首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Diamond exploration in India over the past decade has led to the discovery of over 80 kimberlite-inferred and lamproite-related intrusions in three of the four major Archean cratons that dominate the subcontinent. These intrusions are Proterozoic (1.1 Ga), and are structurally controlled: locally (at the intersections of faults); regionally (in a 200 km wide, 1000 km long diamond corridor); and globally (in the reconstructed supercontinent of Rodinia). The geochemistry of 57 samples from 13 intrusions in the southern Dharwar Craton of Andhra Pradesh has been determined by XRF spectrometry. The bodies are iron-rich with mg#=50–70 and are neither archetypal kimberlites nor ideal lamproites; this may be the underlying reason that conventional exploration techniques have thus far failed to locate the primary sources of India's historically famous diamonds. The two major fields of kimberlite-clan rocks (KCR) in the Dharwar Craton, Wajrakur and Narayanpet, are separated by a NW–SE trending, transcontinental (Mumbai-Chennai) gravity lineament. About 80% of intrusions in Wajrakur are diamondiferous, but diamonds have not yet been reported in Narayanpet. The gravity anomaly may mark the boundary of an architectural modification in the keel of the sub-continental lithosphere, a suggestion that is supported by differences in kimberlite mineralogy, chemistry, mantle xenoliths, structural setting and crustal host rocks.  相似文献   

2.
依据中国大陆三维速度扰动图象,编制了中国大陆现代岩石圈和华北—扬子地台古岩石圈厚度图,并对含与不含金刚石的金伯利岩及钾镁煌斑岩中部分指示矿物和上地幔捕虏体地质特征进行分析,发现岩石圈底部某些地球物理特征与金刚石赋存部位有密切关系。在此基础上,从深部角度讨论了含金刚石的金伯利岩及钾镁煌斑岩时空分布特征,并作了预测研究。  相似文献   

3.
New gravity data from the Adamawa Uplift region of Cameroon have been integrated with existing gravity data from central and western Africa to examine variations in crustal structure throughout the region. The new data reveal steep northeast-trending gradients in the Bouguer gravity anomalies that coincide with the Sanaga Fault Zone and the Foumban Shear Zone, both part of the Central African Shear Zone lying between the Adamawa Plateau and the Congo Craton. Four major density discontinuities in the lithosphere have been determined within the lithosphere beneath the Adamawa Uplift in central Cameroon using spectral analysis of gravity data: (1) 7–13 km; (2) 19–25 km; (3) 30–37 km; and (4) 75–149 km. The deepest density discontinuities determined at 75–149 km depth range agree with the presence of an anomalous low velocity upper mantle structure at these depths deduced from earlier teleseismic delay time studies and gravity forward modelling. The 30–37 km depths agree with the Moho depth of 33 km obtained from a seismic refraction experiment in the region. The intermediate depth of 20 km obtained within region D may correspond to shallower Moho depth beneath parts of the Benue and Yola Rifts where seismic refraction data indicate a crustal thickness of 23 km. The 19–20 km depths and 8–12 km depths estimated in boxes encompassing the Adamawa Plateau and Cameroon Volcanic Line may may correspond to mid-crustal density contrasts associated with volcanic intrusions, as these depths are less than depths of 25 and 13 km, respectively, in the stable Congo Craton to the south.  相似文献   

4.
Travel times from earthquakes recorded at two seismic networks were used to derive an average P wavespeed model for the crust and upper mantle to depths of 320 km below southern Africa. The simplest model (BPI1) has a Moho depth of 34 km, and an uppermost mantle wavespeed of 8.04 km/s, below which the seismic wavespeeds have low positive gradients. Wavespeed gradients decrease slightly around 150 km depth to give a ‘knee’ in the wavespeed-depth model, and the wavespeed reaches 8.72 km/s at a depth of 320 km. Between the Moho and depths of 270 km, the seismic wavespeeds lie above those of reference model IASP91 of Kennett [Research School of Earth Sciences, Australian National University, Canberra, Australia (1991)] and below the southern African model of Zhao et al. [Journal of Geophysical Research 104 (1999) 4783]. At depths near 300 km all three models have similar wavespeeds. The mantle P wavespeeds for southern Africa of Qiu et al. [Geophysical Journal International 127 (1996) 563] lie close to BPI1 at depths between 40 and 140 km, but become lower at greater depths. The seismic wavespeeds in the upper mantle of model BPI1 agree satisfactorily with those estimated from peridotite xenoliths in kimberlites from within the Kaapvaal craton.The crustal thickness of 34 km of model BPI1 is systematically lower than the average thickness of 41 km computed over the same region from receiver functions. This discrepancy can be partly explained by an alternative model (BPI2) in which there is a crust–mantle transition zone between depths of 35 and 47 km, below which seismic wavespeed increases to 8.23 km/s. A low-wavespeed layer is then required at depths between 65 and 125 km.  相似文献   

5.
Conventional diamond exploration guidelines predict that economic diamond occurrences will be restricted to Archaean cratons, where the lithosphere is thick and cool, and diamond is the stable form of carbon in the lower portions of the lithosphere. However, Australia's current economic diamond deposits are not well predicted by these conventional exploration guidelines. Tomographic images show that Australia's economic diamond deposits lie at step changes in lithospheric thickness within dominantly cratonized Proterozoic provinces with thick (≥ 200 km) lithosphere. The thickest portions of the seismic lithosphere in Australia occur not under the major Archaean cratons, rather the central Proterozoic regions of the continent. We use a numerical code to show that such features are stable, and that the longevity of the diamond stability field is dependent on distance to the continent–ocean boundary, local depth of the chemical boundary layer (CBL), and proximity to changes in CBL depth. We also show that abrupt changes in lithospheric thickness focus lithospheric stress gradients, affecting melt migration paths, and that continental melt production is enhanced in regions adjacent to major cratons. Diamond pipes occur where conditions conducive to diamond stability and deep-seated alkaline volcanism (kimberlite or lamproite) occur simultaneously, and the common confluence of these factors at abrupt changes in lithospheric thickness marks them as potential exploration targets.  相似文献   

6.
《Gondwana Research》2013,24(4):1455-1483
The crust and upper mantle in mainland China were relatively densely probed with wide-angle seismic profiling since 1958, and the data have provided constraints on the amalgamation and lithosphere deformation of the continent. Based on the collection and digitization of crustal P-wave velocity models along related wide-angle seismic profiles, we construct several crustal transects across major tectonic units in mainland China. In our study, we analyzed the seismic activity, and seismic energy releases during 1970 and 2010 along them. We present seismogenic layer distribution and calculate the yield stress envelopes of the lithosphere along the transects, yielding a better understanding of the lithosphere rheology strength beneath mainland China. Our results demonstrate that the crustal thicknesses of different tectonic provinces are distinctively different in mainland China. The average crustal thickness is greater than 65 km beneath the Tibetan Plateau, about 35 km beneath South China, and about 36–38 km beneath North China and Northeastern China. For the basins, the thickness is ~ 55 km beneath Qaidam, ~ 50 km beneath Tarim, ~ 40 km beneath Sichuan and ~ 35 km beneath Songliao. Our study also shows that the average seismic P-wave velocity is usually slower than the global average, equivalent with a more felsic composition of crust beneath the four tectonic blocks of mainland China resulting from the complex process of lithospheric evolution during Triassic and Cenozoic continent–continent and Mesozoic ocean–continent collisions. We identify characteristically different patterns of seismic activity distribution in different tectonic blocks, with bi-, or even tri-peak distribution of seismic concentration in South Tibet, which may suggest that crustal architecture and composition exert important control role in lithosphere deformation. The calculated yield stress envelopes of lithosphere in mainland China can be divided into three groups. The results indicate that the lithosphere rheology structure can be described by jelly sandwich model in eastern China, and crème brulee models with weak and strong lower crust corresponding to lithosphere beneath the western China and Kunlun orogenic belts, respectively. The spatial distribution of lithospheric rheology structure may provide important constraints on understanding of intra- or inter-plate deformation mechanism, and more studies are needed to further understand the tectonic process(es) accompanying different lithosphere rheology structures.  相似文献   

7.
The crustal structure of the central Eromanga Basin in the northern part of the Australian Tasman Geosyncline, revealed by coincident seismic reflection and refraction shooting, contrasts with some neighbouring regions of the continent. The depth to the crust-mantle boundary (Moho) of 36–41 km is much less than that under the North Australian Craton to the northwest (50–55 km) and the Lachlan Fold Belt to the southeast (43–51 km) but is similar to that under the Drummond and Bowen Basins to the east.The seismic velocity boundaries within the crust are sharp compared with the transitional nature of the boundaries under the North Australian and Lachlan provinces. In particular, there is a sharp velocity increase at mid-crustal depths (21–24 km) which has not been observed with such clarity elsewhere in Australia (the Conrad discontinuity?).In the lower crust, the many discontinuous sub-horizontal reflections are in marked contrast to lack of reflecting horizons in the upper crust, further emphasising the differences between the upper and lower crust. The crust-mantle boundary (Moho) is characterised by an increase in velocity from 7.1–7.7 km/s to a value of 8.15 + 0.04 km/s. The depth to the Moho under the Canaway Ridge, a prominent basement high, is shallower by about 5 km than the regional Moho depth; there is also no mid-crustal horizon under the Canaway Ridge but there is a very sharp velocity increase at the Moho depth of 34 km. The Ridge could be interpreted as a horst structure extending to at least Moho depths but it could also have a different intra-crustal structure from the surrounding area.The sub-crustal lithosphere has features which have been interpreted, from limited data, as being caused by a velocity gradient at 56–57 km depth with a low velocity zone above it.Because of the contrasting crustal thicknesses and velocity gradients, the lithosphere of the central Eromanga Basin cannot be considered as an extension of the exposed Lachlan Fold Belt or the North Australian Craton. The lack of seismic reflections from the upper crust indicates no coherent accoustic impedance pattern at wavelengths greater than 100 m, consistent with an upper crustal basement of tightly folded meta-sedimentary and meta-volcanic rocks. The crustal structure is consistent with a pericratonic or arc/back-arc basin being cratonised in an episode of convergent tectonics in the Early Palaeozoic. The seismic reflections from the lower crust indicate that it could have developed in a different tectonic environment.  相似文献   

8.
We present results of study of the specific composition and parageneses of pyrope-almandine garnets from alluvial deposits of the Muna-Markha interfluve drainage in the Yakutian diamondiferous province. The data are correlated with the specific features of garnets (tentatively crustal) from Yakutian and Guinean kimberlites and their crustal xenoliths and from metamorphic rocks of the Anabar Shield. The conclusion is drawn that most of orange pyrope-almandine garnets from the alluvial deposits were generated from kimberlites with varying contents of disintegrated crustal material. This gives grounds to include the studied garnets into a complex of indicator minerals of kimberlites and use them in search for diamonds in the Yakutian diamondiferous province.  相似文献   

9.
THE HIGH RESOLUTION SEISMIC TOMOGRAPHIC IMAGE IN QINGHAI—TIBET PLATEAU AND ITS DYNAMIC IMPLICATIONSeasthenospherehadbe  相似文献   

10.
High‐T, low‐P metamorphic rocks of the Palaeoproterozoic central Halls Creek Orogen in northern Australia are characterised by low radiogenic heat production, high upper crustal thermal gradients (locally exceeding 40 °C km?1) sustained for over 30 Myr, and a large number of layered mafic‐ultramafic intrusions with mantle‐related geochemical signatures. In order to account for this combination of geological and thermal characteristics, we model the middle crustal response to a transient mantle‐related heat pulse resulting from a temporary reduction in the thickness of the mantle lithosphere. This mechanism has the potential to raise mid‐crustal temperatures by 150–400 °C within 10–20 Myr following initiation of the mantle temperature anomaly, via conductive dissipation through the crust. The magnitude and timing of maximum temperatures attained depend strongly on the proximity, duration and lateral extent of the thermal anomaly in the mantle lithosphere, and decrease sharply in response to anomalies that are seated deeper than 50–60 km, maintained for <5 Myr in duration and/or have half‐widths <100 km. Maximum temperatures are also intimately linked to the thermal properties of the model crust, primarily due to their influence on the steady‐state (background) thermal gradient. The amplitudes of temperature increases in the crust are principally a function of depth, and are broadly independent of crustal thermal parameters. Mid‐crustal felsic and mafic plutonism is a predictable consequence of perturbed thermal regimes in the mantle and the lowermost crust, and the advection of voluminous magmas has the potential to raise temperatures in the middle crust very quickly. Although pluton‐related thermal signatures significantly dissipate within <10 Myr (even for very large, high‐temperature intrusive bodies), the interaction of pluton‐ and mantle‐related thermal effects has the potential to maintain host rock temperatures in excess of 400–450 °C for up to 30 Myr in some parts of the mid‐crust. The numerical models presented here support the notion that transient mantle‐related heat sources have the capacity to contribute significantly to the thermal budget of metamorphism in high‐T, low‐P metamorphic belts, especially in those characterised by low surface heat flow, very high peak metamorphic geothermal gradients and abundant mafic intrusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号