Thermal expansion data were obtained from in situ X-ray powder diffraction experiments in-house and at HASYLAB at the Deutsches Elektronen Synchrotron (DESY) in Hamburg (Germany). The thermal expansion coefficients for gehlenite were found to be: α1=7.2(4)×10−6×K−1+3.6(7)×10−9ΔT×K−2 and α3=15.0(1)×10−6×K−1. For TbCaAl[Al2O7] the respective values are: α1=7.0(2)×10−6×K−1+2.0(2)×10−9ΔT×K−2 and α3=8.5(2)×10−6×K−1+2.0(3)×10−9ΔT×K−2, and the thermal expansion coefficients for SmCaAl[Al2O7] are: α1=6.9(2)×10−6×K−1+1.7(2)×10−9ΔT×K−2 and α3=9.344(5)×10−6×K−1. The expansion mechanisms of the three compounds are explained in terms of structural trends obtained from Rietveld refinements of the crystal structures of the compounds against the powder diffraction patterns. No structural phase transitions have been observed. While gehlenite behaves like a ‘proper’ layer structure, the aluminates show increased framework structure behavior. This is most probably explained by stronger coulombic interactions between the tetrahedral conformation and the layer-bridging cations due to the coupled substitution (Ca2++Si4+)–(Ln 3++Al3+) in the melilite-type structure. This article has been mistakenly published twice. The first and original version of it is available at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号