首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 651 毫秒
1.
Rock samples representing various igneous and metamorphic rocks of southern Obudu Plateau were analyzed for rare-earth element ( REE ) behavior by ICP-MS. Results of the analyses indicate a range of REE abundances and distinctive patterns from highly fraetionated patterns with negative Eu anomalies in granitic rocks to relatively low abundances and less REE fractionated flat patterns with little Eu anomaly in some paragneisses, schists, enderbites and dolerites to unfractionated patterns with positive Eu anomalies in some paragneisses and charnockites. Over all, there are low to high ∑ REE contents with negative to positive Eu anomalies. The ratios of different parameters, especially La/Yb and Ce/Yb, show behaviors consistent with crustal to mantle derivation. The heterogeneity of REE abundances and REE patterns reflects mantle to crustal petrogenetic variations of different rock suites on the Plateau. The LREE content is higher than the HREE content in the highly differentiated rocks, as evidenced by their La/Yb,Ce/Yb and La/Sm ratios, which are normally higher in residual products than in primary melts. The dominantly intermediate nature of the source rock of the orthogneisses is suggested by the generally low ∑ REE. The granites enriched in LREE and depleted in HREE and some of the charnockites with negative Eu anomalies were probably formed by partial melting and crystallization.  相似文献   

2.
An ion probe study of rare earth element (REE) geochemistry of silicate inclusions in the Miles IIE iron meteorite was carried out. Individual mineral phases among inclusions have distinct REE patterns and abundances. Most silicate grains have homogeneous REE abundances but show considerable intergrain variations between inclusions. A few pyroxene grains display normal igneous REE zoning. Phosphates (whitlockite and apatite) are highly enriched in REEs (50 to 2000 × CI) with a relatively light rare earth element (LREE)-enriched REE pattern. They usually occurred near the interfaces between inclusions and Fe host. In Miles, albitic glasses exhibit two distinctive REE patterns: a highly fractionated LREE-enriched (CI normalized La/Sm ∼15) pattern with a large positive Eu anomaly and a relatively heavy rare earth element (HREE)-enriched pattern (CI-normalized Lu/Gd ∼4) with a positive Eu anomaly and a negative Yb anomaly. The glass is generally depleted in REEs relative to CI chondrites.The bulk REE abundances for each inclusion, calculated from modal abundances, vary widely, from relatively depleted in REEs (0.1 to 3 × CI) with a fractionated HREE-enriched pattern to highly enriched in REEs (10 to 100 × CI) with a relatively LREE-enriched pattern. The estimated whole rock REE abundances for Miles are at ∼ 10 × CI with a relatively LREE-enriched pattern. This implies that Miles silicates could represent the product of a low degree (∼10%) partial melting of a chondritic source. Phenocrysts of pyroxene in pyroxene-glassy inclusions were not in equilibrium with coexisting albitic glass and they could have crystallized from a parental melt with REEs of ∼ 10 × CI. Albitic glass appears to have formed by remelting of preexisting feldspar + pyroxene + tridymite assemblage. Yb anomaly played an important role in differentiation processes of Miles silicate inclusions; however, its origin remains unsolved.The REE data from this study suggest that Miles, like Colomera and Weekeroo Station, formed when a molten Fe ball collided on a differentiated silicate regolith near the surface of an asteroid. Silicate fragments were mixed with molten Fe by the impact. Heat from molten Fe caused localized melting of feldspar + pyroxene + tridymite assemblage. The inclusions remained isolated from one another during subsequent rapid cooling.  相似文献   

3.
IONOV  DMITRI 《Journal of Petrology》2004,45(2):343-367
Peridotite xenoliths in a Miocene picrite tuff from the Vitimvolcanic province east of Lake Baikal, Siberia, are samplesof the off-craton lithospheric mantle that span a depth rangefrom the spinel to garnet facies in a mainly fertile domain.Their major and trace element compositions show some scatter(unrelated to sampling or analytical problems), which is notconsistent with different degrees of partial melting or metasomatism.Some spinel peridotites and, to a lesser degree, garnet-bearingperidotites are depleted in heavy rare earth elements (HREE)relative to middle REE (MREE), whereas some garnet peridotitesare enriched in HREE relative to MREE, with Lu abundances muchhigher than in primitive mantle estimates. Clinopyroxenes fromseveral spinel peridotites have HREE-depleted patterns, whichare normally seen only in clinopyroxenes coexisting with garnet.Garnets in peridotites with similar modal and major elementcompositions have a broad range of Lu and Yb abundances. Overall,HREE are decoupled from MREE and Hf and are poorly correlatedwith partial melting indices. It appears that elements withhigh affinity to garnet were partially redistributed in theVitim peridotite series following partial melting, with feweffects for other elements. The Lu–Hf decoupling may disturbHf-isotope depletion ages and their correlations with meltingindices. KEY WORDS: garnet peridotite; lithospheric mantle; Lu–Hf isotope system; Siberia; trace elements  相似文献   

4.
Robert Cullers 《Lithos》1988,21(4):301-314
A series of soil and stream sediments developed during intense weathering on the metaluminous Danburg granite, northeastern Georgia, U.S.A., have been analyzed mineralogically and chemically. The concentrations of Ba, Na, Rb and Cs in the silt and coarser fractions are controlled mainly by feldspars and biotite. Hf is controlled by zircon, and the REE (rare-earth elements) and Th are largely controlled by sphene. Variations in feldspar, sphene and zircon may produce small variations in Eu/Sm and La/Lu ratios. Ferromagnesian minerals control Ta, Fe, Co, Sc and Cr concentrations.

The mineralogical and chemical composition of the Danburg granite is more closely reflected in the silt than in the sand or gravel fractions of stream sediments. In the silt, the contents of Rb, REE, Th, Ta, Fe, Co and Sc and the ratios of La/Sc, Th/Sc, La/Co, Th/Co, Eu/Sm and La/Lu are similar to those in the unweathered granite. In contrast, these element contents or ratios in the sands and gravels are 0.05−3× the concentration in the unweathered granite. Ta and Ba contents are an exception to the above. The Ta and Ba contents of the sands and gravels are similar to those of the granite.

In the kaolinite-halloysite clays, the content of Na is depleted relative to the source. Rb, Cs, Ba, Hf and Ta are depleted or enriched in the clays relative to the source, while the REE, Th, Fe, Co, Sc and Cr are enriched. The Eu/Sm (Eu anomaly size) and La/Lu ratios, and the REE patterns of the clays are similar to those of the source.

Thus, the mineralogy and element contents of a siltstone developed from metaluminous, granitic sources during intense weathering would be expected to be more similar to the source rock than the sandstones and conglomerates. Claystones should contain similar REE patterns and Eu/Sm ratios as the source rock, but such fine-grained sediments might represent much larger areas of source rocks than the more locally derived sandstones or conglomerates.  相似文献   


5.
Primary basanitoids from Ross Island, Antarctica have REE patterns and Pb isotope ratios similar to those for primary alkali basalts and nephelinites on ocean islands. The lead data from all volcanics on Ross Island have a spread of 4% in the 206/204 ratio and give a two-stage model lead age of 1500 m.y. The age is interpreted to be the time since the development of the chemical heterogeneity of the mantle source, presumably during an earlier melting process. Comparison of REE, K, Rb, Sr, Ba and P2O5 concentrations for alkali basalts and nephelinites shows that the chondrite normalized mantle source is enriched in light REE with average La/Sm=3.4, Ce/Sm=2.6, Nd/Sm=1.6. Assuming a mantle source with heavy REE abundances of three times chondrites, nephelinites require 3 to 7% partial melting of the mantle source and alkali basalts require 7 to 15% partial melting. The patterns of K, Cu, V and Ti abundances suggest that phlogopite is a residual mineral for most nephelinite, but not alkali basalt mantle sources, and that a sulfide phase and a titanium-rich mineral are in the residual mantle source for both alkali basalts and nephelinites. Small positive Eu anomalies (2–5%) in near primary alkali basalts and nephelinites suggest that the xxx of the mantle sources is 10?6 to 10?9 atm. The progressive enrichment of light REE and incompatible elements in the mantle sources for nephelinites and alkali basalts is proposed to result by intrusion of veins of basaltic melt due to very low percentages of melting 1 000 to 3 000 m.y. ago when this part of the deeper mantle was previously involved in convection and partial melting.  相似文献   

6.
Major element compositions and rare-earth element (REE) and transition element(Ni,Cr and V) abundances have been determined on 44 basalt samples from eastern China.These basalts have SiO2 contents ranging from 38.63 to 55.24(wt.%),and Na2O K2O from 3.1 to 9.4(wt.%).Ni and Cr abundances are largely variable,respectively falling in ranges 60-605 and 78-1150 ppm.REE abundances,especially light rare-earth elements(LREE), are highly variable.La/Sm and La/Yb ratios vary 2.8 to 7.6 and 1.8 to 8.1. Although the segregation mainly of olivine and clinopyroxene is requested to account for the vari-able and low MgO,CaO/Al2O3,Cr and Ni characteristic of these basalts studied here,the differ-ences in REE composition of the basalts are still related mainly to the partial melting process.Obvious varations in REE abundances could be principally attributed to the partial melting process.Obvious variations in REE abundances could be principally attributed to the partial melting processes that took place at different depths,in spite of some variations caused by the fractional crystallization processes.REE abundances and La/Sm and La/Yb ratios systematically decrease with increasing SiO2,which probably indicated that the basaltic magma derived from a deeper level has higher LREE and LREE/HREE ratios than that from a shallower level.As viewed from the fact that the D^Yb/D^La ratios of clinopyroxenes in the basaltic system increase with increasing pressure,the increase of LREE/HUEE ratios with increasing melting depth can be interpreted as the pressure dependence of bulk D^HREE/D^LREE ratios of silicate minerals,in addition to the pressure control over the melting degree.  相似文献   

7.
Neutron activation determination of La, Ce, Sm, Eu, Tb, Yb, Lu, Ta, Hf, Sc, Co and Th in potassic lavas from the Birunga and Toro-Ankole regions show that the rocks are characterized by high rare earth element (REE) contents (161–754 ppm) and form two groups based upon differing La/Yb ratios. One group is made up of katungite, ugandite and mafurite with La/Yb =146–312, and the other of rocks of the leucitite and phonolitic tephrite series, La/Yb =30–56. The trace element content of the ugandite group is similar to that of kimberlites. The data do not indicate any trends of differentiation or simple relationships between the two groups of rocks, although katungite is unlikely to be parental to rocks of lower La/Yb ratios. It is unlikely that in terms of La/Yb ratios that partial melting of mica-garnet-lherzolite mantle can form katungite because of the very small amounts of partial melting required (0.2%), although the La/Yb ratios of 150–200 (ugandites, mafurites) and 30–60 (leucitites, phonolitic tephrites) can be accounted for by 0.3–1.5% and 1–9% melting respectively, if the REE are then concentrated without further La and Yb fractionation. Partial melting of mantle which has been metasomatized by alkaline earths and REE bearing fluids or mixing of carbonatite and nephelenite are also compatable with the observed geochemistry of the lavas. It is considered that gas transfer processes which selectively enrich the light REE may have obscured REE evidence pertaining to early partial melting and/or differentiation processes and therefore that REE geochemistry is of little use in determining the petrogenetic processes involved in the formation of potassic lavas.  相似文献   

8.
A pilot study with Holocene fluvial sands was undertaken in order to evaluate the effects of source rock composition and climate on natural abundances of rare elements (REE) in the first leg of the sedimentary cycle. We have analysed the medium grained sand fraction of samples collected from first order streams exclusively draining granitic plutons in Montana (semi-arid), Georgia (humid), and in South Carolina (humid). Despite compositional differences between parent plutons the REE distribution patterns (but not the total absolute abundances) of the daughter sands are very similar. Averages of the three areas have a La/Lu ratio of ~ 103 showing a depletion of heavy REE with respect to an ‘average granite’ (La/Lu = 79) or the composite of North American Shales (NAS; La/Lu = 55). Also, the Eu/Sm ratio in sands from these areas is ~ 0·22 which is very close to the NAS ratio of 0·21. However, the overall REE distribution of these sands is not similar to that of NAS in any way. We conclude that the major rock type, but neither its minor subdivisions nor the climate (in the source area), controls the REE distribution patterns in first cycle daughter sands. But, the total and the parent rock-normalized abundances of REE in sands from the humid areas are much lower than those in sands from the arid areas.  相似文献   

9.
Geochemistry of tholeiites from Lanai,Hawaii   总被引:3,自引:0,他引:3  
Lanai is the third smallest of the fifteen principal subaerial shield volcanoes of the Hawaiian hotspot. This volcano apparently became extinct during the shield-building stage of volcanism, as shown by the absence of both alkalic cap and post-erosional lavas. Major and trace element analyses of 22 new samples collected primarily from 3 stratigraphic sections show that Lanai tholeiites span a large range in composition. Some Lanai lavas are unique geochemically among Hawaiian tholeiites in having the lowest abundances of incompatible trace elements of any Hawaiian lavas and well-developed positive Eu anomalies. The geochemical characteristics of these low-abundance Lanai tholeiites are not the result of alteration, differences in mantle source modal mineralogy, the presence of residual accessory mantle phases or fractional crystallization of such phases, assimilation of depleted [MORB] wall-rock, or accumulation/resorption of phenocrysts or xenocrysts. Incompatible trace element ratios (e.g., Nb/La, Nb/Th, La/Th, La/Hf, Ce/Pb) in Lanai tholeiites span considerable ranges and form coherent trends with each other and with absolute abundances of these elements. Large variations in La/Sm, La/Yb, and absolute REE abundances at constant MgO suggest that Lanai tholeiites formed by variable amounts of partial melting. However, large ranges in incompatible element ratios cannot be explained solely by variations in partial melting of a geochemically homogeneous source, but must reflect geochemical heterogeneities in the Lanai source. Partial melting modeling indicates that the mixed Lanai source is probably LREE-enriched [i.e., (La/Yb)CN>1]. One component in the Lanai source, exemplified by the low-abundance tholeiites, has markedly lower REE/HFSE, Th/HFSE, alkali/HFSE, and Ce/Pb ratios than other Lanai or Hawaiian tholeiites and may indicate the presence of recycled residual subduction zone materials in the Hawaiian plume source. The positive Eu anomalies that characterize the low-abundance Lanai tholeiites are not the result of plagioclase accumulation or assimilation but are a feature of this source component. Progressive temporal geochemical variations in Lanai tholeiites from 2 stratigraphic sections indicate that the source composition of these lavas probably evolved over time. This change could have resulted from a progressive decrease in the extent of partial melting of the Lanai source. The compositional variability of Lanai tholeiites suggests that geochemical heterogeneities in their source are larger than the scale of partial melting. Lanai tholeiites could not have formed by smaller degrees of partial melting of plume material than did the larger-volume Hawaiian shields. Therefore, volume differences between Hawaiian shields must be controlled primarily by differences in the volume of supplied plume material rather than by differences in the degree of partial melting. The premature cessation of eruptive activity at Lanai may be attributed to relatively large degrees of partial melting of a small plume.  相似文献   

10.
The abundances of the highly siderophile elements (HSE) Ru, Pd, Re, Os, Ir, and Pt were determined by isotope dilution mass spectrometry for 22 ureilite bulk rock samples, including monomict, augite-bearing, and polymict lithologies. This report adds significantly to the quantity of available Pt and Pd abundances in ureilites, as these elements were rarely determined in previous neutron activation studies. The CI-normalized HSE abundance patterns of all ureilites analyzed here except ALHA 81101 show marked depletions in the more volatile Pd, with CI chondrite-normalized Pd/Os ratios (excluding ALHA 81101) averaging 0.19 ± 0.23 (2σ). This value is too low to be directly derived from any known chondrite group. Instead, the HSE bulk rock abundances and HSE interelement ratios in ureilites can be understood as physical mixtures of two end member compositions. One component, best represented by sample ALHA 78019, is characterized by superchondritic abundances of refractory HSE (RHSE—Ru, Re, Os, Ir, and Pt), but subchondritic Pd/RHSE, and is consistent with residual metal after extraction of a S-bearing metallic partial melt from carbonaceous chondrite-like precursor materials. The other component, best represented by sample ALHA 81101, is RHSE-poor and has HSE abundances in chondritic proportions. The genesis of the second component is unclear. It could represent regions within the ureilite parent body (UPB), in which metallic phases were completely molten and partially drained, or it might represent chondritic contamination that was added during disruption and brecciation of the UPB. Removal of carbon-rich melts does not seem to play an important role in ureilite petrogenesis. Removal of such melts would quickly deplete the ureilite precursors in Re/Os and As/Au, which is inconsistent with measured osmium isotope abundances, and also with literature As/Au data for the ureilites. Removal of 26Al during silicate melting may have acted as a switch that turned off further metal extraction from ureilite source regions.  相似文献   

11.
On a total of 62 basalt samples from five different sites of Leg 37 DSDP the abundances of the REE La, Ce, Nd, Sm, Eu, Tb, Dy, Yb and Lu have been determined by INAA. The chondrite-normalized REE patterns show a surprising variability even within one single hole. Distribution curves, so far regarded as being typical for abyssal tholeiites have only been found in two of the samples. Most basalts are characterised by an enrichment of the lighter RE over the heavier, the La/Sm enrichment factor varying from 2.0 to 1.0. Several samples exhibit chondritic, i.e. unfractionated patterns. These rocks show the lowest overall enrichment, A few basalts have pronounced positive Eu anomalies and in one case a negative Eu anomaly was found. The extrapolated REE in all basalts is low, lying between 19 and 57.5 ppm. A grouping and correlation of basalt sequences according to their REE patterns is not possible even between two adjacent holes which were drilled only 100 m apart.The data obtained do not support the view that the source effect (RE abundances in the starting material, degree of partial melting etc.), is the dominant factor in determining the RE characteristics of the basalts investigated. It is rather concluded, that the observed RE abundances are strongly affected by fractionation processes in small, shallow-seated magma chambers and that these processes overprinted the original mantle inherited RE patterns. Possibly Ti-magnetite, which has not been taken into consideration in previous models, may be of major importance in this respect.  相似文献   

12.
The meta-volcanic amphibolites closely associated with the Fiskenaesset anorthosite complex can be subdivided on the basis of trace element patterns or mineral chemistry; by far the most abundant type has light rare-earth element (LREE) depleted REE patterns and displays a wide range in trace element abundances. Chemically comparable amphibolites can be recognised throughout the ca. 2800 M.yr. West Greenland terrain.The geochemistry of the basaltic amphibolites is dominantly controlled by fractional crystallisation processes, although variable degrees of partial melting may also be important. The required crystal extract (plagioclase dominated) in the proposed fractionation scheme is very similar to the primary mineralogy of cumulates of the Fiskenaesset complex and trace element models support a genetic relationship between the anorthosite complex and enclosing host amphibolites.The application of trace element discrimination to assign tectonic environment in the Archaean is arguable. However, details of the trace element chemistry (especially chondritic La/Ta ratios) are taken to suggest, out of a range of likely tectonic environments, an ocean floor, rather than island arc, affinity for the Fiskenaesset amphibolites. The large ion lithophile (LIL) elements display erratic distribution patterns, but are generally enriched relative to the REE. This appears not to be related to high-grade metamorphism but may be a relict feature of seafloor alteration. The association of the cumulate sequence with meta-volcanic amphibolites and metasediments probably represents an ocean floor assemblage emplaced into the lower crust during crustal accretion.  相似文献   

13.
J. Dostal  C. Dupuy  C. Lefevre 《Lithos》1977,10(3):173-183
Rare-earth element abundances of calc-alkaline andesitic rocks from southern Peru show that these rocks cannot be produceed by a single stage process. The high content of LILE, particularly LREE requires their derivation from a source already enriched in these elements and having a distinctly fractionated REE pattern. It is suggested that ascending hydrous fluids, released from the subducted oceanic lithosphere, enriched the upper mantle in LILE by zone refining. The partial melting of such an enriched upper mantle, followed by fractional crystallization, could produce andesitic rocks. REE data indicate that shoshonitic rocks from southern Peru can be derived from an unfractionated garnet-bearing peridotite by a low degree of partial melting.  相似文献   

14.
New major and trace element abundances, and Pb, Sr, and Nd isotopic ratios of Quaternary lavas from two adjacent volcanoes (South Pagan and the Central Volcanic Region, or CVR) located on Pagan Island allow us to investigate the mantle source (i.e., slab components) and melting dynamics within the Mariana intra-oceanic arc. Geologic mapping reveals a pre-caldera (780–9.4 ka) and post-caldera (<9.4 ka) eruptive stage for South Pagan, whereas the eruptive history of the older CVR is poorly constrained. Crystal fractionation and magma mixing were important crustal processes for lavas from both volcanoes. Geochemical and isotopic variations indicate that South Pagan and CVR lavas, and lavas from the northern volcano on the island, Mt. Pagan, originated from compositionally distinct parental magmas due to variations in slab contributions (sediment and aqueous fluid) to the mantle wedge and the extent of mantle partial melting. A mixing model based on Pb and Nd isotopic ratios suggests that the average amount of sediment in the source of CVR (~2.1%) and South Pagan (~1.8%) lavas is slightly higher than Mt. Pagan (~1.4%) lavas. These estimates span the range of sediment-poor Guguan (~1.3%) and sediment-rich Agrigan (~2.0%) lavas for the Mariana arc. Melt modeling demonstrates that the saucer-shaped normalized rare earth element (REE) patterns observed in Pagan lavas can arise from partial melting of a mixed source of depleted mantle and enriched sediment, and do not require amphibole interaction or fractionation to depress the middle REE abundances of the lavas. The modeled degree of mantle partial melting for Agrigan (2–5%), Pagan (3–7%), and Guguan (9–15%) lavas correlates with indicators of fluid addition (e.g., Ba/Th). This relationship suggests that the fluid flux to the mantle wedge is the dominant control on the extent of partial melting beneath Mariana arc volcanoes. A decrease in the amount of fluid addition (lower Ba/Th) and extent of melting (higher Sm/Yb), and an increase in the sediment contribution (higher Th/Nb, La/Sm, and Pb isotopic ratios) from Mt. Pagan to South Pagan could reflect systematic cross-arc or irregular along-arc melting variations. These observations indicate that the length scale of compositional heterogeneity in the mantle wedge beneath Mariana arc volcanoes is small (~10 km).  相似文献   

15.
Rare earth element (REE) and major element data are presented on 44 Archaean samples which include spinifex textured ultramagnesian lavas (STPK) spinifex textured basalts (STB) and low MgO tholeiites. The samples come from the Yilgarn and Pilbara Blocks (W. Australia), Barberton (South Africa), Belingwe and Que Que (Rhodesia), Abitibi (Canada) and the 3.7 b.y. Isua Belt of Western Greenland. In addition REE data are given on three near primitive mid-ocean ridge basalts (MORB) and a glassy MORB-type basalt from Taiwan. We suggest that REE patterns, particularly the light REE and Eu, can be affected by metamorphism, but argue that the consistency of pattern from samples both within and between areas enables recognition of primary patterns. La/Sm ratios of 2.7 b.y. STPK are characterised by being lower than those of associated basalts. The 3.5 b.y. STPK Barberton material does not show this feature but instead displays significant heavy REE depletion. The separation of garnet from these liquids is suggested as a possible mechanism for the high CaO/Al2O3 ratios, (Al loss) and the heavy REE and Sc depletion. The REE data on Barberton material is equivocal on the derivation of the so-called basaltic komatiites from the peridotitic komatiites. However, REE analyses on STPK and high magnesian lavas from elsewhere suggests that crystal fractionation is not a viable mechanism to produce one from the other. We suggest instead, that varying amounts of partial melting of different sources is responsible for the spectrum of compositions. The STB appear to be an easily recognised rock type within the Archaean. They are characterised by quench (clinopyroxene) textures and a light REE enriched pattern. It is suggested that these are near primary melts and that their REE patterns mirror their mantle source. We propose a two stage model for the 2.7 b.y. mafic complexes, in which, prior to the generation of ultrabasic magmas, the source underwent a small amount of partial melting which resulted in the removal of a melt enriched in incompatible elements. The depletion process could be achieved either during mantle diapirism or by upward migration of interstitial melts into an Archaean low velocity zone. The spread of La/Sm ratios in STPK and STB is used as an argument that the Archaean mantle was chemically heterogeneous and that the degree of heterogeneity was similar to that observed in modern ocean volcanics. As a result, partial melting of the mantle under different P-T conditions produced a spectrum of magma types. The information presently available on Archaean mafic and silicic magmatism and the incompleteness of geochemical data on present day tectonic environments are two major obstacles in formulating Archaean tectonic models. In addition a comparison of present day and Archaean ultramafic and silicic rocks suggests that plate tectonic models as presently understood may not be suitable analogues for all Archaean tectonic environments.  相似文献   

16.
Determination of rare earth element (REE) abundances in rocks of the Fen complex has shown that within rocks of the first magmatic series REE abundances increase in the order urtiteFen magmas are discussed and it is considered that parental magmas had relatively high La/Yb ratios (40–60). Utilizing petrological evidence from other alkaline complexes coupled with experimental studies it is considered that the parental magma was a carbonated nephelinite produced by limited (<10%) partial melting of the mantle. All the Fen rocks are placed in a petrogentic scheme in which a carbonated nephelinite magma undergoes liquid immiscibility, differentiation and volatile transport.  相似文献   

17.
The Uintjiesberg kimberlite diatreme occurs within the Proterozoic Namaqua–Natal Belt, South Africa, approximately 60 km to the southwest of the Kaapvaal craton boundary. It is a group I, calcite kimberlite that has an emplacement age of 100 Ma. Major and trace element data, in combination with petrography, are used to evaluate its petrogenesis and the nature of its source region. Macrocryst phases are predominantly olivine with lesser phlogopite, with very rare garnet and Cr-rich clinopyroxene. Geochemical variation amongst the macrocrystic samples (Mg# 0.85–0.87, SiO2=27.0–29.3%, MgO=26.1–30.5%, CaO=10.9–13.5%) is shown to result from 10% to 40% entrainment and partial assimilation of peridotite xenoliths, whereas that shown by the aphanitic samples (Mg# 0.80–0.83, SiO2=19.1–23.0%, MgO=17.9–23.9%, CaO=16.5–23.7%) is consistent with 7–25% crystal fractionation of olivine and minor phlogopite. Changing trajectories on chemical variation diagrams allow postulation of a primary magma composition with 25% SiO2, 26% MgO, 2.3% Al2O3, 5%H2O, 8.6% CO2 and Mg#=0.85.

Forward melting models, assuming 0.5% melting, indicate derivation of the primary Uintjiesberg kimberlite magma from a source enriched in light rare earth elements (LREE) by 10× chondrite and heavy REE (HREE) by 0.8–2× chondrite, the latter being dependent on the proportion of residual garnet. Significant negative Rb, K, Sr, Hf and Ti anomalies present in the inferred primary magma composition are superimposed on otherwise generally smooth primitive mantle-normalized trace element patterns, and are inferred to be a characteristic of the primary magma composition. The further requirement for a source with chondritic or lower HREE abundances, residual olivine with high Fo content (Fo94) suggests derivation from a mantle previously depleted in mafic melt but subsequently enriched in highly incompatible elements prior to kimberlite genesis. These requirements are interpreted in the context of melting of continental lithospheric mantle previously enriched by metasomatic fluids derived from a sublithospheric (plume?) source.  相似文献   


18.
Most models of high-alumina arc basalt petrogenesis rely heavilyon the supposition that the abundances of certain trace elements,in particular the relatively unfractionated Rare Earth Element(REE) patterns and the unusually high concentrations of K, Rb,Sr, and Ba are incompatible with a garnet-bearing subductedoceanic crustal (quartz eclogite) source rock. We have carefullyexamined this apparently unequivocal evidence in light of recentprogress on the physics of melt extraction and the heat transferand mechanics of magma ascent. The weakest element of all traceelement models involving a quartz eclogite source is the assumptionthat the element concentrations are fixed at the source andonly later modified in the near-surface environment. We expandon such models by monitoring the concentrations of REE and majorand trace elements during initial melting, ascent, and extractionof magma. This is done by combining calculated cooling curvesfor ascending magmatic bodies with high pressure phase equilibria.The amount that each phase contributes to the melt is monitoredalong with the composition of the melt and residual solids.With quartz eclogite, initial melting initiates gravitationalinstability of the entire source material (melt plus solids)before melt extraction can occur. During ascent of this mush,melting increases until the solids can be repacked to free themelt. This extraction takes place some 15–20 km abovethe slab, after about 50 per cent melting, at which point themelt has a pattern of REE and other trace element concentrationsalmost identical to those observed in high-alumina arc basalts,assuming an initial composition equivalent to altered oceaniccrust plus 5 per cent pelagic sediment. Sr abundances are theonly ones which are not well-matched by this process. The majorelement concentrations of the extracted melt also closely matchthose of high-alumina arc basalt. A similar, but less detailedevaluation of both fertile and depleted peridotite source rocksyields good agreement for the REE and other trace element concentrationsassuming a LREE-enriched source rock strongly enriched in K,Rb, Sr, and Ba. Ni, Cr, and Co abundances are satisfied onlythrough substantial low pressure fractionation of mafic phases,in particular olivine. Though not rigorously tested, such aprocess may be compatible with the observed major element concentrationsof high-alumina basalt. However, the experimentally verifiedfact that high-alumina basalts could never have been in equilibriumwith either an olivine-bearing magma or source rock eliminatesthis possibility altogether. Thus, the simultaneous considerationof the mechanics of ascent and melt extraction along with phaseequilibria clearly shows that partial melting of quartz eclogitebest satisfies the chemical constraints of major, trace, andREE characteristics of high-alumina arc basalts.  相似文献   

19.
The REE contents of tholeiitic rocks can be derived by simple mantle melting models. However this type of model has been less successful in accounting for rocks of the alkali basalt-kimberlite suite with strong LREE enrichment. Rocks from these associations have similar La/Sm ratios over a range of total REE concentrations and their generation by simple melting models requires an enriched source. These requirements conflict with the conclusions reached from Nd-Sm studies.An alternative hypothesis involves the disequilibrium melting of a LREE-rich accessory phase in the mantle. Such a phase will be among the first to melt and thus will dominate the REE patterns of early-formed liquids, even if subsequent partial re-equilibration occurs. This model could account for liquids with strong LREE enrichment and similar La/Sm ratios at different levels of total REE enrichment by partial melting of a simple chondritic mantle. Since the model predicts the existence of an accessory phase in the mantle with a REE pattern parallel to that found in strongly LREE-enriched magma, it provides a sensitive test for disequilibrium melting.  相似文献   

20.
Rare-earth element (REE) abundances and major chemical compositionsof six late Palaeozoic geosynclinal basalts at Nakaoku, theKii peninsula, southwest Japan are discussed from the generalviewpoint of geosynclinal basalt magma. The REE patterns ofbasalt samples are smoothly and progressively enriched relativeto Leedey chondrite. The lighter REE are considerably fractionated,whereas concentrations of heaviest REE remain approximatelyconstant. Each fractionation pattern probably corresponds toresidual liquid at different stages during the solidificationof magma in depth. The partition coefficients of REE betweenmagma (i.e. liquid) and crystallizing solid can be calculated,assuming that the partition coefficient of Lu is nearly unity,because the Lu contents show little change among samples. Byusing the REE contents and partition coefficients, solidifiedpercentages for various stages of the magmatic process werecalculated; the percentage shows a good correlation with thesolidification index calculated from major chemical compositions.Some major compositions are also correlative with the solidifiedpercentage calculated from REE data. The Nakaoku basalts when plotted on a silica-alkali diagramshow a change of type from tholeiitic to alkali basalt duringthe solidifying process in depth. These petrochemical aspectsof the Nakaoku basaltic body are compatible with the resultsof experimental melting study at moderate pressures of about10 kb carried out by Green & Ringwood (1967). The spatialcoexistence of tholeiitic and alkali basalt in the Japaneselate Palaeozoic geosyncline found by Sugisaki & Tanaka (1971b)and disclosed here in the Nakaoku basalts, is not uncommon phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号