首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 421 毫秒
1.
白云鄂博地区构造格局与古板块构造演化   总被引:12,自引:1,他引:12  
通过对白云鄂博及周边地区地质和构造形迹的系统调研,综合分析了白云鄂博地区的古板块构造单元、白云鄂博群的沉积构造背景以及白云鄂博地区的构造组合特征。白云鄂博群可以划分为三个沉积组合,它们分别代表中元古代、晚元古代和早古生代白云鄂博地区由陆内裂谷向陆缘裂谷转化到活动大陆边缘裂谷的沉积过程。白云鄂博地区以白银角拉克-宽沟断裂为界,南北两侧存在重大地质差异。断裂南侧的该群岩石不整合覆盖在相当于五台群的巴尔腾山群之上,是在华北陆壳基底上发展起来的陆缘沉积。局部碳酸盐岩和页岩层位在加里东期遭受了强烈的地幔流体改造,形成大规模稀土矿化;在海西期又遭受了强烈的区域变质改造。断裂北侧的白云鄂博群以发育蛇绿混杂岩-叠瓦状况断层-紧闭同斜褶皱为特征,具有古板块俯冲形成的加积杂岩特征。在此基础上,对白云鄂博地区的古板块构造演化动力学过程进行了初步总结。  相似文献   

2.
    
内蒙古白云鄂博稀土-铌-铁矿床是世界上著名的巨型多金属矿床,但对其区域地质演化历史的认识至今仍不统一,而同位素年龄是解决矿床区域地质演化历史的有效手段。本文基于测年方法对白云鄂博矿床同位素年龄数据收集整理,结合矿床地质背景对矿床区域地质演化历史进行讨论:白云鄂博矿床发育在上太古界-下元古界结晶基底色尔腾山群之上,中元古代白云鄂博裂谷期的海底火山喷发-同生沉积作用发育了层状的含稀土铌铁矿层,同时发育了广泛的碳酸岩墙群和基性岩墙群,这是白云鄂博矿床最主要的成矿事件。白云鄂博矿床还经历过至少三次后期成矿热事件叠加或改造成矿,主要包括:(1)新元古代南华期热事件(约720Ma);(2)早古生代志留纪晚期叠加成矿事件(约440Ma);(3)晚古生代二叠纪岩浆岩侵入事件(约280Ma)。白云鄂博矿床是中元古代裂谷成矿事件为主并叠加了后期多次热事件的结果。  相似文献   

3.
孟艳宁  范红海  陈金勇  钟军 《地质论评》2016,62(S1):397-398
白云鄂博铌稀土矿位于华北板块北缘,白云鄂博裂谷带中,宽沟背斜南翼。矿床东西长18 km,南北宽2~3 km。白云鄂博矿矿床最早作为铁矿体于1927年被丁道衡发现;随后在1934年,何作霖教授在主矿体中发现了稀土矿产;1944年,黄春江发现了东矿和西矿。 解放后,241地质队对主矿、东矿和西矿进行详细的地质勘探工作,向国家提交了铁矿和稀土矿储量及品位。白云鄂博矿床作为国内最大的铁稀土矿床,长期以来一直作为铁矿在开采,其稀土资源的利用率也仅仅为百分之十左右,而矿床中的钍资源的利用率几乎为零。  相似文献   

4.
华北地台北缘西段主要成矿系统分析   总被引:12,自引:0,他引:12       下载免费PDF全文
肖荣阁  彭润民 《地球科学》2000,25(4):362-368
研究了华北地台北缘地质演化、构造分区, 从南到北依次为乌拉山-色尔腾山-大青山陆内隆起区、东升庙-渣尔泰山陆内裂陷区、狼山-石哈河陆缘隆起区、霍各乞-白云鄂博陆缘裂陷区、白乃庙-白银都西隆起裂陷带、温都尔庙-爱力格庙裂陷带、苏左旗-锡林浩特槽内隆起区.分析了陆缘基底建造和裂谷沉积建造, 划分出裂谷裂陷期和沉降期沉积.研究了成矿系统, 以成矿物质来源的同一性和继承性划分出3个成矿系统: (1) 变质岩金矿成矿系统, 以绿岩建造为物源基础, 有多种矿床类型组合, 主要产于古陆隆起带的变质岩区. (2) 海相火山细碧岩及喷流沉积成矿系统, 主要产于裂谷裂陷期形成的火山岩建造中, 与火山活动岩浆同期的热水喷流有关, 有铜、铅、锌多金属矿床. (3) 碱性-碳酸岩及喷流叠生成矿系统, 产于白云鄂博裂谷早期碱性-碳酸岩火山岩中, 其中伴随高温硅钾热水喷流沉积, 形成稀有-稀土-铁叠生矿床.主、东矿床新生代以来经受了强烈风化剥蚀, 并有冲积富集现象.   相似文献   

5.
内蒙古赛乌素金矿床成矿地质特征及找矿预测   总被引:2,自引:0,他引:2       下载免费PDF全文
赛乌素金矿床位于华北板决北缘、狼山-白云鄂博裂谷带白云鄂博群浅变质岩系内.矿床成因属浅成中低温热液型金矿床,矿石类型以石英脉型为主,尖灭再现、膨大收缩、雁列侧伏特征明显.区内哈拉忽鸡复背斜及EW、NW向断裂为主要控矿构造,具多期性、叠加性特点.根据区域金成矿规律、控矿地质条件、探采对比以及隐伏矿体的发现,证实南北矿带具备中深部和边部找矿潜力.  相似文献   

6.
白云鄂博矿田碳酸岩墙年代学再研究   总被引:9,自引:0,他引:9  
白云鄂博地区发育侵入于白云鄂博群的碳酸岩墙。碳酸岩墙(00BYC19)中锆石的SHRIMPU-Pb下交点年龄为1984±180Ma,其ID-TIMS上交点年龄为2085±330Ma。碳酸岩墙(02BY80)中锆石SHRIMP的上交点年龄为2035±51Ma;02BY81中锆石的ID-TIMS上交点年龄为1934±64Ma。主矿北碳酸岩墙(00BYC21)的全岩Pb-Pb等时线年龄为1236±300Ma。本文及前人对白云鄂博地区的碳酸岩墙的定年结果表明该地区碳酸岩墙至少有两个阶段的侵入事件,第一阶段在2.0Ga左右,第二阶段在1.2Ga左右。前者是白云鄂博地区以至阴山地块北缘的一次主要的构造—岩浆事件,标志白云鄂博裂谷和白云鄂博群地层的形成。第二阶段的碳酸岩墙,代表白云鄂博裂谷在中元古代的活化,且与成矿有密切关系。  相似文献   

7.
对白云鄂博矿床大地构造环境的几点认识   总被引:1,自引:0,他引:1  
分布于华北地台北缘的白云鄂博群厚万米,EW向展布长500km,宽20-50km,以碎屑岩为主,碳酸盐岩约占1/10。1997年,我们首次确定厚千余米的含矿岩系为海相火山沉积稀有金属碳酸岩—粗面岩;1982的,李继亮确定厚320m的次闪绿帘石岩(H15)为裂陷槽中的细碧角斑岩系。从而奠定了白云鄂博群属象谷沉积的基础。世界上许多富含轻稀土和铌和碱性岩、碳酸岩多产于裂谷系中。白云鄂博矿床中的特殊元素组合和稳定同位素组成只有裂谷带下的异常地幔才能提供。大量Sm-Nd同位素年龄资料说明白云鄂博矿床稀土成矿时代主要是中元古代,更证明了矿床成矿作用与裂谷发展的同步性。  相似文献   

8.
刘超辉  刘福来 《岩石学报》2015,31(10):3107-3128
华北克拉通存在三个主要的中元古代裂谷带,从南到北分别为熊耳裂谷带、燕辽裂谷带以及渣尔泰-白云鄂博-化德裂谷带。其中熊耳群中火山岩的峰期年龄为1780~1750Ma,其上还有形成于被动大陆边缘的五佛山群、汝阳群以及官道口群。中北部的燕辽裂谷带包括长城系、蓟县系和青白口系,其中长城系团山子组和大红峪组火山岩的年龄分别为~1640Ma和1626~1622Ma,蓟县系高于庄组、雾迷山组和铁岭组凝灰岩的年龄分别为1560Ma、1485Ma和1437Ma,而下马岭组凝灰岩年龄为1366~1380Ma。北缘渣尔泰-白云鄂博-化德裂谷带中渣尔泰群书记沟组玄武岩年龄为1743Ma,阿古鲁沟组酸性火山岩年龄为~810Ma,白云鄂博群尖山组中基性火山岩年龄为1728Ma,化德群比鲁特组火山碎屑岩年龄为1515Ma。中元古代岩浆事件除了裂谷带中的火山作用外,还包括三期基性岩墙群(~1780Ma太行-吕梁岩墙群、~1730Ma密云岩墙群和~1620Ma泰山岩墙群)以及1.76Ga到1.65Ga非造山岩浆组合(斜长岩-环斑花岗岩体-A型花岗岩)。中元古代中期,华北克拉通北缘发育了基性岩席(墙)、A型花岗岩以及碳酸岩脉,双峰式岩浆作用说明华北北缘在中元古代中期经历了裂谷作用,与哥伦比亚超大陆的最终裂解有关,并且与白云鄂博巨型REE-Nb-Fe矿床的形成具有成因上的联系。华北克拉通北部两个裂谷带中的地层具有可以对比的层序以及时代,而中元古代中期辉绿岩墙、A型花岗岩以及碳酸岩脉可以与其它克拉通同时期的非造山岩浆作用对比,证明华北克拉通经历了哥伦比亚超大陆的最终裂解。古地磁数据已经证明在哥伦比亚超大陆时期Siberia、Laurentia、Baltica、Amazion以及华北克拉通是连接在一起的,而北缘中元古代中期大陆裂谷相关岩浆岩的发现也说明它是与另一个古大陆相连的。华北克拉通南缘熊耳火山岩的构造背景到底是大陆裂谷还是大陆边缘弧则关系着其是与另一个克拉通相连还是面向大海,这需要我们进一步深入研究。  相似文献   

9.
华北克拉通古元古代构造事件   总被引:45,自引:55,他引:45  
翟明国  彭澎 《岩石学报》2007,23(11):2665-2682
本文讨论了华北克拉通的古元古代表壳岩系、高压麻粒岩和孔兹岩系的若干问题,提出了(1)华北克拉通在约2500Ma太古宙结束时已基本形成.在2300Ma之前处于相对稳定的构造环境;(2)2300~1950Ma期间,华北克拉通经历了一次基底陆块的拉伸-破裂事件,在克拉通内部发育了晋豫、胶辽裂陷盆地和丰镇陆内凹陷盆地;(3)约1900Ma期间,有地幔上涌并伴随辉长岩浆的底侵作用,引起大青山-丰镇地区的超高温变质作用.底侵的辉长岩浆作为岩体和岩墙在下地壳就位,并发生高压麻粒岩相变质作用;(4)约1850Ma期间,华北克拉通经历了一次挤压构造事件,导致了裂陷盆地的闭合和焊接,形成晋豫和胶辽两个类似于现代陆.陆碰撞型的造山带;(5)在华北克拉通的北缘,华北克拉通可能与其北部的另一古老陆块或岛弧拼合,其拼合带应位于白云鄂博以北.现在已残缺不全.孔兹岩系可能代表了平行于北缘造山带的一条构造带.与北部造山带的俯冲碰撞相关的陆内深部逆掩造成了麻粒岩相岩石的形成和抬升;(6)白云鄂博群、化德群和渣尔泰(-狼山)群是与长城系相同时期发育的被动大陆边缘裂谷盆地;(7)1850~1700Ma期间,华北克拉通进入伸展构造体制,导致基底抬升,产生裂陷槽、基性岩墙群和非造山岩浆活动.  相似文献   

10.
华北克拉通自1.85Ga形成之后,经历了广泛的拉伸,形成了一系列中-新元古代裂谷。其中北缘裂谷由渣尔泰群、白云鄂博群及化德群组成,发育了一系列大型-超大型多金属矿床。该裂谷系形成演化的研究对认识华北克拉通中-新元古代演化及区域找矿具有重要意义。但是对于该裂谷系中渣尔泰群的时代,一直存在争议。早期认为渣尔泰群属于中元古代,主要分布于狼山地区和渣尔泰山地区。但最新的研究已将狼山地区的渣尔泰群限定为新元古代,更名为狼山群,并据此确定华北克拉通北缘存在新元古代裂谷。因此,必须对渣尔泰山地区渣尔泰群的时代进行重新限定。在此基础上可综合分析华北克拉通北缘裂谷的形成与演化。系统的LA-ICP-MS锆石U-Pb测年结果表明,渣尔泰山地区渣尔泰群碎屑锆石年龄峰值主要为1.8~1.9Ga和2.5Ga。与北缘裂谷长城系,包括白云鄂博群下部及化德群下部的碎屑锆石年龄组成特征一致。而蓟县系、待建系及青白口系存在1.1~1.35Ga、1.5~1.6Ga等较年轻的碎屑锆石年龄峰值,如白云鄂博群上部、新元古代狼山群及化德群上部。因此,渣尔泰山地区渣尔泰群整体可与长城系对比。碎屑锆石年龄组成特征表明,渣尔泰群物质主要来自华北克拉通内部的太古宙-古元古代结晶基底。综合前人对白云鄂博群、化德群及狼山群地层年龄及岩浆岩的研究成果,可确定北缘裂谷是中-新元古代多期裂解事件形成的复杂裂谷。  相似文献   

11.
白云鄂博群尖山组H4岩性段石英砂岩中的碎屑锆石年龄纪录了华北克拉通北缘两期重要的构造岩浆事件,一组年龄集中在新太古代—古元古代初期(2379~2596Ma),另一组年龄集中在古元古代晚期(1761~1946Ma),该结果与白云鄂博地区基底岩石的锆石年龄相吻合。白云鄂博群沉积碳酸盐岩的全岩207Pb-206Pb等时线年龄1649±45Ma,代表了白云鄂博群的沉积时代。白云鄂博地区沉积灰岩、白云岩与含矿白云岩的Pb同位素组成存在非常大的差异,在Pb同位素组成和构造图解中,含矿白云岩都集中在地幔演化线附近,靠近亏损地幔端元[(206Pb/204Pb)i=15.04~16.49,(207Pb/204Pb)i=15.17~15.28,(208Pb/204Pb)i=31.20~36.40],而白云鄂博群中的灰岩、白云岩则位于造山带演化线附近,靠近深海沉积物端元[(206Pb/204Pb)i=17.28~19.35,(207Pb/204Pb)i=15.47~15.69,(208Pb/204Pb)i=36.62~37.12]。  相似文献   

12.
内蒙古四子王旗大井坡一带发育的中新元古代白云鄂博群是白云鄂博矿区的东延部分。野外调查过程中在该地区新发现了两个侵入白云鄂博群的辉长岩体,其同位素年龄可很好地约束存在争议的白云鄂博群时代。将侵入都拉哈拉组的辉长岩体称为吉生太辉长岩,将侵入比鲁特组的辉长岩体称为大井坡辉长岩。采用LA-ICPMS法进行锆石U-Pb同位素定年,获得了吉生太辉长岩的侵位年龄为1670±14Ma(MSWD=1.6),大井坡辉长岩的侵位年龄为1342±9Ma(MSWD=0.94)。依据辉长岩的同位素年龄,通过与燕辽裂陷槽元古代地层与岩浆事件对比,厘定了白云鄂博群的形成时代,建议将都拉哈拉组与尖山组划归古元古界长城系,即国际地层表的固结系;将哈拉霍圪特组划归中元古界蓟县系,即国际地层表的盖层系;将比鲁特组划归中国地层表的待建系下部,即国陆地层表的中元代延展系;将白音宝拉格组的时代划归青白口纪。通过对比发现白云鄂博裂陷槽经历的岩浆事件与华北板块及燕辽裂陷槽基本一致,其形成可能与哥伦比亚超大陆裂解有关。  相似文献   

13.
Detailed studies on U-Pb ages and Hf isotope have been carried out in zircons from a carbonatite dyke associated with the Bayan Obo giant REE-Nb-Fe deposit, northern margin of the North China Craton(NCC), which provide insights into the plate tectonic in Paleoproterozoic. Analyses of small amounts of zircons extracted from a large sample of the Wu carbonatite dyke have yielded two ages of late Archaean and late Paleoproterozoic(with mean 207 Pb/206 Pb ages of 2521±25 Ma and 1921±14 Ma, respectively). Mineral inclusions in the zircon identified by Raman spectroscopy are all silicate minerals, and none of the zircon grains has the extremely high Th/U characteristic of carbonatite, which are consistent with crystallization of the zircon from silicate, and the zircon is suggested to be derived from trapped basement complex. Hf isotopes in the zircon from the studied carbonatite are different from grain to grain, suggesting the zircons were not all formed in one single process. Majority of εHf(t) values are compatible with ancient crustal sources with limited juvenile component. The Hf data and their TDM2 values also suggest a juvenile continental growth in Paleoproterozoic during the period of 1940–1957 Ma. Our data demonstrate the major crustal growth during the Paleoproterozoic in the northern margin of the NCC, coeval with the assembly of the supercontinent Columbia, and provide insights into the plate tectonic of the NCC in Paleoproterozoic.  相似文献   

14.
The paleoposition of North China Craton in Rodinia has long been in controversial. This paper mainly focuses on the U–Pb geochronological studies of detrital zircons obtained from Bayan Obo Group exposed in the Shangdu area, Inner Mongolia, aiming to provide more information for interprating this problem. Based on the acquired data, this paper comes to the following conclusions. Firstly, the depositional age of Bayan Obo Group might be from Meso– to Neoproterozoic according to the zircons U–Pb dating results. The lower succession of this group, namely Dulahala and Jianshan formations deposited between 1800 and 1650 Ma. The Halahuogete and Bilute formations deposited between 1500 and 1350 Ma. For Baiyinbaolage and Hujiertu formations, their depositional age was 1250–900 Ma. Secondly, for the provenance of Bayan Obo Group, this paper believes detrital zircons with age of 2.51–2.71 Ga and 2.00–2.48 Ga were from Guyang, Xi Ulanbulang and Zhuozi area; the Khondalite Belt provided detrital zircons with age of 1.95–1.80 Ga; zircons with age of 1.60–1.75 Ga might come from granitic rocks in Miyun Area. The magmatism after 1.60 Ga was rarely recorded in the NCC, therefore those zircons with ages younger than 1.60 Ga might come from outside of NCC. The magmatism with the same age existed in Baltic, Amazonia and Laurentia. Based on previous paleomagnetic researches, this paper proposes that NCC might receive detritus from Baltic during 1560–1350 Ma and had affinity with Laurentia and Amazonia at ~0.9 Ga in Rodinia. Baltic, Amazonia and Laurentia might be potential provenances for non–NCC detritus in Bayan Obo Group.  相似文献   

15.
本文报道了辽东半岛古元古代胶—辽—吉活动带内辽河群变质火山岩和辽吉花岗岩的锆石LA-ICP-MS U-Pb年代学和地球化学数据。变质安山岩的锆石具典型的岩浆振荡环带结构和较高的Th/U值(0.5),锆石U-Pb年龄为(2 182±6)Ma和(2 229±22)Ma,该年龄可代表安山岩的形成年龄。辽吉花岗岩的锆石同样具有典型的岩浆振荡环带结构和较高的Th/U值(0.3),锆石U-Pb年龄为(2 199±10)Ma,代表花岗岩的侵位时代,在误差范围内与辽河群火山岩喷发时代一致,表明辽吉花岗岩并不是辽河群的基底,二者可能为同一次岩浆作用过程的产物。辽东半岛~2.2Ga岩浆事件的识别及性质,对于正确认识古元古代胶—辽—吉活动带的属性至关重要。结合前人有关辽东半岛前寒武纪岩石的研究成果,本文研究认为胶—辽—吉活动带的形成演化可能与弧-陆碰撞有关。  相似文献   

16.
《International Geology Review》2012,54(10):1180-1193
The basement of the Maya block of eastern Mexico is generally covered by Mesozoic and Cenozoic platformal carbonate rocks. However, the 65.5 Ma Chicxulub meteorite impact in the northern Yucatan Peninsula excavated deep into the crust and brought crystalline basement fragments into the impact breccias. Common Pb isotopic data from impact melt and a granitic clast from drill core (Y6) are highly radiogenic, consistent with the Archaean derivation. A granodiorite clast in this breccia from drill core (Yaxcopoil-1) yielded a continuous range of concordant 206Pb/238U laser ablation inductively coupled plasma mass spectrometry zircon ages between 546 ± 5 Ma and 465 Ma, with three discordant zircons having 206Pb/238U ages between 130 Ma and 345 Ma. The ca. 546 Ma age is interpreted as the age of granodiorite intrusion, with younger ages representing variable Pb loss during melting associated with the meteorite impact. This is consistent with previous U–Pb zircon data that gave an upper intercept age of 550 ± 15 Ma at Chicxulub, which becomes 545 ± 5 Ma when combined with the zircon data from distal ejecta. Such arc rocks are absent in the southern Maya block, and in the neighbouring Oaxaquia terrane (s.s.) they are replaced by a 546 ± 5 Ma plume-related dike swarm. On the other hand, Ediacaran arc rocks continue through the peri-Gondwanan terranes of the Appalachians and Europe (Florida, Carolinia, Avalonia, Iberia, Armorica, Massif Central, Bohemia, and NW Africa). Arc magmatism in these areas ended between 570 Ma (Newfoundland) and 540 Ma (Carolinia/UK) as the subduction zone was replaced by a transform fault along the northern Gondwanan margin. This age range is synchronous with the two-stage birth of Iapetus, suggesting that both are related to major plate reorganization. The source of plume-related dikes may have been located at the rift–rift–transform triple junction between Laurentia, Baltica, and Gondwana.  相似文献   

17.
为了了解大别山北缘构造属性,对定远组地层组成、形成时代及地球化学特征进行调查与研究.野外调查表明,定远组主要由一套变火山岩及云母片岩、云母石英片岩、浅粒岩、板岩等组成,其中变火山岩包括变玄武岩与变流纹质火山岩,并构成典型的双峰式火山岩建造;此外,还含有早古生代构造地层单位.运用LA-ICP-MS对酸性火山岩锆石进行U-Pb定年,获得725.7±1.4 Ma、736.6±5.4 Ma的年龄,形成时代为新元古代,不是前人认为的早古生代.变玄武岩分为低Ti(TiO2=1.19%)和高Ti(TiO2平均含量为3.11%)两种类型.低Ti玄武岩稀土总量较低(低于N-MORB),岩浆来自亏损的地幔源区.高Ti玄武岩又可以分为两种类型,一类富集Nb、Ta等元素,不相容元素的比值接近大陆裂谷玄武岩;另一种类型亏损Nb、Ta、Th、U等元素,岩浆可能来源于被下地壳或蚀变大洋地壳改造的地幔,其Th/Ta为1.6,与大陆裂谷玄武岩相当.总之,变玄武岩地球化学特征具有很大差别,是地幔源区不均一的反映.变酸性火山岩富集大离子亲石元素Rb、Ba、Th、U、K,亏损Nb、Ta、P、Ti等元素,锆石Hf同位素分析显示主体εHf(t)值为-3.0~-10,二阶段Hf模式年龄TDM2(Hf)为1 630~2 258 Ma,揭示其来源于古老地壳的部分熔融.定远组新元古代双峰式火山岩形成于大陆裂谷环境,并非岛弧构造背景.定远组双峰式火山岩及广泛分布的同时代岩浆岩,揭示了扬子陆块北缘在新元古代(800~611 Ma)时期一次重要的大陆边缘裂解-岩浆事件,是Rodinia超级古大陆裂解作用深部地球动力学的地表响应.   相似文献   

18.
《International Geology Review》2012,54(10):1194-1211
A belt of khondalite-series rocks in the Western Block of the North China craton (NCC) are considered to represent products of the collision between the north Yinshan and the south Ordos terranes before final amalgamation of the NCC basement. The Jining Complex of Inner Mongolia occurs in the eastern part of the Khondalite Belt and is crosscut by the Trans-North China Orogen. Khondalite rocks of the Jining Complex mainly comprise sillimanite-garnet gneiss, garnet/sillimanite-bearing granite, massive porphyritic granite, garnet quartzite, calc-silicate, and marble with minor felsic gneiss and mafic granulite. LA-ICP-MS, U–Pb dating and cathodoluminescence (CL) image analysis of zircons from five rocks from the complex, i.e. Sil-Bt-Grt leptynite gneiss, Spl-Sil-Ksp-Grt vein in (Crd)-Sil-Grt gneiss, Sil-Grt-K-Fsp mylonite from a shear zone, Crd-bearing Sil-Grt gneiss, and granite were used to determine protolith and metamorphic ages of the khondalite-series rocks. Results of 315 detrital zircon grains indicate five age populations: 2410–2550 Ma, 2162 Ma, 2047–2099 Ma, 1950–1993 Ma, and 1866 Ma. CL investigation reveals that zircon grains of most samples are rounded, unzoned with low Th/U, indicating a metamorphic origin, whereas quite a few grains in some rocks are characterized by magmatic oscillatory zoning and comparatively high Th/U, and are typically overgrown by metamorphic, low CL rims with low Th/U. Three samples of Sil-Bt-Grt gneiss record oldest ages of ~2550–2480 Ma, suggesting an Archaean/early Palaeoproterozoic provenance for the Jining Complex. Ages of ~2162–2047 Ma are interpreted as the metamorphic modified inherited source of supercrustal protoliths of the khondalite-series rocks. The khondalite depositional age is defined as 2228–2027 Ma by concordant ages obtained in this research. The Sil-Ksp-Grt vein and the granite have single population ages of 1985?±?28 Ma and 1957?±?19 Ma, respectively, and are inferred to record the same metamorphic event, i.e. formation of the Khondalite Belt within the Western Block owing to the collision of the north Yinshan and the south Ordos terranes. The Sil-Grt-K-Fsp mylonite yields a single group age of 1866?±?22 Ma, which may date final suturing of the Eastern Block and the Western Block and stabilization of the NCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号