首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《International Geology Review》2012,54(11):1359-1383
The Jiangnan Orogen is located at a key tectonic position along the junction between the Yangtze and Cathaysia blocks. We obtained detailed major and trace elements, whole-rock Nd + zircon Hf isotope data, and U–Pb age data from several Mesozoic granites, including the Fuling (FL), Taiping–Huangshan (TH), Lingshan (LS), Sanqingshan (SQS), and Baijuhuajian intrusions in order to investigate their sources and petrogeneses related to extension in South China. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analyses of zircon from the FL, TH, SQS, and LS bodies yield Early Cretaceous ages of 124–135 Ma. These plutons are alkali-feldspar granites to syenogranites–monzogranites, and show A-type affinities. They have high K2O and total alkali contents, and are enriched in rare earth elements (except for Eu), Zr, and other high-field-strength elements as well as high Ga/Al ratios, and are depleted in Ba and Sr. These granites are metaluminous to weakly peraluminous (ACNK from 0.81 to 1.27). The whole-rock ?Nd(T) values of??5.34 to??0.96 are coupled with zircon ?Hf(T) values (from??5.3 to +4.24), and all samples plot along the mantle array. Field observations, geochronology, geochemistry, Nd isotopic, and zircon Hf isotopic compositions suggest that they formed by the partial melting of Mesoproterozoic metamorphic basement, with input from juvenile, mantle-derived materials in the shallow (<30 km) crust at high temperatures (756–965°C). These melts underwent crystal fractionation of biotite, plagioclase, and K-feldspar. The upwelling of asthenosphere triggered partial melting of the metamorphic protolith in a back-arc or intra-arc rift setting, reflecting rollback of the Pacific plate. Our research adds new geochronologic constraints on Cretaceous (135–120 Ma) A-type granites from the NE sector of the Jiangnan Orogen. Combined with previous research, we suggest that three main episodes of late Mesozoic extensional tectonism took place in South China: (1) 190–170 Ma (mainly inland), (2) 165–120 Ma (including 165–150 Ma in SE Shi-Hang, 135–120 Ma in NE Shi-Hang, and ~125 Ma in the Lower Yangtze River Belt), and (3) 100–90 Ma (coastal area), showing an oceanwards younging trend due to the subduction of the Palaeo-Pacific plate.  相似文献   

2.
The aim of this article is to examine the geochemistry and geochronology of the Cadomian Mishu granites from northwest Iran, in order to elucidate petrogenesis and their role in the evolution of the Cadomian crust of Iran. The Mishu granites mainly consist of two-mica granites associated with scarce outcrops of tonalite, amphibole granodiorite, and diorite. Leucogranitic dikes locally crosscut the Mishu granites. Two-mica granites show S-type characteristics whereas amphibole granodiorite, tonalities, and diorites have I-type signatures. The I-type granites show enrichment in large-ion lithophile elements (e.g. Rb, Ba and K) and depletion in high field strength elements (e.g. Nb, Ti and Ta). These characteristics show that these granites have been formed along an ancient, fossilized subduction zone. The S-type granites have high K, Rb, Cs (and other large ion lithophile elements) contents, resembling collision-related granites. U–Pb zircon dating of the Mishu rocks yielded 238U/206Pb crystallization ages of ca. 550 Ma. Moreover, Rb–Sr errorchron shows an early Ediacaran age (547 ± 84 Ma) for the Mishu igneous rocks. The two-mica granites (S-type granites) show high 87Sr/86Sr(i) ratios, ranging from 0.7068 to 0.7095. Their ?Nd values change between ?4.2 and ?4.6. Amphibole granitoids and diorites (I-type granites) are characterized by relatively low 87Sr/86Sr(i) ratios (0.7048–0.7079) and higher values of ?Nd (?0.8 to ?4.2). Leucogranitic dikes have quite juvenile signature, with ?Nd values ranging from +1.1 to +1.4 and Nd model ages (TDM) from 1.1 to 1.2 Ga. The isotopic data suggests interaction of juvenile, mantle-derived melts with old continental crust to be the main factor for the generation of the Mishu granites. Interaction with older continental crust is also confirmed by the presence of abundant inherited zircon cores. The liquid-line of descend in the Harker diagrams suggests fractional crystallization was also a predominant mechanism during evolution of the Mishu I-type granites. The zircon U–Pb ages, whole rock trace elements, and Sr–Nd isotope data strongly indicate the similarities between the Mishu Cadomian granites with other late Neoproterozoic–early Cambrian (600–520 Ma) granites across Iran and the surrounding areas such as Turkey and Iberia. The generation of the Mishu I-type granites could be related to the subduction of the Proto-Tethyan Ocean during Cadomian orogeny, through interaction between juvenile melts and old (Mesoproterozoic or Archaean) continental crust. The S-type granites are related to the pooling of the basaltic melts within the middle–upper parts of the thick continental crust and then partial melting of that crust.  相似文献   

3.
Abstract

Palaeozoic granitoids in the Chinese Altai are important for understanding the evolution of the Central Asian Orogenic Belt (CAOB). The Xiaodonggou granitic intrusion, situated in the Chinese Altai (southern CAOB), is composed of two intrusive phases, medium-grained granite intruded by porphyritic granite. Zircon LA-ICP-MS U–Pb analyses of medium-grained granite and porphyritic granite yield ages of 409 ± 2 Ma and 400 ± 1 Ma, respectively, indicating that these formed in Early Devonian time. Medium-grained granite and porphyritic granite have similar geochemical features and Nd–Hf isotopic compositions. Arc-like geochemical characteristics (e.g. enrichment of LILEs and negative anomalies of Nb, Ta, Ti, and P) show that both phases are volcanic arc granites (VAGs). Geochemical and isotopic characteristics suggest that these magmas originated from melting older crust. Based on their near-zero or negative εNd(t) values (?1.4to 0) and positive εHf(t) values (+1.4 to +7.8), together with Nd model ages of 1.15–1.26 Ga and zircon Hf model ages of 0.90–1.30 Ga, we suggest that the Xiaodonggou granites were derived from a mixture of juvenile and old crustal components. Some other Devonian granitic intrusions were recently identi?ed in the Chinese Altai with ages between 416 and 375 Ma. These Devonian granites have similar geochemical characteristics and petrogenesis as Xiaodonggou granites. The formation of these Devonian granites was in response to subduction processes, suggesting that Chinese Altai was an active continental margin in Early Devonian time.  相似文献   

4.
U–Pb zircon geochronological, geochemical, and whole-rock Sr–Nd isotopic analyses are reported for a suite of Karamay A-type granites from the Central Asian Orogenic Belt (CAOB) in the western Junggar region of northern Xinjiang, Northwest China, with the aim of investigating the sources and petrogenesis of A-type granites. The Karamay pluton includes monzogranite and syenogranite. Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb dating yielded a concordant weighted mean 206Pb/238U age of 304 ± 5 Ma (n = 11), defining a late Carboniferous magmatic event. Geochemically, the rock suite is characterized by high SiO2, FeOt/MgO, total alkalies (K2O + Na2O), Zr, Nb, Y, Ta, Ga/Al, and rare earth elements (REEs) (except for Eu), and low contents of MgO, CaO, and P2O5, with negative Ba, Sr, P, Eu, and Ti anomalies. These features indicate an A-type affinity for the Karamay granitic intrusions. Isotopically, they display consistently depleted Sr–Nd isotopic compositions (initial 87Sr/86Sr = 0.7014–0.7022, ?Nd(t) = +5.6–+7.0). Geochronological, geochemical, and isotopic data suggest that the Karamay A-type granites were derived from remelting juvenile lower crust, followed by fractional crystallization. The Karamay A-type granites as well as widespread late Carboniferous magmatism in the western Junggar region of the southwestern CAOB may have been related to ridge subduction and a resultant slab window. This further demonstrates the importance of the late Palaeozoic granitic magmatism in terms of vertical crustal growth in northern Xinjiang.  相似文献   

5.
This paper presents new SHRIMP zircon U–Pb chronology, major and trace element, and Sr–Nd–Hf isotopic data of two Early Paleozoic granitic plutons (Yierba and North Kudi) from the western Kunlun orogen, in attempt to further constrain the Proto-Tethys evolution. SHRIMP zircon U–Pb dating shows that the Yierba pluton was emplaced in the Middle Cambrian (513?±?7 Ma) and the North Kudi pluton was emplaced in the Late Silurian (420.6?±?6.3 Ma). The Yierba pluton consists of quartz monzodiorite, quartz monzonite and granodiorite. These granitoids are metaluminous and potassic, with initial 87Sr/86Sr ratios of 0.7072–0.7096, εNd (T) of ?0.2 to ?1.6 and εHf (T) (in-situ zircon) of ?1.2. Elemental and isotopic data suggest that they were formed by partial melting of subducted sediments, with subsequent melts interacting with the overlying mantle wedge in an oceanic island arc setting in response to the intra-oceanic subduction of Proto-Tethys. The North Kudi pluton consists of syenogranite and alkali-feldspar granite. These granites are metaluminous to weakly peraluminous and potassic. They show an affinity of A1 subtype granite, with initial 87Sr/86Sr ratios of 0.7077–0.7101, εNd (T) of ?3.5 to ?4.0 and εHf (T) (in-situ zircon) of ?3.9. Elemental and isotopic data suggest that they were formed by partial melting of the Precambrian metamorphic basement at a shallow depth (<30 km) during the post-orogenic regime caused by Proto-Tethyan oceanic slab break-off. Our new data suggest that the subduction of the Proto-Tethyan oceanic crust was as early as Middle Cambrian (~513 Ma) and the final closure of Proto-Tethys was not later than Late Silurian (~421 Ma), most probably in Middle Silurian.  相似文献   

6.
ABSTRACT

The magmatic generation for the Late Triassic–Early Jurassic (~215–200 Ma) and Early Cretaceous–Late Cretaceous (~108–79 Ma) post-collisional granites in the Sanjiang Tethys orogeny remain enigmatic. The Xiuwacu complex, located in the southern Yidun Terrane, consists of biotite granite with a weight mean 206Pb/238U age of 199.8 ± 2.5 Ma, aplite granite of 108.2 ± 2.3 Ma, monzogranite porphyry of 80.8 ± 1.0 Ma, and diorite enclaves of 79.2 ± 0.9 Ma and 77.9 ± 0.8 Ma. The Late Triassic biotite granites show I-type granite affinities, with high SiO2 contents, high Mg# values, high zircon δ18O values, and negative whole-rock ?Nd(t) values, indicating a predominant ancient crustal source with the input of juvenile materials. Their fractionated REE patterns and concave-upward middle-to-heavy REE patterns require garnet-bearing amphibolite as the melt source. The Cretaceous highly fractionated aplite granites and monzogranite porphyries have relatively high SiO2 contents, high (Na2O + K2O)/CaO ratios, high zircon δ18O values, and enriched whole-rock Sr–Nd isotopic signatures, suggesting that their parent magmas were likely originated from the ancient middle- to lower crust. Their significant negative Eu anomalies and obvious depletions in Nb, Sr, and Ti demonstrate that the Cretaceous granitic magmas had experienced more fractionation than the Late Triassic felsic magmas. The Late Cretaceous diorite enclaves show low SiO2 contents, high Mg# values, and high zircon δ18O values, suggesting that they were probably derived from the partial melting of subcontinental lithospheric mantle enriched by the Late Triassic subduction. The Late Triassic–Early Jurassic and Early Cretaceous–Late Cretaceous magmatism witnessed the post-collisional setting and intraplate extensional setting in response to the slab break-off and lithospheric-scale transtensional faulting, respectively. The partial melting of subduction-modified lithospheric mantle or/and residual sulphide cumulates within the lower crust during the origination of Late Cretaceous magmas could have provided metals for the formation of Xiuwacu deposit.  相似文献   

7.
The granitic unit is a component of the Naqadeh plutonic complex, NW of Sanandaj–Sirjan Zone (NW Iran). This unit is composed of high-K calc-alkaline, slightly peraluminous (ASI?=?1.12–1.17) evolved monzogranites. These monzogranites have 41.85?±?0.81 Ma (zircon U–Pb sensitive, high-resolution ion microprobe (SHRIMP) age) with two inherited zircon ages of 98.5?±?1.7 and 586.6?±?13.1 Ma, respectively. The only enclave type consists of quartz-amphibolite enclaves indicating residual parental rocks. Chemical and isotopic (87Sr/86Sr40Ma?=?0.708638; εNd40Ma?=??4.26) characteristics of monzogranites suggest that they could be derived by partial melting of crustal mafic rocks followed by some assimilation of metasedimentary rocks. With regards to inherited zircon age and quartz-amphibolite composition of Naqadeh granite, the old mafic rocks of this complex (Naqadeh dioritic rocks with ~100 Ma) can be considered as parental rocks, and their partial melting under high water content, and assimilation of produced melt by metasedimentary rocks, would lead to the generation of a Naqadeh granitic unit.  相似文献   

8.
ABSTRACT

Both Pacific and Neo-Tethys plates had major influences on the Cretaceous magmatisms in southeastern China. The subduction of the Neo-Tethys plate is, however, not well studied. This paper reports zircon U–Pb ages, Lu–Hf isotopes, whole-rock geochemistry, and Sr–Nd isotopes for the Qianjia intrusive rocks in Hainan Island, southeast China. LA-inductively coupled plasma mass spectrometry zircon U–Pb dating of granites and dark enclave monzonite in the area yield magmatic crystallization ages of ca. 100 Ma, which are consistent with other Late Cretaceous granites, e.g. Baocheng, Tunchang, and Yaliang. Both rocks show high-K calc-alkaline compositions and metaluminous to weakly peraluminous signatures belonging to I-type rocks. They are enriched in the alkalis, Rb, Th, U, K, and light rare earth elements, depleted in Nb, Ta, Ti, and P, and characterized by high Al2O3 contents (14–15 wt%) and high Mg# values (50–53). Among them, some of granodiorites have geochemical affinities of adakitic rocks. Zircon εHf(t) values range from ?5.97 to ?1.18, with fairly constant whole-rock Sr–Nd isotopes (ISr = 0.7084–0.7086; εNd(t) = ?4.97 to ?4.29) similar with those of the Cretaceous mafic dikes (136–81 Ma) in Hainan Island, which are the result of partial melting of subduction-related sub-continental lithospheric mantle. Combined with Sr–Nd isotopes and negative Hf isotope, Qianjia intrusive rocks were likely derived from hybrid melts of underplated continental crust-derived with mantle-derived, then experienced varied degrees of fractional crystallization. According to the latest geophysical, sedimentological, and geochemical data, previous authors identified a Cretaceous E–W-trend subduction zone in the northern margin of the South China Sea. Combined with the southern margin magmatisms (110–80 Ma) and magmatisms of ~120 Ma distributed east–west ward from the Philippines to the Vietnam, We preferred that the subduction of the E–W-trend Neo-Tethys plate was the main geodynamic mechanism which induced the Cretaceous large-scale magmatisms in the southern margin of South China Block.  相似文献   

9.
This article reports new zircon laser ablation-multicollector-inductively coupled plasma-mass spectrometry U–Pb and Hf isotope, whole-rock major and trace element, and Sr–Nd isotope data for mineralized and barren intrusions associated with the Duolong porphyry–epithermal copper–(gold) deposit (DPCD, a mining camp containing several individual deposits) in the western Qiangtang Terrane (QT), central Tibet. These data are used to further our understanding of the geological evolution of this region. The mineralized and barren DPCD intrusions are typical I-type granitoids that were synchronously emplaced at ca. 112.6–125.9 Ma. These igneous rocks show arc affinities that are characterized by enrichments in the light rare earth elements (LaN/YbN = 4.08–15.23) and the light ion lithophile elements (Rb, Th, U, K, and Pb), and depletions in the high field strength elements (Nb, Ta, and Ti). They have 87Sr/86Sr(i) values of 0.7046–0.7079, Nd(t) values of –6.0 to +1.1, and two-stage Nd model ages of ca. 823–1410 Ma. Zircons from these intrusive rocks have variable but generally positive εHf(t) values (–2.7 to +13.7) and relatively young zircon Hf crustal model ages of 335–1351 Ma. Combining these data with geochemical data reported in recent studies, we infer that the mineralized and barren DPCD intrusions formed in a continental marginal arc setting and likely originated from a common parental magma that was result of magma mixing of juvenile crust-derived basaltic melts and old lower crust-derived melts. The formation of the DPCD intrusions indicates that the Bangongco–Nujiang oceanic lithosphere was still undergoing northward subduction beneath the western QT at ca. 112.6–125.9 Ma, suggesting in turn that the oceanic basin have not closed completely during the Early Cretaceous. These new data also indicate that the processes that occur during the subduction of oceanic crust in continental marginal arc settings produce and preserve juvenile crustal material, leading to net continental crust vertical growth and thickening.  相似文献   

10.
Biotite granites and muscovite-bearing granites are dominant rock types of the widespread granites in SE China. However, their petrogenesis has been enigmatic. A combined study of zircon U–Pb dating and Lu–Hf isotopes, whole-rock element geochemistry and Sr–Nd–O isotopes was performed for three late Mesozoic granitic plutons (Xinfengjie, Jiangbei and Dabu) in central Jiangxi province, SE China. All the plutons are composed of biotite granites and muscovite-bearing granites that have been poorly investigated previously. The new data not only allow us to assess their sources and magma evolution processes, but also helps us to better understand the genetic link to the large-scale polymetallic mineralization in SE China. LA-ICP-MS zircon U–Pb dating shows that three plutons were emplaced in the Late Jurassic (159–148 Ma) and that the muscovite-bearing granites are almost contemporaneous with the biotite granites. The biotite granites have SiO2 contents of 70.3–74.4 wt% and are weakly to strongly peraluminous with ASI from 1.00 to 1.26, and show a general decrease in ASI with increasing SiO2. They have relatively high zircon saturation temperatures (T Zr = 707–817 °C, most > 745 °C) and show a general decrease in T Zr with increasing SiO2. They have high initial 87Sr/86Sr ratios (0.7136 to 0.7166) and high δ18O values (9.1–12.8‰, most > 9.5‰) and clearly negative ε Nd (T) (? 9.5 to ? 11.8) and ε Hf (T) (in situ zircon) (? 13.1 to ? 13.5). The muscovite-bearing granites have high SiO2 contents (74.7–78.2 wt%). They are also weakly to strongly peraluminous with ASI of 1.04–1.18 but show a general increase in ASI with increasing SiO2. They have relatively low T Zr (671–764 °C, most < 745 °C) and also show a general decrease in T Zr with increasing SiO2. The muscovite-bearing granites have high Rb (up to 810 ppm) and high (K2O + Na2O)/CaO (up to 270), Rb/Sr (up to 42) and Rb/Ba (up to 30) as well as low K/Rb (< 150, down to 50), Zr/Hf (< 24, down to 11) and Nb/Ta (< 6, down to 2). They show similar Nd–O–Hf isotopic compositions to the biotite granites with ε Nd (T) of ? 8.7 to ? 12.0, δ18O of 8.7–13.0‰ (most > 9.5‰) and ε Hf (T) (in situ zircon) of ? 11.3 to ? 13.1. Geochemical data suggest the origin of the biotite granites and muscovite-bearing granites as follows: Partial melting of Precambrian metasedimentary rocks (mainly two-mica schist) in the lower crust at temperatures of ca. 820 °C generated the melts of the less felsic biotite granites. Such primary crustal melts underwent biotite-dominant fractionation crystallization, forming the felsic biotite granites. Progressive plagioclase-dominant fractionation crystallization from the evolved biotite granites produced the more felsic muscovite-bearing granites. Thus, the biotite granites belong to the S-type whereas the muscovite-bearing granites are highly fractionated S-type granites. We further suggest that during the formation of the muscovite-bearing granites the fractional crystallization was accompanied by fluid fractionation and most likely the addition of internally derived mineralizing fluids. That is why the large-scale polymetallic mineralization is closely related to the muscovite-bearing granites rather than biotite granites in SE China. This is important to further understand the source and origin of biotite granites and muscovite-bearing granites in SE China even worldwide.  相似文献   

11.
Late Silurian–early Devonian magmatism of the NW Junggar region in the Central Asian Orogenic Belt provides a critical geological record that is important for unraveling regional tectonic history and constraining geodynamic processes. In this study, we report results of Zircon U–Pb ages and systematic geochemical data for late Silurian–early Devonian largely granitic rocks in NW Junggar, aiming to constrain their emplacement ages, origin and geodynamic significance. The magmatism consists of a variety of mafic to felsic intrusions and volcanic rocks, e.g. adakitic granodiorite, K-feldspar granite, syenitic granite, gabbro and rhyrolite. U–Pb zircon ages suggest that the granitoids and gabbros were emplaced in the late Silurian–early Devonian (420–405 Ma). Adakitic granodiorites are calc-alkaline, characterized by high Sr (407–532 ppm), low Y (12.2–14.7 ppm), Yb (1.53–1.77 ppm), Cr (mostly < 8.00 ppm), Co (mostly < 11.0 ppm) and Ni (mostly < 4.10 ppm) and relatively high Sr/Y (31–42) ratios, analogous to those of modern adakites. K-feldspar granites and rhyolites are characterized by alkali- and Fe-enriched, with high Zr, Nb and Ga/Al ratios, geochemically similar to those of A-type granites. Syenitic granites show high alkaline (Na2O + K2O = 8.39–9.34 wt.%) contents, low Fe# values (0.73–0.80) and are weakly peraluminous (A/CNK = 1.00–1.07). Gabbros are characterized by low MgO (6.86–7.15 wt.%), Mg# (52–53), Cr (124–133 ppm) and Ni (84.7–86.6 ppm) contents. The geochemical characteristics of the gabbroic samples show affinity to both MORB- and arc-like sources. All granitoids have positive εNd(t) (+ 3.9 to + 6.9) and zircon εHf(t) (+ 9.8 to + 15.2) values and low initial 87Sr/86Sr ratios (0.7035–0.7043), with young TDM(Nd) (605–791 Ma) and TDM(Hf) (425–773 Ma) ages, suggesting significant addition of juvenile material. The adakitic granodiorites probably resulted from partial melting of mafic lower crust, leaving an amphibolite and garnet residue. The K-feldspar granites, rhyolites and syenitic granites probably formed from partial melting of the Xiemisitai mid-lower crust, while the gabbroic intrusion was probably generated by interactions between asthenospheric and metasomatized lithospheric mantle. Voluminous plutons of various types (adakites, A-type granites, I-type granites, and gabbros) formed during 420–405 Ma, and their isotopic data suggest significant additions of juvenile material. We propose that a slab roll-back model can account for the 420–405 Ma magmatic “flare up” in NW Junggar as well as an extensional setting.  相似文献   

12.
The Naruo porphyry Cu deposit is the third largest deposit discovered in the Duolong metallogenic district. Previous research has focused mainly on the geochemistry of the ore-bearing granodiorite porphyry; the metallogenesis remains poorly understood. In the present work, on the basis of outcrops and drilling core geological mapping, phases of early mineralization diorite, two inter-mineralization granodiorite porphyries, and late-mineralization granodiorite porphyry have been distinguished. Furthermore, the alteration zones were outlined, and the vein sequence was identified. The diorite and three porphyry phases were subjected to Laser Ablation Inductively Coupled Plasma Mass Spectrometry (La–ICP–MS) zircon U–Pb dating and in situ Hf isotope analyses as well as bulk major element, trace element, and Sr–Nd isotopic analyses. Molybdenite Re–Os dating was also conducted.The zircon U–Pb dating results show that the diorite and porphyry intrusions were emplaced at about 120 Ma, and the molybdenite Re–Os isochron age is 118.8 ± 1.9 Ma; this indicates that the Naruo porphyry Cu deposit was formed during a continuous magmatic–hydrothermal process. All of the diorite and granodiorite porphyry samples showed arc magmatic characteristics. Moreover, the moderate (87Sr/86Sr)i ratios and low εNd(t) and εHf(t) values of the diorite and porphyry intrusions suggest the source region of the juvenile lower crust. The lower (87Sr/86Sr)i and (143Nd/144Nd)i ratios and higher εNd(t) values and incompatible element concentrations than those in the granodiorite porphyry samples indicate a two-stage magmatic generation process for the intrusions. The early mineralization diorite has a high Cu concentration, implying that the source is enriched in Cu. However, the slightly lower Cu content of the late-mineralization granodiorite porphyry samples might imply Cu release from magmas and deposition within the metallogenic stage. The multiple stages of intrusions and subsequent volcanism within the Duolong metallogenic district, together with high Sr/Y features, indicate persistent magmatism during the metallogenic epoch, which is necessary for maintaining the activity of magmatic–hydrothermal and mineralization processes. Thus, the high Cu content in the source region, mantle-derived melt upwelling, and multiple stages of persistent magmatism were favorable for the formation of the Naruo porphyry Cu deposit.The high Fe2O3/FeO ratios of the diorite and granodiorite porphyry intrusions show very high oxidation features, which is coincident with estimated magmatic oxidation state calculated by the zircon trace element compositions. The high oxidation facilitates sulfur and chalcophile metals to be scavenged into the magmatic–hydrothermal systems, which is crucial for the metallogenesis of the Naruo porphyry Cu deposit.  相似文献   

13.
Uranium–Pb (zircon) ages are linked with geochemical data for porphyry intrusions associated with giant porphyry Cu–Au systems at Oyu Tolgoi to place those rocks within the petrochemical framework of Devonian and Carboniferous rocks of southern Mongolia. In this part of the Gurvansayhan terrane within the Central Asian Orogenic Belt, the transition from Devonian tholeiitic marine rocks to unconformably overlying Carboniferous calc-alkaline subaerial to shallow marine volcanic rocks reflects volcanic arc thickening and maturation. Radiogenic Nd and Pb isotopic compositions (εNd(t) range from + 3.1 to + 7.5 and 206Pb/204Pb values for feldspars range from 17.97 to 18.72), as well as low high-field strength element (HFSE) contents of most rocks (mafic rocks typically have < 1.5% TiO2) are consistent with magma derivation from depleted mantle in an intra-oceanic volcanic arc. The Late Devonian and Carboniferous felsic rocks are dominantly medium- to high-K calc-alkaline and characterized by a decrease in Sr/Y ratios through time, with the Carboniferous rocks being more felsic than those of Devonian age. Porphyry Cu–Au related intrusions were emplaced in the Late Devonian during the transition from tholeiitic to calc-alkaline arc magmatism. Uranium–Pb (zircon) geochronology indicates that the Late Devonian pre- to syn-mineral quartz monzodiorite intrusions associated with the porphyry Cu–Au deposits are ~ 372 Ma, whereas granodiorite intrusions that post-date major shortening and are associated with less well-developed porphyry Cu–Au mineralization are ~ 366 Ma. Trace element geochemistry of zircons in the Late Devonian intrusions associated with the porphyry Cu–Au systems contain distinct Th/U and Yb/Gd ratios, as well as Hf and Y concentrations that reflect mixing of magma of distinct compositions. These characteristics are missing in the unmineralized Carboniferous intrusions. High Sr/Y and evidence for magma mixing in syn- to late-mineral intrusions distinguish the Late Devonian rocks associated with giant Cu–Au deposits from younger magmatic suites in the district.  相似文献   

14.
The Late Triassic igneous rocks in the Yidun terrane can provide vital insights into the evolution of Plaeo-Tethys in western China. We present new zircon U-Pb, whole-rock geochemistry, and Sr-Nd-Pb-Hf isotopic data for the Litang biotite monzogranites, Yidun terrane. The biotite monzogranites have a zircon U-Pb age of 206.1±1.0 Ma(MSWD=1.9,n=30), which indicates Late Triassic magmatism. The biotite monzogranites display I-type affinity, high Na_2O(3.38-3.60 wt%) contente,medii SiO_2(67.12-69.13 wt%), and low P_2 O_5 contents(0.10~0.12 wt%). They enriched in Rb,and Ba and depleted in Nb and Ta, with negative Eu anomalies(Eu/Eu*=0.74—0.81). They have evolved Sr-Nd-Pb-Hf isotopic composition, i.e.,(~(87) Sr/~(86 )Sr)i=0.714225 to 0.714763, negative ?_(Nd(t)) values of -2.0 to-2.6 with two-stage Nd model ages ranging from 1.01 to 1.05 Ga, negative ?_(Ht)(t)) values o f-3.4 to-4.1 with two-stage Hf model ages of 1.85 to1.88 Ga, suggesting a matured crustal sources. Their low Al_2O_3/TiO_2 ratios and medium Cao/Na_2O ratios, medium Mg~# and SiO_2 contents, low [molar Al_2O_3/(MgO+FeO~T)] values, and high [molar Cao/(MgO+FeO~T)] values indicate that the Litang biotite monzogranite was formed by partial melting of metabasaltic rocks. Based on the previous studies, we propose that the Litang biotite monzogranite derived from the westward subduction and closure of the Ganzi-Litang ocean during the Late Triassic-The mantle wedge-derived mafic melts provided sufficient heat for partial melting of ancient metabasalt protolith within the middle-lower crust.  相似文献   

15.
The Chinese Altai in northwestern Xinjiang has numerous outcrops of granitoids which provide critical information on accretionary orogenic processes and crustal growth of the Central Asian Orogenic Belt.Zircon U-Pb ages, Hf-isotopic compositions and whole-rock geochemistry of monzogranite and granodiorites in the Qinghe County are employed to elucidate Paleozoic tectonics of the Chinese Altai. Granodiorites have crystallization ages of 424.6 ± 3.1 Ma(MSWD = 0.23) and 404.0 ± 3.4 Ma(MSWD = 0.18);monzogranite was emplaced in the early Permian with a crystallization age of 293.7 ± 4.6 Ma(MSWD = 1.06). Both granodiorites and monzogranite are I-type granites with A/CNK ratios of 0.92 -0.97 and 1.03 -1.06, respectively. They also show similar geochemical features of high HREE and Y contents, low Sr contents and Sr/Y ratios, as well as enrichment of Cs, Rb, Th and U, and depletion of Nb, Ta, P and Ti.These geochemical features indicate that the monzogranite and granodiorites were formed in an arc setting related to subduction. The gneissic monzogranites display high SiO_2 and K_2 O contents, and belong to the high-K calc-alkaline series. In the chondrite normalized REE distribution pattern, the monzogranite samples exhibit enrichment of LREE with strong negative Eu anomalies(σE u =0.44 -0.53), zircon εHf(t) values from +7.24 to +12.63 and two-stage Hf model ages of 463 -740 Ma. This suggests that the monzogranite was generated from the mixing of pelitic and mantle material. The granodiorite samples are calc-alkaline granites with lower contents of Si O_2 and Na_2 O + K_2 O, higher contents of TiO_2, Fe_2O_3~t, MgO and CaO compared to the monzogranite samples. They also show enrichment of LREE and moderate negative Eu anomalies(σE u= 0.54 =0.81), as well as slightly higher differentiation of LREE than that of HREE. The425 Ma granodiorite has zircon εHf(t) values from -0.51 to +1.98 and two-stage Hf model ages of 1133 -1240 Ma, whereas the 404 Ma granodiorite displays those of +2.52 to +7.50 and 816 -1071 Ma.Geochemistry and zircon Hf isotopic compositions indicate that granodiorites were formed by partial melting of juvenile lower crust. Together with regional geology and previous data, the geochemical and geochronological data of the monzogranite and granodiorites from this study suggest long-lived subduction and accretion along the Altai Orogen during ca. 425 -294 Ma.  相似文献   

16.
Based on the systematic elemental and isotope geochemical study on the Guojialing granite that is closely related to the gold mineralization in the Jiaodong ore-cluster region, further understandings have been made regarding its genetic mechanism, source material and gold mineralization conditions of the Guojialing granites. The (87Sr/86Sr)i values of Guojialing granite range from 0.7106 to 0.7120, and the εNd(t) from −18.1 to −13.2, respectively, which are similar to the initial SrNd isotopic compositions of those Late Jurassic-Early Cretaceous granites widely distributed in the Sulu orogenic belt, indicating similar sources of these intrusions in both Jiaodong and Su-Lu regions. The values of (206Pb/204Pb)i and(207Pb/204Pb)i of Guojialing granite are from 17.158–17.316, 15.453–15.478, respectively, indicating that the source of granites could be originated from mantle mixed with orogenic belt. The zircon Hf isotope of the Guojialing granite is decoupled from the Nd isotope of the whole rock, it has a zircon Hf model age(1979–3202 Ma) older than the full-rock Nd model age (1928 Ma). Compared to the full-rock Nd model age, the zircon Hf model age provides a more reliable age of crust-mantle differentiation and crust formation, suggesting that there is extensive crust deep-melting in the source area before the granitic magma activity, which was accompanied by strong Sm/Nd differentiation. Guojialing granite has similar characteristics to adakite, indicating that garnet is an important residual phase during magma formation. The formation of the Guojialing granite magma may be the partial melting of lithospheric mantle and thickened lower crust under eclogite facies, mixed with significant Neoarchaean crust or even Linglong granites when the magma upwelling. The Guojialing granite has high zircon Ce4+/Ce3+ ratios with the average values of 1151.7 and 811.4 respectively, indicating that the Guojialing granite was formed in a high oxygen fugacity environment, where sulfur is mainly present in the form of SO or SO2, which prevents the immiscibility of sulfides in the magma and avoids the removal of the sulfide metal elements. With crystallization differentiation, high oxygen fugitive magma will become a magma-hydrothermal fluid which is rich in sulfide metal elements, providing favorable material and environmental conditions for gold mineralization, thus favorably formed such giant gold deposit.  相似文献   

17.
The Almalyk porphyry cluster in the western part of the Central Asian Orogenic Belt is the second largest porphyry region in Asia and hence has attracted considerable attention of the geologists. In this contribution, we report the zircon U–Pb ages, major and trace element geochemistry as well as Sr–Nd isotopic data for the ore-related porphyries of the Sarycheku and Kalmakyr deposits. The zircon U–Pb ages (Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)) of ore-bearing quartz monzonite and granodiorite porphyries from the Kalmakyr deposit are 326.1 ± 3.4 and 315.2 ± 2.8 Ma, and those for the ore-bearing granodiorite porphyries and monzonite dike from the Sarycheku deposit are 337.8 ± 3.1 and 313.2 ± 2.5 Ma, respectively. Together with the previous ages, they confine multi-phase intrusions from 337 to 306 Ma for the Almalyk ore cluster. Geochemically, all samples belong to shoshonitic series and are enriched in large-ion lithophile elements relative to high field strength elements with very low Nb/U weight ratios (0.83–2.56). They show initial (87Sr/86Sr)i ratios of 0.7059–0.7068 for Kalmakyr and 0.7067–0.7072 for Sarycheku and low εNd(t) values of ?1.0 to ?0.1 for Kalmakyr and ?2.3 to 0.2 for Sarycheku, suggesting that the magmas were dominantly derived from a metasomatized mantle wedge modified by slab-derived fluids with the contribution of the continental crust by assimilation-fractional-crystallization process. Compared to the typical porphyry Cu deposits, the ore-bearing porphyries in the Almalyk cluster are shoshonitic instead of the calc-alkaline. Moreover, although the magmatic events were genetically related to a continental arc environment, the ore-bearing porphyries at Sarycheku and Kalmakyr do not show geochemical signatures of typical adakites as reflected in some giant porphyry deposits in the Circum-Pacific Ocean, indicating that slab-melting may not have been involved in their petrogenesis.  相似文献   

18.
Allochthonous hornblende‐rich gabbroic rocks at Sonidzuoqi constitute important components of the early to middle Palaeozoic orogen, which forms the southeastern part of the Central Asian orogenic belt in Inner Mongolia. Limited hornblende K–Ar and SHRIMP U–Pb zircon ages document the Late Silurian to Early Devonian gabbroic emplacement. The rocks are tholeiitic and are characterized by moderate large‐ion‐lithophile‐element (e.g. Th, U) abundances, high‐field‐strength‐element (e.g. Nb, Ta, Zr, Ti) depletions, high Ti/V ratios, and MORB‐like isotopic signatures [(87Sr/86Sr)i≈0.7030 to 0.7042; εNd(t)≈+4.35 to +7.80, (206Pb/204Pb)i≈17.46 to 17.61]. These features argue for a hydrous basaltic parental magma. We postulate that the melt formed through the coupling of MORB‐type mantle upwelling with aqueous fluid influx derived from slab devolatilization. This petrogenetic scenario suggests that an active spreading centre entered the trench during ridge subduction, bringing to a close an episode of suprasubduction‐zone ophiolite formation. The Siluro‐Devonian hornblende gabbros, together with a pre‐490 Ma ophiolitic mélange of MORB‐OIB affinity, ~483–471 Ma arc intrusions, ~498–461 Ma trondhjemite‐tonalite‐granodiorite plutons, and ~427–423 Ma calc‐alkaline granites from the same area, provide documentation of multistage crustal generation processes during the life cycle of this suprasubduction‐zone ophiolite.  相似文献   

19.
ABSTRACT

The Anqing region in Lower Yangtze River metallogenic belt is one of the important Cu polymetal producers in China. The origin of Cu polymetallic deposits in the region is closely related to Early Cretaceous adakitic intrusions. To constrain the petrogenetic and metallogenic significance of the adakitic rocks, a detailed geochronological, geochemical, and Sr–Nd–Pb–Hf isotopic study was performed. The Anqing adakitic rocks (SiO2 = 57.4–64.2 wt.%) consist mainly of quartz monzodiorite, formed at 138.2 ± 1.7 Ma (Mean Standard Weighted Deviation (MSWD) = 0.61). They have high MgO, Al2O3, Sr, and low Rb, Y, Yb contents, together with high Sr/Y (50.5–222) and La/Yb (31.9–46.9) ratios. They also show negative whole-rock εNd(t) (?9.8 to ?8.5) and zircon εHf(t) (?10.0 to ?5.4), and high oxygen fugacity (mainly ?17.0 to ?8.01) values and radiogenic Pb isotopic compositions with (206Pb/204Pb)i = 17.692–17.884, (207Pb/204Pb)i = 15.413–15.511, and (208Pb/204Pb)i = 37.611–37.943. Coupled with negative Nb–Ta anomalies, low K2O/Na2O ratios (0.39–0.62), and high Mg# values (0.44–0.71), these data suggest the adakitic rocks and associated large-scale Cu–Au mineralization of the Anqing region resulted from partial melting of the high oxidized subducted oceanic crust. Addition of mantle-derived magmas and assimilation of crustal materials during emplacement are also possible.  相似文献   

20.
Gebel Filat granites form one of Egyptian younger granite intrusions in Wadi Allaqi region, South Eastern Desert of Egypt. They are perthitic monzogranites composed mainly of K-feldspars, plagioclase, and quartz with minor biotite. Plagioclase feldspars are Na-rich and have low anorthite content (An2–3). Potash feldspars are mainly perthitic microcline and have chemical formula as (Or96–96.6 Ab3.4–4 An0). Biotite is Mg-rich and seems to be derived from calc-alkaline magma. Chlorite is pycnochlorite with high Mg content, revealing its secondary derivation from biotite. The estimated formation temperatures of biotite and chlorite are (689–711°C) and (602–622°C), respectively. Gebel Filat monzogranites are metaluminous, high-K calc-alkaline, I-type granites. They are late orogenic granites related to subduction-related volcanic arc magmatism. They are enriched in LILE and depleted in HSFE indicating highly differentiation character. The REE patterns display an enrichment in LREE due to presence of zircon and allanite as accessories and depletion in HREE with slight negative Eu anomaly $ \left( {{\text{Eu}}/{\text{Eu}} * = 0.51 - 0.97} \right) $ . The parent magma of Gebel Filat monzogranites were emplaced at moderate depths (20–30 km) under moderate conditions of water-vapor pressure (1–5 kbar) and crystallization temperature [700–750°C]. The source magma of these granites seems to be derived from partial melting of lower crust material rather than upper mantle. The geochemical characteristics of pegmatites revealed that they are related to post orogenic within plate magmatism and not genetically related to the parent magma of Gebel Filat monzogranites. Distribution of radioactive elements (U and Th) in the studied rocks indicates normal U–Th contents for Filat monzogranites and U–Th bearing pegmatites. The positive correlations of each of Zr and Y versus U and Th are attributed to presence of zircon and allanite as accessories which incorporate U and Th in their crystal lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号