首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Kick'em Jenny is a submarine volcano situated 9 kilometres north of Grenada in the Lesser Antilles. A preliminary study suggests that the volcano is a prime candidate for tsunamigenic eruptions on a potentially hazardous scale, possibly affecting the whole of the Eastern Caribbean region. The uniqueness of individual volcanic eruptions means that attempts to generalise tsunamigenic mechanisms are extremely tentative. However, the theory of underwater explosion generated water waves is applicable to submarine volcanoes to model explosive eruptions. Using this theory, initial maximum ocean surface displacements are calculated for Kick'em Jenny hydroeruptions, corresponding to various event magnitudes (up to a worst-case scenario eruption on the scale of Krakatau, 1883). Wave propagation theories are then applied to the resulting tsunami wave dispersion, before beach shoaling equations are used to estimate the maximum tsunami run-up at adjacent coastal areas. Maps of the region have been prepared showing the paths of the wave-fronts (ray-tracing), travel times and maximum wave run-up amplitudes along coastlines. Finally, an attempt is made to assess how great a hazard the volcano represents, by considering the probability of each magnitude event occurring.  相似文献   

2.
Kick em Jenny submarine volcano, ~8 km north of Grenada, has erupted at least 12 times since it was first discovered in 1939, making it the most frequently active volcano in the Lesser Antilles arc. The volcano lies in shallow water close to significant population centres and directly beneath a major shipping route, and as a consequence an understanding of the eruptive behaviour and potential hazards at the volcano is critical. The most recent eruption at Kick em Jenny occurred on December 4 2001, and differed significantly from past eruptions in that it was preceded by an intensive volcanic earthquake swarm. In March 2002 a multi-beam bathymetric survey of the volcano and its surroundings was carried out by the NOAA ship Ronald H Brown. This survey provided detailed three-dimensional images of the volcano, revealing the detailed morphology of the summit area. The volcano is capped by a summit crater which is breached to the northeast and which varies in diameter from 300 to 370 m. The depth to the summit (highest point on the crater rim) is 185 m and the depth to the lowest point inside the crater is 264 m. No dome is present within the crater. The crater and summit region of Kick em Jenny are located at the top of an asymmetrical cone which is about 1300 m from top to bottom on its western side. It lies within what appear to be the remnants of a much larger arcuate collapse structure. An evaluation of the morphology, bathymetry and eruptive history of the volcano indicates that the threat of eruption-generated tsunamis is considerably lower than previously thought, mainly because the volcano is no longer thought to be growing towards the surface. Of more major and immediate concern are the direct hazards associated with the volcano, such as ballistic ejecta, water disturbances and lowered water density due to degassing.  相似文献   

3.
Kolumbo submarine volcano, located NE of Santorini caldera in the Aegean Sea, has only had one recorded eruption during historic times (1650 AD). Tsunamis from this event severely impacted the east coast of Santorini with extensive flooding and loss of buildings. Recent seismic studies in the area indicate a highly active region beneath Kolumbo suggesting the potential for future eruptive activity. Multibeam mapping and remotely operated vehicle explorations of Kolumbo have led to new insights into the eruptive processes of the 1650 AD eruption and improved assessments of the mechanisms by which tsunamis were generated and how they may be produced in future events. Principal mechanisms for tsunami generation at Kolumbo include shallow submarine explosions, entrance of pyroclastic flows into the sea, collapse of rapidly accumulated pyroclastic material, and intense eruption-related seismicity that may trigger submarine slope collapse. Compared with Santorini, the magnitude of explosive eruptions from Kolumbo is likely to be much smaller but the proximity of the volcano to the eastern coast of Santorini presents significant risks even for lower magnitude events.  相似文献   

4.
Empirical relations between tsunami parameters and underwater eruption energy have been improved, making use of Le Mehaute's theory of explosion-generated water waves. Formulae can be used to estimate underwater eruption characteristics by tsunami wave data. Estimates of energy for some past event have been obtained, in particular, for multiple eruptions of the 1952–1953 Myojinsho volcano, to be E 1015 – 1016 J.  相似文献   

5.
Late Pleistocene tephras derived by large explosive volcanic eruptions are widespread in the Mediterranean and surrounding areas. They are important isochronous markers in stratigraphic sections and therefore it is important to constrain their sources. We report here tephrochronology results using multiple criteria to characterize the volcanic products of the Late Pleistocene Ciomadul volcano in eastern–central Europe. This dacitic volcano had an explosive eruption stage between 57 and 30 ka. The specific petrological character (ash texture, occurrence of plagioclase and amphibole phenocrysts and their compositions), the high-K calc-alkaline major element composition and particularly the distinct trace element characteristics provide a strong fingerprint of the Ciomadul volcano. This can be used for correlating tephra and cryptotephra occurrences within this timeframe. Remarkably, during this period several volcanic eruptions produced tephras with similar glass major element composition. However, they differ from Ciomadul tephras by glass trace element abundances, ratios of strongly incompatible trace elements and their mineral cargo that serve as discrimination tools. We used (U-Th)/He zircon dates combined with U-Th in situ rim dates along with luminescence and radiocarbon dating to constrain the age of the explosive eruptions of Ciomadul that yielded distal tephra layers but lack of identified proximal deposits.  相似文献   

6.
Merapi is Indonesia's most dangerous volcano with a history of deadly eruptions. Over the past two centuries, the volcanic activity has been dominated by prolonged periods of lava dome growth and intermittent gravitational or explosive dome failures to produce pyroclastic flows every few years. Explosive eruptions, such as in 2010, have occurred occasionally during this period, but were more common in pre‐historical time, during which a collapse of the western sector of the volcano occurred at least once. Variations in magma supply from depth, magma ascent rates and the degassing behaviour during ascent are thought to be important factors that control whether Merapi erupts effusively or explosively. A combination of sub‐surface processes operating at relatively shallow depth inside the volcano, including complex conduit processes and the release of carbon dioxide into the magmatic system through assimilation of carbonate crustal rocks, may result in unpredictable explosive behaviour during periods of dome growth. Pyroclastic flows generated by gravitational or explosive lava dome collapses and subsequent lahars remain the most likely immediate hazards near the volcano, although the possibility of more violent eruptions that affect areas farther away from the volcano cannot be fully discounted. In order to improve hazard assessment during future volcanic crises at Merapi, we consider it crucial to improve our understanding of the processes operating in the volcano's plumbing system and their surface manifestations, to generate accurate hazard zonation maps that make use of numerical mass flow models on a realistic digital terrain model, and to utilize probabilistic information on eruption recurrence and inundation areas.  相似文献   

7.
We present an updated geological evolution of Mount Etna volcano based on new 40Ar/39Ar age determinations and stratigraphic data integrating the previous K/Ar ages. Volcanism began at about 500 ka ago through submarine eruptions on the Gela–Catania Foredeep basin. About 300 ka ago fissure-type eruptions occurred on the ancient alluvial plain of the Simeto River forming a lava plateau. From about 220 ka ago the eruptive activity was localised mainly along the Ionian coast where fissure-type eruptions built a shield volcano. Between 129 and 126 ka ago volcanism shifted westward toward the central portion of the present volcano (Val Calanna–Moscarello area). Furthermore, scattered effusive eruptions on the southern periphery of Etna edifice occurred until about 121 ka ago. The stabilization of the plumbing system on the Valle del Bove area is marked by the building of two small polygenic edifices, Tarderia and Rocche volcanoes. Their eruptive activity was rather coeval ending 106 and 102 ka ago, respectively. During the investigated time-span volcanism in Etna region was controlled by a main E–W extensional tectonic related to the reactivation of Malta Escarpment fault system in eastern Sicily. Electronic supplementary material The online version of this article () contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

8.
一、引言大同第四纪火山群位于山西省大同县和阳高县境内(图1),包括近5年来在大峪口,秋林地区首次发现的6个小火山。该火山群大、小火山共计31个。大同火山群南以六棱山北麓断裂为界,分布于大同盆地东部的第四纪沉积区范围。火山群南侧的六棱山和北部的小北山是由前寒武花岗片麻岩组成的山地。  相似文献   

9.
Reports of volcanic eruptions and earthquakes originating from volcanoes indicate that seismic activity preceding the eruption is related not only to eruption magnitude and structure of the volcano, but also to viscosity of the lava at the time of eruption. This follows, since lava of higher viscosity meets greater resistance as it ascends from the magma chamber to the earth's surface and, consequently, greater stress will be produced within and beneath the volcano. The writer gives a condensed statistical breakdown of earthquakes and explosive eruptions of Asama Volcano. The Asama earthquakes treated in the report are mainly those of rather low magnitude (T = 1. 0 sec, V = 350) at the Asama Volcano Observatory, situated 4. 2 km east of the center of the summit crater. This investigation showed that most of the explosive eruptions were preceded by an increase in micro-earthquakes. In addition, an experimental formula for predicting volcanic eruptions, based on the statistical relation between frequency of earthquakes originating from Asama and its explosive eruptions. The forthcoming report (Part II) will discuss the same problem based on seismic observations by more sensitive instruments set nearer the summit crater. — A. Eustus  相似文献   

10.
活火山是指1万年来有过喷发历史的全新世火山。火山的高分辨年代学对火山灾害评估和火山分类具有重要意义。对于缺乏历史记载的全新世火山,直接对火山岩进行同位素定年很困难。本文利用具有高时间分辨率的镭-钍-铀非平衡确定中国东部年轻火山的年龄。根据镭-钍-铀同位素,海南岛的马鞍岭和雷虎岭是全新世火山(马鞍岭:4.3ka;雷虎岭:4.7ka);镜泊湖火山(4.9ka)也是全新世火山;龙岗火山存在晚更新世和全新世活动(7.0ka,15.0ka);大兴安岭阿尔山和诺敏河Ra/Th非平衡消失但~(230)Th/~(238)U非平衡显著,属于晚更新世喷发(阿尔山:63ka;诺敏河:71ka)。海南岛的马鞍岭火山、雷虎岭火山和东北地区的龙岗火山、镜泊湖火山,是4座活火山。至于东北地区的阿尔山和诺敏河火山是否是活火山,有待测试更多样品的Ra/Th同位素。五大连池老黑山和火烧山有历史喷发记录,这与它们都存在显著Ra/Th非平衡一致。五大连池老黑山和火烧山的岩浆滞留年龄分别小于4.2ka和3.2ka,岩浆上升速率 18~23m/y。  相似文献   

11.
The 1305 Kaharoa rhyolite eruptive episode is the largest volcanic event(4 km3 magma) to have occurred in New Zealand during the last 1000 years. Proximal areas were devastated by pyroclastic flows, and tephra fell over much of the northern North Island. No eyewitness observations are recorded, but ejecta analyses show that the rhyolite eruptions were primed and triggered by basalt intrusions. This key finding, combined with observations of similar modern eruptions, has allowed construction of a conceptual scenario of the seismic and other activity that likely preceded the Kaharoa episode.The precursory scenario begins at -5 years (before the first eruption). Rising basalt magma intrusions generate deep long-period earthquakes in the lower crust, before intersecting and heating a rhyolite magma body at 6 km depth beneath Tarawera. By -1 year, increased heat flux from the rhyolite magma body had raised temperatures and pressures in the overlying hydrothermal system; generating shallow long-period earthquakes and increased heat flow at the surface. At -2 months, shallow volcano-tectonic earthquake activity intensified, driven by inflation of the rhyolite magma body, with magmatic gas appearing in fumarole discharges. Rapidly accelerating seismicity, ground deformation and surface heat flow occurred in the last few weeks and days, before the initial vent-opening explosions intensified into major plinian eruptions.Effectiveness of the present volcano monitoring system at Tarawera can be evaluated against this scenario. The precursory seismic activity, including the critical deep long-period earthquakes, would be recorded but not accurately located. Similarly, the existing ground deformation monitoring systems would detect early magma chamber inflation, but discrimination from the background tectonic tilting signal would be difficult. Continuous telemetering of geodetic data from existing and additional instruments would be required for any useful monitoring of rapid ground deformation in the final precursory phases.  相似文献   

12.
Violent explosive eruptions occurred between c. 51 and 29 thousand years ago—during the Last Glacial Maximum in East‐Central Europe—at the picturesque volcano of Ciomadul, located at the southernmost tip of the Inner Carpathian Volcanic Range in Romania. Field volcanology, glass geochemistry of tephra, radiocarbon and optically stimulated luminescene dating, along with coring the lacustrine infill of the two explosive craters of Ciomadul (St Ana and Mohos), constrain the last volcanic activity to three subsequent eruptive stages. The explosivity was due to the silicic composition of the magma producing Plinian‐style eruptions, and the interaction of magma with the underlying, water‐rich rocks resulting in violent phreatomagmatic outbursts. Tephra (volcanic ash) from these eruptions are interbedded with contemporaneous loess deposits, which form thick sequences in the vicinity of the volcano. Moreover, tephra layers are also preserved in the older Mohos crater infill, providing an important archive for palaeoclimate studies. Identifying the final phreatomagmatic eruption of Ciomadul at c. 29.6 ka, which shaped the present‐day landform of the 1600‐m‐wide St Ana explosion crater, we were able to correlate related tephra deposits as far as 350 km from the source within a thick loess‐palaeosol sequence at the Dniester Delta in Roxolany, Ukraine. A refined tephrostratigraphy, based on a number of newly found exposures in the Ciomadul surrounding region as well as correlation with the distal terrestrial and marine (e.g. Black Sea) volcano‐sedimentary record, is expected from ongoing studies.  相似文献   

13.
Volcán Tequila is an extinct stratovolcano in the western Mexican Volcanic Belt that has erupted lavas ranging from andesite to rhyolite during the last 0.9 Ma. Following an early period of rhyolitic volcanism, the main edifice of the volcano was constructed by central vent eruptions that produced 25 km3 of pyroxene-andesite. At about 0.2 Ma central activity ceased and numerous flows of hornblende-bearing andesite, dacite, and rhyodacite erupted from vents located around the flanks of the volcano. Bimodal plagioclase phenocryst rim compositions in lavas from both the main edifice and the flanks indicate that magma mixing commonly occurred shortly prior to or during eruption. Compositions of endmember magmas involved in mixing, as constrained by whole-rock major and trace element abundances, phenocryst compositions, and mineral-melt exchange equilibria, are similar to those of some lavas erupted from the central vent and on the flanks of the volcano. Estimated pre-eruptive temperatures for hornblende-bearing lavas (970°–830°C) are systematically lower than for lavas that lack hornblende (1045°–970°C), whereas magmatic H2O contents are systematically higher for hornblende-bearing lavas. In addition to stabilizing hornblende, high magmatic water contents promoted crystallization of calcic plagioclase (An70–82). Frequent injections of magma into the base of the subvolcanic plumbing system followed by eruption of mixed magma probably prevented formation of large volumes of silicic magma, which have caused paroxysmal, caldera-forming eruptions at other stratovolcanoes in western Mexico. The later stages of volcanic activity, represented by the flank lavas, indicate a change from a large magma storage reservoir to numerous small ones that developed along a NW-trending zone parallel to regional fault trends. Sr and Nd isotopic data for lavas from the Tequila region and other volcanoes in western Mexico demonstrate that differentiated calc-alkaline magmas are formed primarily through crystal fractionation of mantle-derived calc-alkaline basalt coupled with assimilation of crustal material. Present Address:Department of the Geophysical Sciences The University of Chicago, Chicago IL, 60637, USA  相似文献   

14.
Volcán Citlaltépetl (Pico de Orizaba) with an elevation of 5,675 m is the highest volcano in North America. Its most recent catastrophic events involved the production of pyroclastic flows that erupted approximately 4,000, 8,500, and 13,000 years ago. The distribution of mapped deposits from these eruptions gives an approximate guide to the extent of products from potential future eruptions. Because the topography of this volcano is constantly changing computer simulations were made on the present topography using three computer algorithms: energy cone, FLOW2D, and FLOW3D. The Heim Coefficient (), used as a code parameter for frictional sliding in all our algorithms, is the ratio of the assumed drop in elevation (H) divided by the lateral extent of the mapped deposits (L). The viscosity parameter for the FLOW2D and FLOW3D codes was adjusted so that the paths of the flows mimicked those inferred from the mapped deposits. We modeled two categories of pyroclastic flows modeled for the level I and level II events. Level I pyroclastic flows correspond to small but more frequent block-and-ash flows that remain on the main cone. Level II flows correspond to more widespread flows from catastrophic eruptions with an approximate 4,000-year repose period. We developed hazard maps from simulations based on a National Imagery and Mapping Agency (NIMA) DTED-1 DEM with a 90 m grid and a vertical accuracy of ±30 m. Because realistic visualization is an important aid to understanding the risks related to volcanic hazards we present the DEM as modeled by FLOW3D. The model shows that the pyroclastic flows extend for much greater distances to the east of the volcano summit where the topographic relief is nearly 4,300 m. This study was used to plot hazard zones for pyroclastic flows in the official hazard map that was published recently.  相似文献   

15.
The Sete Cidades volcano (São Miguel, Azores) is situatedat the eastern end of the ultraslow spreading Terceira riftaxis. The volcano comprises several dominantly basaltic pre-calderaeruptions, a trachytic caldera-forming stage and a post-calderastage consisting of alternating trachytic and basaltic eruptions.The post-caldera flank lavas are more primitive (>5 wt %MgO) than the pre-caldera lavas, implying extended fractionalcrystallization and longer crustal residence times for the pre-caldera,shield-building lavas. Thermobarometric estimates show thatthe ascending alkali basaltic magmas stagnated and crystallizedat the crust–mantle boundary (15 km depth), whereas themore evolved magmas mainly fractionated in the upper crust (3km depth). The caldera-forming eruption was triggered by a basalticinjection into a shallow trachytic magma chamber. Lavas fromall stages follow a single, continuous liquid line of descentfrom alkali basalt to trachyte, although slight differencesin incompatible element (e.g. Ba/Nb, La/Nb) and Sr isotope ratiosimply some heterogeneity of the mantle source. Major and traceelement data suggest similar partial melting processes throughoutthe evolution of the volcano. Slight geochemical differencesbetween post- and pre-caldera stage lavas from the Sete Cidadesvolcanic system indicate a variation in the mantle source compositionwith time. The oxygen fugacity increased from the pre-calderato the post-caldera stage lavas, probably as a result of theassimilation of crustal rocks; this is supported by the presenceof crustal xenoliths in the lavas of the flank vents. The lavasfrom the Sete Cidades volcano generally have low Sr isotoperatios; however, rocks from one post-caldera vent on the westernflank indicate mixing with magmas resembling the lavas fromthe neighbouring Agua de Pau volcano, having higher Sr isotoperatios. The different magma sources at Sete Cidades and theadjacent Agua de Pau volcano imply that, despite their closeproximity, there is only limited interaction between them. KEY WORDS: crystallization depth; fractionation; stratigraphy; Terceira rift; volcanic stages  相似文献   

16.
李霓  刘若新 《岩石学报》2000,16(3):357-361
火山喷发是地球上一种壮观的自然景象 ,火山喷发的同时一般都喷出气体 ,火山爆炸式喷发时巨量的气体被喷入空中 ,对全球气候造成较大影响。长白山天池火山于全新世发生过两次较大的爆炸式喷发 ,根据本文的分析和估算 ,后一次即天池火山公元 1199~ 12 0 1年的那次大喷发 ,逃逸到空中的挥发气体含量分别为 :CO2 约 (0 .31~ 1.5 6 )× 10 8t,S(主要是 H2 S和 SO2 )约 1.96× 10 7t,F2 约 7.86× 10 6 t,Cl2 约 (0 .78~ 6 .2 4)× 10 7t,对全球气候曾产生过重要影响  相似文献   

17.
Summary ¶Large-scale volcanic plumes, either generated by discharge of material directly from a vent or developed from the top of pyroclastic flows, produce laterally spreading umbrella-shaped clouds that disperse pyroclastic material over large areas. During plinian eruptions followed by pyroclastic flows, an enormous quantity of ash particles produced both by sustained plumes and by the buoyant portion of pyroclastic flows settle far from the source and form widespread fall deposits. To fully evaluate the magnitude of the plinian phase for this kind of eruptions is fundamental for distinguishing between the different sources of fine ash. In this paper we demonstrate that the plinian and ignimbrite contribution to the distal ash fall can be discriminated based on thickness versus distance relationships. The Campanian Ignimbrite eruption (CI; 39,000 yr B.P.) in southern Italy, provides an important case study. This was a huge ignimbrite-forming explosive event preceded by a plinian outburst. We present a new distribution of the thick, stratified pumice fall deposit formed immediately before the emplacement of the ignimbrite and reconstruct the distribution of the CI-correlated tephra fall dispersed in eastern Europe and in the eastern Mediterranean Sea over an area exceeding 3×106km2. The volumes calculated for the proximal plinian, co-plinian and co-ignimbrite deposits of the CI eruption are respectively: 4km3, 16km3 and almost 100km3.Received March 3, 2002; revised version accepted June 4, 2003  相似文献   

18.
A total of 24 tephra-bearing volcanic layers have been recognized between 550 and 987 m depth in the Siple Dome A (SDM-A) ice core, in addition to a number already recognized tephra in the upper 550 m (Dunbar et al., 2003, Kurbatov et al., 2006). The uniform composition and distinctive morphological of the particles composing these tephra layers suggest deposition as a result of explosive volcanic eruptions and that the layers therefore represent time-stratigraphic markers in the ice core. Despite the very fine grain size of these tephra (mostly less than 20 microns), robust geochemical compositions were determined by electron microprobe analysis. The source volcanoes for these tephra layers are largely found within the Antarctic plate. Statistical geochemical correlations tie nine of the tephra layers to known eruptions from Mt. Berlin, a West Antarctic volcano that has been very active for the past 100,000 years. Previous correlations were made to an eruption of Mt. Takahe, another West Antarctic volcano, and one to Mt. Hudson, located in South America (Kurbatov et al., 2006). The lowest tephra layer in the ice core, located at 986.21 m depth, is correlated to a source eruption with an age of 118.1 ± 1.3 ka, suggesting a chronological pinning point for the lower ice. An episode of anomalously high volcanic activity in the ice in the SDM-A core between 18 and 35 ka (Gow and Meese, 2007) appears to be related to eruptive activity of Mt. Berlin volcano. At least some of the tephra layers found in the SDM-A core appear to be the result of very explosive eruptions that spread ash across large parts of West Antarctica, off the West Antarctic coast, as well as also being recognized in East Antarctica (Basile et al., 2001, Narcisi et al., 2005, Narcisi et al., 2006). Some of these layers would be expected to should be found in other deep Antarctic ice cores, particularly ones drilled in West Antarctica, providing correlative markers between different cores. The analysis of the tephra layers in the Siple Dome core, along with other Antarctic cores, provides a timing framework for the relatively proximal Antarctic and South American volcanic eruptive events, allowing these to be distinguished from the tropical eruptions that may play a greater role in climate forcing.  相似文献   

19.
Previous studies of alkalic lavas erupted during the waning growth stages (<0.9 Ma to present) of Haleakala volcano identified systematic temporal changes in isotopic and incompatible element abundance ratios. These geochemical trends reflect a mantle mixing process with a systematic change in the proportions of mixing components. We studied lavas from a 250-m-thick stratigraphic sequence in Honomanu Gulch that includes the oldest (1.1 Ma) subaerial basalts exposed at Haleakaka. The lower 200 m of section is intercalated tholeiitic and alkalic basalt with similar isotopic (Sr, Nd, Pb) and incompatible element abundance ratios (e.g., Nb/La, La/Ce, La/Sr, Hf/Sm, Ti/Eu). These lava compositions are consistent with derivation of alkalic and tholeiitic basalt by partial melting of a compositionally homogeneous, clinopyroxene-rich, garnet lherzolite source. The intercalated tholeiitic and alkalic Honomanu lavas may reflect a process which tapped melts generated in different portions of a rising plume, and we infer that the tholeiitic lavas reflect a melting range of 10% to 15%, while the intercalated alkalic lavas reflect a range of 6.5% to 8% melting. However, within the uppermost 50 m of section. 87Sr/86Sr decreases from 0.70371 to 0.70328 as eruption age decreased from 0.97 Ma to 0.78 Ma. We infer that as lava compositions changed from intercalated tholeiitic and alkalic lavas to only alkalic lavas at 0.93 Ma, the mixing proportions of source components changed with a MORB-related mantle component becoming increasingly important as eruption age decreased.  相似文献   

20.
Potential Hazards of Eruptions around the Tianchi Caldera Lake, China   总被引:8,自引:0,他引:8  
Since the eruption of the Tianchi volcano about 1000 years ago, there have been at least 3 to 5 eruptions of small to moderate size. In addition, hazardous avalanches, rock falls and debris flows have occurred during periods between eruptions. A future eruption of the Tianchi volcano is likely to involve explosive interaction between magma and the caldera lake. The volume of erupted magma is almost in a range of 0.1-0.5 km3. Tephra fallout may damage agriculture in a large area near the volcano. If only 1% of the lake water were ejected during an eruption and then precipitated over an area of 200 km2, the average rainfall would be 100 mm. Moreover, lahars are likely to occur as both tephra and water ejected from the caldera lake fall onto flanks of the volcano. Rocks avalanching into the caldera lake also would bring about grave hazards because seiches would be triggered and lake water with the volume equal to that of the landslide would spill out of the existing breach in the caldera and cause flooding  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号