首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The crystalline terrane of the Tongbai–Dabie region, central China, comprising the Earth's largest ultrahigh-pressure (UHP) exposure was formed during Triassic collision between the Sino–Korean and Yangtze cratons. New apatite fission-track (AFT) data presented here from the UHP terrane, extends over a significantly greater area than reported in previous studies, and includes the (eastern) Dabie, the Hong'an (northwestern Dabie) and Tongbai regions. The new data yield ages ranging from 44 ± 3 to 142 ± 36 Ma and mean track lengths between 10 and 14.4 μm. Thermal history models based on the AFT data taken together with published 40Ar/39Ar, K–Ar, apatite and zircon (U–Th)/He and U–Pb data, exhibit a three-stage cooling pattern that is similar across the study region, commencing with an Early Cretaceous rapid cooling event, followed by a period of relative thermal stability during which rocks remained at temperatures within the AFT partial annealing zone (60–110 °C) and ending with a possible renewed phase of accelerated cooling during Pliocene to Recent time. The first cooling phase followed large-scale transtensional deformation between 140 and 110 Ma and is related to Early Cretaceous eastward tectonic escape and Pacific back arc extension. Between this phase and the subsequent slow cooling phase, a transition period from 120 to 80 Ma (to 70 to 45 Ma along the Tan–Lu fault) was characterised by a relatively low cooling rate (3–5 °C/Ma). This transition is likely related to a tectonic response associated with the mid-Cretaceous subduction of the Izanagi–Pacific plate as well as lithospheric extension and thinning in eastern Asia. The present regional AFT age pattern is therefore basically controlled by the Early Cretaceous rapid cooling event, but finally shaped through active Cenozoic faulting. Following the transition phase the subsequent slow cooling phase pattern implies a net reduction in horizontal compressional stress corresponding to increased extension rates along the continental margin due to the decrease in plate convergence. Modelling of the AFT data suggests a possible Pliocene–Recent cooling episode, which may be supported by increased rates of sedimentation observed in adjacent basins. This cooling phase may be interpreted as a response to the far-field effects of the frontal India–Eurasia collision to the west. Approximate estimates suggest that the total amount of post 120 Ma denudation across the UHP orogen ranged from 2.4 to 13.2 km for different tectonic blocks and ranged from 0.8 to 9.7 km during the Cretaceous to between 1.7 and 3.8 km during the Cenozoic.  相似文献   

2.
Ophiolites are key components of the Neoproterozoic Arabian–Nubian Shield (ANS). Understanding when they formed and were emplaced is crucial for understanding the evolution of the ANS because their ages tell when seafloor spreading and terrane accretion occurred. The Yanbu–Onib–Sol Hamed–Gerf–Allaqi–Heiani (YOSHGAH) suture and ophiolite belt can be traced  600 km across the Nubian and Arabian shields. We report five new SHRIMP U–Pb zircon ages from igneous rocks along the Allaqi segment of the YOSHGAH suture in southernmost Egypt and use these data in conjunction with other age constraints to evaluate YOSHGAH suture evolution. Ophiolitic layered gabbro gave a concordia age of 730 ± 6 Ma, and a metadacite from overlying arc-type metavolcanic rocks yielded a weighted mean 206Pb/238U age of 733 ± 7 Ma, indicating ophiolite formation at  730 Ma. Ophiolite emplacement is also constrained by intrusive bodies: a gabbro yielded a concordia age of 697 ± 5 Ma, and a quartz-diorite yielded a concordia age of 709 ± 4 Ma. Cessation of deformation is constrained by syn- to post-tectonic granite with a concordia age of 629 ± 5 Ma. These new data, combined with published zircon ages for ophiolites and stitching plutons from the YOSHGAH suture zone, suggest a 2-stage evolution for the YOSHGAH ophiolite belt ( 810–780 Ma and  730–750 Ma) and indicate that accretion between the Gabgaba–Gebeit–Hijaz terranes to the south and the SE Desert–Midyan terranes to the north occurred as early as 730 Ma and no later than 709 ± 4 Ma.  相似文献   

3.
The mafic-ultramafic Chimbadzi Hill intrusion in the NW of the Zimbabwe craton is a dyke with inward-dipping margins comprising magnetite peridotite, troctolite and magnetite melatroctolite. The magnetite peridotite is composed of about equal amounts of V- and Ti-bearing magnetite and olivine (Fo60). The troctolite is composed of about 50% olivine (Fo50-54), 40% plagioclase (An53-58), 7% clinopyroxene and minor apatite and magnetite with ilmenite lamellae. Geochemical trends suggest that the Chimbadzi Hill Intrusion formed by fractional crystallisation from a single initial magma. However, the more primitive magnetite peridotite overlies the more evolved troctolite in the intrusion. This ‘apparent’ inverted stratigraphy may be due to emptying of a fractionated magma chamber from the top, or to floor subsidence during intrusion.U–Pb dating on baddeleyite reveals that the age of the Chimbadzi Hill Intrusion is 2262 ± 2 Ma. This age does not correspond to any known tectono-thermal event in the Zimbabwe Craton or adjacent metamorphic belts. It is 300 Ma younger than the late Archean Great Dyke, and 230 Ma older than other Paleoproterozoic events in and around the craton. Therefore, it may represent a so far undocumented very early Proterozoic igneous event in the Zimbabwe Craton. The intrusion represents a vanadium resource for Zimbabwe, with titanium potentially being mined as by-product.  相似文献   

4.
The N–S oriented Coastal Cordillera of South Central Chile shows marked lithological contrasts along strike at 38°S. Here, the sinistral NW–SE-striking Lanalhue Fault Zone (nomen novum) juxtaposes Permo-Carboniferous magmatic arc granitoids and associated, frontally accreted metasediments (Eastern Series) in the northeast with a Late Carboniferous to Triassic basal-accretionary forearc wedge complex (Western Series) in the southwest. The fault is interpreted as an initially ductile deformation zone with divergent character, located in the eastern flank of the basally growing, upwarping, and exhuming Western Series. It was later transformed and reactivated as a semiductile to brittle sinistral transform fault. Rb–Sr data and fluid inclusion studies of late-stage fault-related mineralizations revealed Early Permian ages between 280 and 270 Ma for fault activity, with subsequent minor erosion. Regionally, crystallization of arc intrusives and related metamorphism occurred between 306 and 286 Ma, preceded by early increments of convergence-related deformation. Basal Western Series accretion started at >290 Ma and lasted to 250 Ma. North of the Lanalhue fault, Late Paleozoic magmatic arc granitoids are nearly 100 km closer to the present day Andean trench than further south. We hypothesize that this marked difference in paleo-forearc width is due to an Early Permian period of subduction erosion north of 38°S, contrasting with ongoing accretion further south, which kinematically triggered the evolution of the Lanalhue Fault Zone. Permo-Triassic margin segmentation was due to differential forearc accretion and denudation characteristics, and is now expressed in contrasting lithologies and metamorphic signatures in todays Andean forearc region north and south of the Lanalhue Fault Zone.  相似文献   

5.
Late- to post-magmatic deformation in slightly diachronous contiguous intrusions of the north-western Adamello batholith (Southern Alps, Italy) is recorded as, from oldest to youngest: (i) joints, (ii) solid-state ductile shear zones, (iii) faults associated with epidote-K-feldspar veins and (iv) zeolite veins and faults. Structures (ii) to (iv) are localized on the pervasive precursory network of joints (i), which developed during the earliest stages of pluton cooling. High temperature ( 500 °C), ductile overprinting of joints produced lineations, defined by aligned biotite and hornblende, on the joint surfaces and highly localized mylonites. The main phase of faulting, producing cataclasites and pseudotachylytes, occurred at  250 °C and was associated with extensive fluid infiltration. Cataclasites and pseudotachylytes are clustered along different E–W-striking dextral strike-slip fault zones correlated with the activity of the Tonale fault, a major tectonic structure that bounds the Adamello batholith to the north. Ductile deformation and cataclastic/veining episodes occurred at P = 0.25–0.3 GPa during rapid cooling of the batholith to the ambient temperatures ( 250 °C) that preceded the exhumation of the batholith. Timing of the sequence of deformation can be constrained by 39Ar–40Ar ages of  30 Ma on pseudotachylytes and various existing mineral ages. In the whole composite Adamello batholith, multiple magma pulses were intruded over the time span 42–30 Ma and each intrusive body shows the same ductile-to-brittle structural sequence localized on the early joint sets. This deformation sequence of the Adamello might be typical of intrusions undergoing cooling at depths close to the brittle–ductile transition.  相似文献   

6.
It has been generally accepted that the South China Block was formed through amalgamation of the Yangtze and Cathaysia Blocks during the Proterozoic Sibaoan orogenesis, but the timing and kinematics of the Sibao orogeny are still not well constrained. We report here SHRIMP U–Pb zircon geochronological and geochemical data for the Taohong and Xiqiu tonalite–granodiorite stocks from northeastern Zhejiang, southeastern margin of the Yangtze Block. Our data demonstrate that these rocks, dated at 913 ± 15 Ma and 905 ± 14 Ma, are typical amphibole-rich calc-alkaline granitoids formed in an active continental margin. Combined with previously reported isotopic dates for the  1.0 Ga ophiolites and  0.97 Ga adakitic rocks from northeastern Jiangxi, the timing of the Sibao orogenesis is thus believed to be between  1.0 and  0.9 Ga in its eastern segment. It is noted that the Sibao orogeny in South China is in general contemporaneous with some other early Neoproterozoic (1.0–0.9 Ga) orogenic belts such as the Eastern Ghats Belt of India and the Rayner Province in East Antarctica, indicating that the assembly of Rodinia was not finally completed until  0.9 Ga.  相似文献   

7.
Fission-track (FT) thermochronologic analysis was performed on zircon separates from rocks in and around the Nojima fault, which was activated during the 1995 Kobe earthquake. Samples were collected from the University Group 500 m (UG-500) borehole and nearby outcrops. FT lengths in zircons from localities > 25 m away from the fault plane as well as one 0.1 m away from the fault in the footwall are characterized by concordant mean values of  10–11 μm and unimodal distributions with negative skewness, which showed no signs of appreciable reduction in FT length. In contrast, those adjacent (< 3 m) to the fault at depths on the hanging wall side showed significantly reduced mean track lengths of  6–8 μm and distributions having a peak around 6–7 μm with rather positive skewness. The former pattern is interpreted to reflect cooling through the zircon partial annealing zone (ZPAZ), without later, partial thermal overprints. The latter indicates substantial track shortening due probably to secondary heating by a thermal event(s) that locally perturbed the geothermal structure. Modeled zircon FT length and age data of partially annealed samples from the UG-500 borehole revealed a cooling episode in the ZPAZ that started at  4 Ma within  3 m from the fault plane, whereas those from the Geological Survey of Japan 750 m borehole record cooling started at  31–38 Ma within  25 m from the fault. On the basis of one-dimensional heat conduction modeling as well as the consistency between the degree of FT annealing and the degree of deformation/alteration of borehole rocks, these cooling ages in both boreholes are interpreted as consequences of ancient thermal overprints by heat transfer or dispersion via fluids in the fault zone. Together with the zircon FT data of a pseudotachylyte layer recently analyzed, it is suggested that the present Nojima fault system was reactivated in the Middle Quaternary from an ancient fault initiated at  56 Ma at mid-crustal depths. Also shown is a temporal/spatial variation in terms of the thermal anomalies recorded in the fault rocks, implying heterogeneity of hot fluid flows in the fault zone.  相似文献   

8.
Low concentrations of Th and Fe in the Yamato (Y)-86032 bulk meteorite support earlier suggestions that Y-86032 comes from a region of the moon far distant from the Procellarum KREEP Terrain (PKT), probably from the lunar farside. 39Ar–40Ar, Rb–Sr, Sm–Nd, and Sm-isotopic studies characterize the chronology of Y-86032 and its precursors in the mega regolith. One of the rock types present in a light gray breccia lithology is an anorthosite characterized by plagioclase with An 93, i.e., more sodic than lunar FANs, but with very low 87Rb/86Sr and 87Sr/86Sr similar to those of FANs. (FAN stands for Ferroan Anorthosite). This “An93 anorthosite” has Nd-isotopic systematics similar to those of nearside norites. A FAN-like “An97 anorthosite” is present in a second light-colored feldspathic breccia clast and has a more negative εNd value consistent with residence in a LREE-enriched environment as would be provided by an early plagioclase flotation crust on the Lunar Magma Ocean (LMO). This result contrasts with generally positive values of εNd for Apollo 16 FANs suggesting the possibility of assymetric development of the LMO. Other possible explanations for the dichotomy in εNd values are advanced in the text. The Y-86032 protolith formed at least 4.43 ± 0.03 Ga ago as determined from a Sm–Nd isochron for mineral fragments from the breccia clast composed predominantly of An93 anorthosite and a second clast of more varied composition. We interpret the mineral fragments as being predominatly from a cogenetic rock suite. An 39Ar–40Ar age of 4.36–4.41 ± 0.035 Ga for a third clast composed predominantly of An97 anorthosite supports an old age for the protolith. Initial 143Nd/144Nd in that clast was −0.64 ± 0.13 ε-units below 143Nd/144Nd in reservoirs having chondritic Sm/Nd ratios, consistent with prior fractionation of mafic cumulates from the LMO. A maximum in the 39Ar–40Ar age spectrum of 4.23 ± 0.03 Ga for a second sample of the same feldspathic breccia clast probably reflects some diffusive 40Ar loss. Lack of solar wind and lunar atmosphere implanted Ar in the light gray breccia clast allows determination of an 39Ar/40Ar age of 4.10 ± 0.02 Ga, which is interpreted as the time of initial brecciation of this litholgy. After correction for implanted lunar atmosphere 40Ar, impact melt and dark regolith clasts give Ar ages of 3.8 ± 0.1 Ga implying melt formation and final breccia assembly 3.8 Ga ago. Some breccia lithologies were exposed to thermal neutron fluences of 2 × 1015 n/cm2, only about 1% of the fluence experienced by some other lunar highlands meteorites. Other lithologies experienced neutron fluences of 1 × 1015 n/cm2. Thus, Y-86032 spent most of the time following final brecciation deeply buried in the megaregolith. The neutron fluence data are consistent with cosmogenic 38Arcos cosmic ray exposure ages of 10 Ma. Variations among differing lithologies in the amount of several regolith exposure indicators, including cosmogenic noble gas abundances, neutron capture induced variations in Sm isotopic abundances, and Ir contents, are consistent with a period of early (>3.8 Ga ago) lunar regolith exposure, subsequent deep burial at >5 m depth, and ejection from the moon 7–10 Ma ago.  相似文献   

9.
The Indo-Pacific Warm Pool (IPWP) is thought to play a key role in the propagation and amplification of climate changes through its influence on the global distribution of heat and water vapour. However, little is known about past changes in the size and position of the IPWP. In this study, we use a total of 48 modern and fossil coral records from the Mentawai Islands (Sumatra, Indonesia) and Muschu/Koil Islands (Papua New Guinea) to reconstruct oscillations in the extent of the IPWP since the mid-Holocene. We show that reliable estimates of mean sea surface temperature (SST) can be obtained from fossil corals by using low-resolution Sr/Ca analysis of a suite of corals to overcome the large uncertainties associated with mean Sr/Ca-SST estimates from individual coral colonies. The coral records indicate that the southeastern and southwestern margins of the IPWP were cooler than at present between 5500 and 4300 years BP (1.2 °C ± 0.3 °C) and were similarly cool before 6800 years BP. This mid-Holocene cooling was punctuated by an abrupt, short-lived shift to mean SSTs that were warmer than at present between 6600 and 6300 years BP (1.3 °C ± 0.3 °C), while similarly warm conditions may have also existed after 4300 years BP. We suggest that mid-Holocene cooling at our study sites was related to contractions of the southeastern and southwestern margins of the IPWP, associated with the more northerly position of the Inter-tropical Convergence Zone (ITCZ) that accompanied mid-Holocene strengthening of the Asian summer monsoon. Conversely, intervals of abrupt warming appear to correspond with widespread episodes of monsoon weakening and accompanying southward migrations of the ITCZ that caused the IPWP to expand beyond our coral sites. Intervals of a strengthened Asian monsoon and cooling in the southwestern IPWP during the mid-Holocene appear to correspond with a more positive Indian Ocean Dipole (IOD)-like mean configuration across the tropical Indian Ocean, suggesting that the Asian monsoon–IOD interaction that exists at interannual time scales also persists over centennial to millennial scales. Associated mean changes in the Pacific ENSO modes may have also occurred during the mid-Holocene. The dynamic and inter-connected behaviour of the IPWP with tropical climate systems during the mid-Holocene highlights the fundamental importance of the warm pool region for understanding climate change throughout the tropics and beyond.  相似文献   

10.
Robert Kerrich  Ali Polat   《Tectonophysics》2006,415(1-4):141-165
Mantle convection and plate tectonics are one system, because oceanic plates are cold upper thermal boundary layers of the convection cells. As a corollary, Phanerozoic-style of plate tectonics or more likely a different version of it (i.e. a larger number of slowly moving plates, or similar number of faster plates) is expected to have operated in the hotter, vigorously convecting early Earth. Despite the recent advances in understanding the origin of Archean greenstone–granitoid terranes, the question regarding the operation of plate tectonics in the early Earth remains still controversial. Numerical model outputs for the Archean Earth range from predominantly shallow to flat subduction between 4.0 and 2.5 Ga and well-established steep subduction since 2.5 Ga [Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937–940], to no plate tectonics but rather foundering of 1000 km sectors of basaltic crust, then “resurfaced” by upper asthenospheric mantle basaltic melts that generate the observed duality of basalts and tonalities [van Thienen, P., van den Berg, A.P., Vlaar, N.J., 2004a. Production and recycling of oceanic crust in the early earth. Tectonophysics 386, 41–65; van Thienen, P., Van den Berg, A.P., Vlaar, N.J., 2004b. On the formation of continental silicic melts in thermochemical mantle convection models: implications for early Earth. Tectonophysics 394, 111–124]. These model outputs can be tested against the geological record. Greenstone belt volcanics are composites of komatiite–basalt plateau sequences erupted from deep mantle plumes and bimodal basalt–dacite sequences having the geochemical signatures of convergent margins; i.e. horizontally imbricated plateau and island arc crust. Greenstone belts from 3.8 to 2.5 Ga include volcanic types reported from Cenozoic convergent margins including: boninites; arc picrites; and the association of adakites–Mg andesites- and Nb-enriched basalts.Archean cratons were intruded by voluminous norites from the Neoarchean through Proterozoic; norites are accounted for by melting of subduction metasomatized Archean continental lithospheric mantle (CLM). Deep CLM defines Archean cratons; it extends to  350 km, includes the diamond facies, and xenoliths signify a composition of the buoyant, refractory, residue of plume melting, a natural consequence of imbricated plateau-arc crust. Voluminous tonalites of Archean greenstone–granitoid terranes show a secular trend of increasing Mg#, Cr, Ni consistent with slab melts hybridizing with thicker mantle wedge as subduction angle steepens. Strike-slip faults of 1000 km scale; diachronous accretion of distinct tectonostratigraphic terranes; and broad Cordilleran-type orogens featuring multiple sutures, and oceanward migration of arcs, in the Archean Superior and Yilgarn cratons, are in common with the Altaid and Phanerozoic Cordilleran orogens. There is increasing geological evidence of the supercontinent cycle operating back to  2.7 Ga: Kenorland or Ur  2.7–2.4 Ga; Columbia  1.6–1.4 Ga; Rodinia  1100–750 Ma; and Pangea  230 Ma. High-resolution seismic reflection profiling of Archean terranes reveals a prevalence of low angle structures, and evidence for paleo-subduction zones. Collectively, the geological–geochemical–seismic records endorse the operation of plate tectonics since the early Archean.  相似文献   

11.
High-pressure mafic granulites (including retrograded eclogites) have been reported from the Trans-North China Orogen, a Paleoproterozoic orogenic belt along which two discrete continental blocks, referred to as the Eastern and Western Blocks, were amalgamated to form the North China Craton. Extensive metamorphic investigations and geochronology carried out over the last few years provide important insights into the age and significance of these high-pressure granulites, which are critical in understanding of the timing and tectonic processes involved in the assembly of the North China Craton.Most high-pressure mafic granulites in the Trans-North China Orogen preserve the high-pressure granulite facies assemblage garnet + plagioclase + clinopyroxene + quartz, the medium-pressure granulite facies assemblage garnet + plagioclase + clinopyroxene + orthopyroxene ± quartz, the low-pressure granulite facies assemblage orthopyroxene + clinopyroxene + plagioclase ± quartz, and the amphibolite facies assemblage hornblende + plagioclase. Minor high-pressure granulites preserve the early eclogite facies mineral assemblage of garnet + quartz + omphacite pseudomorph (clinopyroxene + Na-rich plagioclase), indicating that they are retrograded eclogites. These mineral assemblages and their P–T estimates define a clockwise P–T path involving near-isothermal decompression and cooling following the peak high-pressure metamorphism, which suggests that they formed during continent–continent collision. Field mapping and geochronology indicate that the precursors of these high-pressure granulites were mafic dykes which were emplaced at 1915 Ma and underwent high-pressure granulite facies metamorphism at 1.85 Ga. Taken together, the high-pressure granulites in the Trans-North China are considered to have resulted from final collision between the Eastern and Western Blocks to form the North China Craton at 1.85 Ga, not at 2.5 Ga as recently proposed by some authors.  相似文献   

12.
Major regional deformation and metamorphic events in the Godthåbsfjord region, southern West Greenland, occurred at 3650 and 2820–2720 Ma (e.g. Precambrian Res. 78 (1996) 1). New geochronological constraints (U–Pb zircon, Sensitive High Resolution Ion Microprobe [SHRIMP] and thermal ionisation mass spectrometry [TIMS]) have been obtained from a stack of mylonitic, crystalline thrust-nappes in the footwall of the western part of the Paleoarchean (3.8–3.7 Ga) Isua Greenstone Belt, Isukasia. A mylonitic tonalite sheet, interpreted to have intruded synkinematically with respect to mylonitisation, yields a magmatic crystallisation age of 3640±3 Ma. A cross-cutting pegmatite and a post-kinematic tonalite pluton yield magmatic crystallisation ages of 2948±8 and 2991±2 Ma, respectively. Accordingly, we interpret the thrust-nappe stack to have formed during the Paleoarchean (3640 Ma), making it the oldest example known on Earth. The similarity of this structural regime to that of modern mountain belts suggests that Paleoarchean and modern continental crust were comparable in terms of mechanical strength and constitution.Southern West Greenland has been interpreted in terms of Neoarchean accretion, comparable with modern plate tectonics (e.g. Earth Planet. Sci. Lett. 142 (1996) 353). Isukasia lies just east of a purported Neoarchean accretionary boundary between the Akia terrane to the Northwest and the Akulleq terrane to the Southeast. The Akia terrane was previously considered to overthrust the Akulleq terrane at 2820–2720 Ma. Our geochronological and geological data indicate (i) that the two “terranes”, as presently defined, were stitched at 2991±2 Ma and (ii) that thrusting across the boundary was directed toward the Akia terrane. Therefore, we suggest that the Akia–Akulleq interface was not a fundamental tectonic structure during the Neoarchean, and we question its identification as an accretionary boundary.  相似文献   

13.
Jun-Hong Zhao  Mei-Fu Zhou 《Lithos》2008,104(1-4):231-248
Numerous Neoproterozoic felsic and mafic–ultramafic intrusions occur in the Hannan region at the northern margin of the Yangtze Block. Among these, the Wudumen and Erliba plutons consist of granodiorites and have SHRIMP zircon U–Pb ages of  735 Ma. The rocks have high K2O (0.8–3.6 wt.%) and Na2O (4.4–6.4 wt.%) and low MgO (0.4–1.7 wt.%). They also have high Sr/Y (32–209) and (La/Yb)n ratios (4.4–38.6). Their εNd values range from − 0.41 to − 0.92 and zircon initial 176Hf/177Hf ratios from 0.282353 to 0.282581. These geochemical features are similar to those of adakitic rocks produced by partial melting of a thickened lower crust. Our new analytical results, combined with the occurrence of voluminous arc-related mafic–ultramafic intrusions emplaced before 740 Ma, lead us to propose that the crustal evolution in the northern margin of the Yangtze Block during Neoproterozoic involved: (1) rapid crustal growth and thickening by underplating of mafic magmas from the mantle which was modified by materials coming from the subducting oceanic slab from  1.0 to  0.74 Ga, and (2) partial melting of the thickened lower crust due to a thermal anomaly induced by upwelling of asthenosphere through an oceanic slab window, producing the  735 Ma adakitic Wudumen and Erliba plutons. Our model suggests that the crustal thickness was more than 50 km at the northern margin of the Yangtze Block at  735 Ma, and rule out the possibility of a mantle plume impact causing the > 735 Ma magmatism in the region.  相似文献   

14.
Forty-one apatite fission track ages (AFT) were determined on samples collected along a N–S section of the eastern Kunlun Mountains across the Middle and South Kunlun Faults between Buqingshan and Dulan. Measured AFT ages lie between 25±2 and 130±10 Ma, and all are significantly younger than their host rock formation or sediment deposition ages. Modelling the AFT data identifies a two stage regional cooling history that spans the last 100 Myrs. The earliest cooling phase occurred between the late Jurassic and early Tertiary and involved a moderate level of cooling between 20 and 40 °C, equivalent to average exhumation rates of =15 m/Myr. The second phase of cooling took place from 20 Ma with cooling rates increasing tenfold. Average exhumation rates for this period are estimated to be in the range of 100–150 m/Myr. The first stage of protracted cooling is consistent with regional evidence from the Qiantang and Lhasa terrans where previous studies have noted low rates of denudation in relation to a back-arc extensional setting. The more recent acceleration in cooling seen in the Kunlun data coincides with an increase in sedimentation rates in the adjacent Qaidam Basin. This points to a phase of Neogene uplift and increased erosion of the Kunlun Range, although contemporaneous monsoon strengthening may also have had a role.  相似文献   

15.
The thermal evolution of Corsica as recorded by zircon fission-tracks   总被引:1,自引:0,他引:1  
New zircon fission-track (ZFT) ages from Corsica record multiple thermal events that can be tied to the structural evolution of the western Mediterranean region. The Corsican zircons have a wide scatter of ZFT grain ages (243–14 Ma), which together define several age domains. Western Corsica consists largely of stable Hercynian basement characterized by ZFT ages in the range 161–114 Ma. We interpret these ages (Late Jurassic–Early Cretaceous) as the product of a long-lived Tethyan thermal event related to continental rifting and subsequent drifting during the separation of the European and African plates and the formation of the Liguro–Piemontese ocean basin. In contrast to Hercynian Corsica, Alpine Corsica (northeast Corsica) experienced widespread deformation and metamorphism in Late Cretaceous(?)–Tertiary time. Dated samples from Alpine Corsica range in age from 112 to 19 Ma and all are reset or partially reset by one or more Alpine thermal events. The youngest ZFT grain ages are from the northernmost Alpine Corsica and define an age population at  24 Ma that indicates cooling after Tertiary thermal events associated with the Alpine metamorphism and the opening of the Liguro–Provençal basin. A less well-defined ZFT age population at  72 Ma is present in both Alpine Corsica and Hercynian basement rocks. The thermal history of these rocks is not clear. One interpretation is that the ZFT population at  72 Ma reflects resetting during a Late Cretaceous event broadly synchronous with the early Alpine metamorphism. Another interpretation is that this peak is related to variable fission-track annealing and partial resetting during the Tertiary Alpine metamorphic event across central to north-eastern Corsica. This partial age resetting supports the presence of a fossil ZFT partial annealing zone and limits the peak temperature in this area below 300 °C, for both the affected pre-Alpine and Alpine units.  相似文献   

16.
This study uses apatite fission track (FT) analysis to constrain the exhumation history of bedrock samples collected from the Altai Mountains in northern Xinjiang, China. Samples were collected as transects across the main structures related to Palaeozoic crustal accretion events. FT results and modeling identify three stages in sample cooling history spanning the Mesozoic and Tertiary. Stage one records rapid cooling to the low temperature part of the fission track partial annealing zone circa 70 ± 10 °C. Stage two, records a period of relative stability with little if any cooling taking place between 75 and 25–20 Ma suggesting the Altai region had been reduced to an area of low relief. Support for this can be found in the adjacent Junngar Basin that received little if any sediment during this interval. Final stage cooling took place in the Miocene at an accelerated rate bringing the sampled rocks to the Earth's surface. This last stage, linked to the far field effects of the Himalayan collision, most likely generated the surface uplift and relief that define the present-day Altai Mountains.  相似文献   

17.
Archean basement gneisses and supracrustal rocks, together with Neoproterozoic (Sinian) metasedimentary rocks (the Penglai Group) occur in the Jiaobei Terrane at the southeastern margin of the North China Craton. SHRIMP U–Pb zircon dating of an Archean TTG gneiss gave an age of 2541 ± 5 Ma, whereas metasedimentary rocks from the Neoproterozoic Penglai Group yielded a range in zircon ages from 2.9 to 1.8 Ga. The zircons can be broadly divided into three age populations, at: 2.0–1.8 Ga, 2.45–2.1 Ga and >2.5 Ga. Detrital zircon grains with ages >2.6 Ga are few in number and there are none with ages <1.8 Ga. These results indicate that most of the detrital material comes from a Paleoproterozoic source, most likely from the Jianshan and Fenzishan groups, with some material coming from Archean gneisses in the Jiaobei Terrane. An age of 1866 ± 4 Ma for amphibolite-facies hornblende–plagioclase gneiss, forming part of a supracrustal sequence within the Archean TTG gneiss, indicates Late Paleoproterozoic metamorphism. Both the Archean gneiss complex and Penglai metasedimentary rocks resemble previously described components of the Jiao-Liao-Ji orogenic belt and suggest that the Jiaobei Terrane has a North China Craton affinity; they also suggest that the time of collision along the Jiao-Liao-Ji Belt was at 1865 Ma.  相似文献   

18.
We present new U–Pb SHRIMP zircon geochronological data for basement rocks in Bangladesh, and discuss the relationship with the formation of the Columbia supercontinent. Euhedral zircons from a diorite sample yield a concordia age of 1730 ± 11 Ma, which is interpreted as the crystallization age. The Palaeoproterozoic age of the examined basement rock and the common occurrences of similar 1.7-Ga geologic units in the Central Indian Tectonic Zone and Meghalaya-Shillong Plateau in Indian Shield suggest their apparent continuation. This, together with the occurrence of similar 1.7-Ga geologic units in the Albany-Fraser belt in Australia and East Antarctica, are used to suggest that the basement rocks in Bangladesh formed towards the final stages of the assembly of the Columbia supercontinent.  相似文献   

19.
J.D.A. Piper   《Tectonophysics》2007,432(1-4):133-157
The Southern Uplands terrane is an Ordovician–Silurian back-arc/foreland basin emplaced at the northern margin of the Iapetus Ocean and intruded by granite complexes including Loch Doon (408.3 ± 1.5 Ma) during Early Devonian times. Protracted cooling of this 130 km3 intrusion recorded magnetic remanence comprising a predominant (‘A’) magnetisation linked to initial cooling with dual polarity and mean direction D / I = 237 / 64° (α95 = 4°, palaeopole at 316°E, 21°N). Subsidiary magnetisations include Mesozoic remanence correlating with extensional tectonism in the adjoining Irish Sea Basin (‘B’, D / I = 234/− 59°) and minority populations (‘C’, D / I = 106/− 2° and ‘D’, D / I = 199/1°) recording emplacement of younger ( 395 Ma) granites in adjoining terranes and the Variscan orogenic event. The ‘A’ directions have an arcuate distribution identifying anticlockwise rotation during cooling. A comparable rotation is identified in the Orthotectonic Caledonides to the north and the Paratectonic Caledonides to the south following closure of Iapetus. Continental motion from midsoutherly latitudes ( 40°S) at 408 Ma to equatorial palaeolatitudes by  395 Ma is identified and implies minimum rates of continental movement between 430 and 390 Ma of 30–70 cm/year, more than double maximum rates induced by plate forces and interpreted as a signature of true polar wander. Silurian–Devonian palaeomagnetic data from the British–Scandinavian Caledonides define a 430–385 Ma closed loop comparable to the distributed contemporaneous palaeomagnetic poles from Gondwana. They reconcile pre-430 Ma and post-380 Ma APW from this supercontinent and show that Laurentia–Baltica–Avalonia lay to the west of South America with a relict Rheic Ocean opening to the north which closed to produce Variscan orogeny by a combination of pivotal closure and right lateral transpression.  相似文献   

20.
In the Gawler Craton, the completeness of cover concealing the crystalline basement in the region of the giant Olympic Dam Cu–Au deposit has impeded any sufficient understanding of the crustal architecture and tectonic setting of its IOCG mineral-system. To circumvent this problem, deep seismic reflection data were recently acquired from  250 line-km of two intersecting traverses, centered on the Olympic Dam deposit. The data were recorded to 18 s TWT ( 55 km). The crust consists of Neoproterozoic cover, in places more than 5 km thick, over crystalline basement with the Moho at depths of 13–14 s TWT ( 40–42 km). The Olympic Dam deposit lies on the boundary between two distinct pieces of crust, one interpreted as the Archean–Paleoproterozoic core to the craton, the other as a Meso–Neoproterozoic mobile belt. The host to the deposit, a member of the  1590 Ma Hiltaba Suite of granites, is situated above a zone of reduced impedance contrast in the lower crust, which we interpret to be source-region for its  1000 °C magma. The crystalline basement is dominated by thrusts. This contrasts with widely held models for the tectonic setting of Olympic Dam, which predict extension associated with heat from the mantle producing the high temperatures required to generate the Hiltaba Suite granites implicated in mineralization. We use the seismic data to test four hypotheses for this heat-source: mantle underplating, a mantle-plume, lithospheric extension, and radioactive heating in the lower crust. We reject the first three hypotheses. The data cannot be used to reject or confirm the fourth hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号