首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, the chemistry and microstructure of garnet aggregates within a metamorphic vein are investigated. Garnet‐bearing veins in the Sanbagawa metamorphic belt, Japan, occur subparallel to the foliation of a host mafic schist, but some cut the foliation at low angle. Backscattered electron image and compositional mapping using EPMA and crystallographic orientation maps from electron‐backscattered diffraction (EBSD) reveal that numerous small garnet (10–100 μm diameter) coalesce to form large porphyroblasts within the vein. Individual small garnet commonly exhibits xenomorphic shape at garnet/garnet grain boundaries, whereas it is idiomorphic at garnet/quartz boundaries. EBSD microstructural analysis of the garnet porphyroblasts reveals that misorientation angles of neighbour‐pair garnet grains within the vein have a random distribution. This contrasts with previous studies that found coalescence of garnet in mica schist leads to an increased frequency of low angle misorientation boundaries by misorientation‐driven rotation. As garnet nucleated with random orientation, the difference in misorientation between the two studies is due to the difference in the extent of grain rotation. A simple kinetic model that assumes grain rotation of garnet is rate‐limited by grain boundary diffusion creep of matrix quartz, shows that (i) the substantial rotation of a fine garnet grain could occur for the conditions of the Sanbagawa metamorphism, but (ii) the rotation rate drastically decreased as garnet grains formed large clusters during growth. Therefore, the random misorientation distribution of garnet porphyroblasts in the Sanbagawa vein is interpreted as follows: (i) garnet within the vein grew so fast that substantial grain rotation did not occur through porphyroblast formation, and thus (ii) random orientations at the nucleation stage were preserved. The extent of misorientation‐driven rotation indicated by deviation from random orientation distribution may be useful to constrain the growth rate of constituent grains of porphyroblast that formed by multiple nucleation and coalescence.  相似文献   

2.
雅鲁藏布江缝合带米林地区的石英片岩糜棱岩化强烈,线理及面理构造发育。S-C组构、"σ"残斑以及不对称褶皱等指示了上盘相对下盘向NW下滑的剪切运动趋势。电子背散射衍射(EBSD)测试结果表明:雪球状石榴子石变斑晶边部面理(S2)中石英包裹体晶格优选方位模式图指示的运动指向与石英岩基质面理(或外部面理;S3)中石英包裹体晶格优选方位模式图指示的运动指向一致,都是上盘向NW正滑。然而,雪球状石榴子石的核部(S1)石英包裹体优选方位(LPO)模式图指示相反运动指向。能量色散显微分析(EDS)测试结果表明石榴子石的成分环带显示连续生长环带特征。连接石榴子石核部面理(S1)可以恢复得到石英岩早期不对称褶皱形状的面理轨迹。这些说明文章样品中雪球状石榴子石变斑晶是生长在不对称褶皱之上的。此过程主要是剪切方向发生了旋转,而不是石榴子石自身旋转。这种雪球状石榴子石变斑晶的存在说明南迦巴瓦地区雅鲁藏布江缝合带西侧岩石最初经历向SE的逆冲作用,后期经历由SE向NW的拆离滑脱事件。  相似文献   

3.
Garnet (10 vol.%; pyrope contents 34–44 mol.%) hosted in quartzofeldspathic rocks within a large vertical shear zone of south Madagascar shows a strong grain‐size reduction (from a few cm to ~300 μm). Electron back‐scattered diffraction, transmission electron microscopy and scanning electron microscope imaging coupled with quantitative analysis of digitized images (PolyLX software) have been used in order to understand the deformation mechanisms associated with this grain‐size evolution. The garnet grain‐size reduction trend has been summarized in a typological evolution (from Type I to Type IV). Type I, the original porphyroblasts, form cm‐sized elongated grains that crystallized upon multiple nucleation and coalescence following biotite breakdown: biotite + sillimanite + quartz = garnet + alkali feldspar + rutile + melt. These large garnet grains contain quartz ribbons and sillimanite inclusions. Type I garnet is sheared along preferential planes (sillimanite layers, quartz ribbons and/or suitably oriented garnet crystallographic planes) producing highly elongated Type II garnet grains marked by a single crystallographic orientation. Further deformation leads to the development of a crystallographic misorientation, subgrains and new grains resulting in Type III garnet. Associated grain‐size reduction occurs via subgrain rotation recrystallization accompanied by fast diffusion‐assisted dislocation glide. This plastic deformation of garnet is associated with efficient recovery as shown by the very low dislocation densities (1010 m?3 or lower). The rounded Type III garnet experiences rigid body rotation in fine‐grained matrix. In the highly deformed samples, the deformation mechanisms in garnet are grain‐size‐ and shape‐dependent: dislocation creep is dominant for the few large grains left (>1 mm; Type II garnet), rigid body rotation is typical for the smaller rounded grains (300 μm or less; Type III garnet) whereas diffusion creep may affect more elliptic garnet (Type IV garnet). The P–T conditions of garnet plasticity in the continental crust (≥950 °C; 11 kbar) have been identified using two‐feldspar thermometry and GASP conventional barometry. The garnet microstructural and deformation mechanisms evolution, coupled with grain‐size decrease in a fine‐grained steady‐state microstructure of quartz, alkali feldspar and plagioclase, suggests a separate mechanical evolution of garnet with respect to felsic minerals within the shear zone.  相似文献   

4.
Inclusion – porphyroblast and porphyroblast – porphyroblast relationships show that abundant albite in mica schists in the Caledonides of the SW Scottish Highlands are part of the Barrovian metamorphic assemblage. Growth early in the D2 deformational phase of porphyroblast cores followed the growth of Mn‐rich garnet but preceded the growth of porphyroblasts of the index mineral almandine. Two sets of inclusion trails in the albite correspond to the regionally expressed S1 and S2. Straight trails of muscovite, chlorite, quartz, epidote and the earliest growth of biotite make up S1. Crenulated trails express deformation of S1 early in D2 with muscovite, chlorite, biotite, quartz, epidote and the Mn‐rich garnet associated with the development of S2 crenulation cleavage. The geometries of these trails uniquely record early stages of D2 deformational history. An 0?3 growth is related to the temporal coincidence of the formation of S1–S2 crenulation cleavage hinges as favourable sites for nucleation and the release of large amounts of water from prograde reactions during tectonothermal reconstitution of first cycle immature sediments with a volcanic component. The main characteristics of the regionally expressed D2 schistosity were developed during the major grain coarsening that followed both albite and almandine porphyroblast growth. Essentially inclusion‐free An 4?19 rims grew on the inclusion‐containing cores in the almandine zone in the later stages of schistosity growth and unoriented porphyroblasts of muscovite, biotite and chlorite indicate that mineral growth extended from the later stages of D2 to post‐D2. Previous interpretations of the albite porphyroblast growth having been during D4 to post‐D4 contemporaneous with retrogression are inconsistent with the microstructural evidence.  相似文献   

5.
Detailed 3‐D analysis of inclusion trails in garnet porphyroblasts and matrix foliations preserved around a hand‐sample scale, tight, upright fold has revealed a complex deformation history. The fold, dominated by interlayered quartz–mica schist and quartz‐rich veins, preserves a crenulation cleavage that has a synthetic bulk shear sense to that of the macroscopic fold and transects the axis in mica‐rich layers. Garnet porphyroblasts with asymmetric inclusion trails occur on both limbs of the fold and display two stages of growth shown by textural discontinuities. Garnet porphyroblast cores and rims pre‐date the macroscopic fold and preserve successive foliation inflection/intersection axes (FIAs), which have the same trend but opposing plunges on each limb of the fold, and trend NNE–SSW and NE–SW, respectively. The FIAs are oblique to the main fold, which plunges gently to the WSW. Inclusion trail surfaces in the cores of idioblastic porphyroblasts within mica‐rich layers define an apparent fold with an axis oblique to the macroscopic fold axis by 32°, whereas equivalent surfaces in tabular garnet adjacent to quartz‐rich layers define a tighter apparent fold with an axis oblique to the main fold axis by 17°. This potentially could be explained by garnet porphyroblasts that grew over a pre‐existing gentle fold and did not rotate during fold formation, but is more easily explained by rotation of the porphyroblasts during folding. Tabular porphyroblasts adjacent to quartz‐rich layers rotated more relative to the fold axis than those within mica‐rich layers due to less effective deformation partitioning around the porphyroblasts and through quartz‐rich layers. This work highlights the importance of 3‐D geometry and relative timing relationships in studies of inclusion trails in porphyroblasts and microstructures in the matrix.  相似文献   

6.
Novel approaches to garnet analysis have been used to assess rates of intergranular diffusion between different matrix phases and garnet porphyroblasts in a regionally metamorphosed staurolite‐mica‐schist from the Barrovian‐type area in Scotland. X‐ray maps and chemical traverses of planar porphyroblast surfaces reveal chemical heterogeneity of the garnet grain boundary linked to the nature of the adjacent matrix phase. The garnet preserves evidence of low temperature retrograde exchange with matrix minerals and diffusion profiles documenting cation movement along the garnet boundaries. Garnet–quartz and garnet–plagioclase boundaries preserve evidence of sluggish Mg, Mn and Fe diffusion at comparable rates to volume diffusion in garnet, whereas diffusion along garnet–biotite interfaces is much more effective. Evidence of particularly slow Al transport, probably coupled to Fe3+ exchange, is locally preserved on garnet surfaces adjacent to Fe‐oxide phases. The Ca distribution on the garnet surface shows the most complex behaviour, with long‐wavelength heterogeneities apparently unrelated to the matrix grain boundaries. This implies that the Ca content of garnet is controlled by local availability and is thought likely to reflect disequilibrium established during garnet growth. Geochemical anomalies on the garnet surfaces are also linked to the location of triple junctions between the porphyroblasts and the matrix phases, and imply enhanced transport along these channels. The slow rates of intergranular diffusion and the characteristics of different boundary types may explain many features associated with the prograde growth of garnet porphyroblasts. Thus, minerals such as quartz, Fe‐oxides and plagioclase whose boundaries with garnet are characterized by slow intergranular diffusion rates appear to be preferentially trapped as inclusions within porphyroblasts. As such grain boundary diffusion rates may be a significant kinetic impediment to metamorphic equilibrium and garnet may struggle to maintain chemical and textural equilibrium during growth in pelites.  相似文献   

7.
Three periods of mineral growth and three generations of spiral‐shaped inclusion trails have been distinguished within folded rocks of the Qinling‐Dabie Orogen, China, using the development of three successive and differently trending sets of foliation intersection axes preserved in porphyroblasts (FIAs). This progression is revealed by the consistent relative sequence of changes in FIA trends from the core to rim of garnet porphyroblasts in samples with multiple FIAs. The first and second formed sets of FIAs trend oblique to the axial planes of macroscopic folds that dominate the outcrop pattern in this region. The porphyroblasts containing these FIAs grew prior to the development of the macroscopic folds, yet the FIAs do not change orientation across the fold hinges. The youngest formed FIAs (set 3) lie subparallel to the axial planes of these folds and the porphyroblasts containing these FIAs formed in part as the folds developed. The deformation associated with all three generations of spiral‐shaped inclusion trails in garnet porphyroblasts involved the formation of subhorizontal and subvertical foliations against porphyroblast rims accompanied by periods of garnet growth; pervasive structures have not necessarily formed in the matrix away from the porphyroblasts. The macroscopic folds are heterogeneously strained from limb to limb, doubly plunging and have moderately dipping axial planes. The consistent orientation of Set 1 FIAs indicates that the development of spiral‐shaped inclusion trails in porphyroblasts with FIAs belonging to Set 2 did not involve rotation of the previously formed porphyroblasts. The consistent orientation of Sets 1 and 2 FIAs indicate that the development of spiral‐shaped inclusion trails in porphyroblasts with FIAs belonging to Set 3 did not involve rotation of the previously formed porphyroblasts during folding. This requires a fold mechanism of progressive bulk inhomogeneous shortening and demonstrates that spiral‐shaped inclusion trails can form outside of shear zones.  相似文献   

8.
In a Barrovian metamorphic sequence, garnetiferous mica schists document a heterogeneously developed superposition of sub‐orthogonal fabrics and multiple garnet growth episodes. In the variably deformed domains, four types of garnet porphyroblasts have been defined based on inclusion trail patterns. Modelled garnet zoning in the MnNCKFMASHTO system indicates a prograde evolution from 4–4.5 kbar and 490–510 °C to 5–6 kbar and 520–550 °C in the earliest subhorizontal fabric progressing towards 6.5–7.5 kbar and 560–590 °C in the subsequent subvertical foliation. This fabric is heterogeneously deformed into a shallow‐dipping retrograde foliation associated with garnet resorption. In situ electron backscatter diffraction measurements of ilmenite inclusions in individual garnet grains yield precise data on included planar and linear elements. Consistent orientations of internal foliations, lineations and foliation intersection axis sets indicate a superposition of three sub‐orthogonal foliation systems. Weak variations of internal records with increasing intensity of deformation suggest that a moderate buckling stage occurred, but apparent lack of porphyroblast rotation is interpreted as a result of dominant passive flow. Coupling the orientation of internal fabric sets with P–T estimates is used to complement the tectono‐metamorphic evolution of the thickened crust. We demonstrate that garnet porphyroblasts preserve features which reflect large‐scale tectonic processes in orogens.  相似文献   

9.
Porphyroblasts of garnet and plagioclase in the Otago schists have not rotated relative to geographic coordinates during non-coaxial deformation that post-dates their growth. Inclusion trails in most of the porphyroblasts are oriented near-vertical and near-horizontal, and the strike of near-vertical inclusion trails is consistent over 3000 km2. Microstructural relationships indicate that the porphyroblasts grew in zones of progressive shortening strain, and that the sense of shear affecting the geometry of porphyroblast inclusion trails on the long limbs of folds is the same as the bulk sense of displacement of fold closures. This is contrary to the sense of shear inferred when porphyroblasts are interpreted as having rotated during folding.
Several crenulation cleavage/fold models have previously been developed to accommodate the apparent sense of rotation of porphyroblasts that grew during folding. In the light of accumulating evidence that porphyroblasts do not generally rotate, the applicability of these models to deformed rocks is questionable.
Whether or not porphyroblasts rotate depends on how deformation is partitioned. Lack of rotation requires that progressive shearing strain (rotational deformation) be partitioned around rigid heterogeneities, such as porphyroblasts, which occupy zones of progressive shortening or no strain (non-rotational deformation). Therefore, processes operating at the porphyroblast/matrix boundary are important considerations. Five qualitative models are presented that accommodate stress and strain energy at the boundary without rotating the porphyroblast: (a) a thin layer of fluid at the porphyroblast boundary; (2) grain-boundary sliding; (3) a locked porphyroblast/matrix boundary; (4) dissolution at the porphyroblast/matrix boundary, and (5) an ellipsoidal porphyroblast/shadow unit.  相似文献   

10.
A quantitative kinetic model for the growth of the different garnet porphyroblast microstructures (type 1 and type 2) of the Western Schneeberg Complex (WSC) is presented. These porphyroblasts formed by a multiple nucleation and coalescence mechanism. Our numerical simulation shows that at constant diffusion rates: (1) low interface reaction rates result in a fully amalgamated porphyroblast (type 2); (2) intermediate reaction rates result in a porphyroblast, where coalescence of grains closer to the margin prevented amalgamation of those in the centre (similar to type 1 porphyroblasts); and (3) high interface reaction rates result in a porphyroblast microstructure with an atoll form. All three microstructures are characterised by distinctive cluster size distributions. A 2-D cluster size distribution analysis of type 1 porphyroblasts of WSC shows that these did not form because of intermediate interface reaction rates, but because the diffusion rate of nutrients was too low to keep pace with the interface reaction rate.Editorial responsibility: T.L. Grove  相似文献   

11.
The behaviour of quartz during metamorphism is studied based on two case studies from the Barrovian terrains of Sulitjelma in arctic Scandinavia and Loch Tay in the Central Highlands Dalradian of Scotland. Both terrains preserve evidence for metamorphism in pelites involving nucleation and growth of garnet at different times in the deformation history. Data are presented on the size, shape and crystallographic orientation of quartz preserved as inclusions in garnet and as grains in the surrounding matrix. While quartz-grains remain small and dispersed between mica grains, deformation appears to be dominated by grain-boundary sliding accommodated by dissolution–precipitation. At amphibolite facies, textural coarsening occurs by dissolution of small quartz grains and growth of larger quartz grains, coupled with segregation of quartz from mica. As a result, quartz deforms by dislocation creep, developing crystallographic preferred orientations (CPO) consistent with both coaxial and non-coaxial strain. Quartz CPOs with <0001> axes lying parallel to foliation and stretching direction are commonly developed, and best explained by mechanical rotation of inequant (detrital?) quartz grains. There is no evidence for selective entrapment of quartz inclusions in garnet on the basis of quartz crystallographic orientation.  相似文献   

12.
Inclusion trails in garnet and albite porphyroblasts in the Fleur de Lys Supergroup preserve successive generations of microstructures, some of which correlate with equivalent microstructures in the matrix. Microstructure–porphyroblast relationships provide timing constraints on a succession of seven crenulation cleavages (S1–S7) and five stages of porphyroblast growth. Significant destruction and alteration of early fabrics has occurred during the microstructural development of the rock mass. Garnet porphyroblasts grew episodically through four growth stages (G1–G4) and preserve a succession of five fabrics (S1–S5) as inclusion trails. Garnet growth during each of the four growth phases did not occur on all pre-existing porphyroblasts, resulting in contrasting growth histories between individual garnet porphyroblasts from the same outcrop. Albite porphyroblasts grew during a single stage of growth and have overgrown microstructures continuous with the matrix. The garnet and albite porphyroblast inclusion trails record a succession of crenulation cleavages without any rotation of the porphyroblasts relative to other porphyroblasts in the population.
Complex microstructural histories are best resolved by preparing multiple oriented thin sections from a large number of samples of different rock types within the area of study. The succession of matrix foliations must be understood, as it provides the most useful time-frame against which to measure the relative timing of phases of porphyroblast growth. Comparable microstructures must be identified in different porphyroblasts and in the rock matrix.  相似文献   

13.
Abstract Seventy-seven spatially orientated, serial thin sections cut from a single rock reveal changes in the geometry of spiral-shaped inclusion trails (SSITs) in garnet porphyroblasts. The observed SSITs are doubly curved, non-cylindrical surfaces, with total inclusion-trail curvature decreasing systematically from the cores to the rims of porphyroblasts. The three-dimensional geometry of the SSITs, reconstructed with the aid of computer graphics, shows that the orientations of spiral axes defined by the SSITs are not related in any expected nor predictable way to the main foliation in the matrix. This suggests continued deformation after or during the latest stages of porphyroblast growth, which has important implications for the use of SSITs as shear-sense indicators. Whether the formation of SSITs involves significant porphyroblast rotation with respect to a geographically fixed reference frame cannot be determined from the available data.  相似文献   

14.
New data strongly suggest that the classical spiral garnet porphyroblasts of south-east Vermont, USA, generally did not rotate, relative to geographical coordinates, throughout several stages of non-coaxial ductile deformation. The continuity of inclusion trails (Si) in these porphyroblasts is commonly disrupted by planar to weakly arcuate discontinuities, consisting of truncations and differentiation zones where quartz–graphite Si bend sharply into more graphitic Si. Discontinuous, tight microfold hinges with relatively straight axial planes are also present. These microstructures form part of a complete morphological gradation between near-orthogonally arranged, discontinuous inclusion segments and smoothly curving, continuous Si spirals. Some 2700 pitch measurements of well-developed inclusion discontinuities and discontinuous microfold axial planes were taken from several hundred vertically orientated thin sections of various strike, from specimens collected at 28 different locations around the Chester and Athens domes. The results indicate that the discontinuities have predominantly subvertical and subhorizontal orientations, irrespective of variations in the external foliation attitude, macrostructural geometry and apparent porphyroblast-matrix rotation angles. Combined with evidence for textural zoning, this supports the recent hypothesis that porphyroblasts grow incrementally during successive cycles of subvertical and subhorizontal crenulation cleavage development. Less common inclined discontinuities are interpreted as resulting from deflection of anastomosing matrix foliations around obliquely orientated crystal faces prior to inclusion. Most of the idioblastic garnet porphyroblasts have a preferred crystallographic orientation. Dimensionally elongate idioblasts also have a preferred shape orientation, with long axes orientated normal to the mica folia, within which epitaxial nucleation occurred. Truncations and differentiation zones result from the formation of differentiated crenulation cleavage seams against porphyroblast margins, in association with progressive and selective strain-induced dissolution of matrix minerals and locally also the porphyroblast margin. Non-rotation of porphyroblasts, relative to geographical coordinates, suggests that deformation at the microscale is heterogeneous and discontinuous in the presence of undeformed, relatively large and rigid heterogeneities, which cause the progressive shearing (rotational) component of deformation to partition around them. The spiral garnet porphyroblasts therefore preserve the most complete record of the complex, polyphase tectonic and metamorphic history experienced in this area, most of which was destroyed in the matrix by progressive foliation rotation and reactivation, together with recrystallization.  相似文献   

15.
The microstructures of two contrasting garnet grains are mapped using automated electron backscatter diffraction. In both cases there is a very strong crystallographic preferred orientation, with measurements clustered round a single dominant orientation. Each garnet grain is divided into domains with similar orientations, limited by boundaries with misorientations of 2° or more. In both samples most of misorientation angles measured across orientation domain boundaries are significantly lower than those measured between random pairs of orientation domains. One sample is a deformed garnet that shows considerable distortion within the domains. Lines of orientation measurements within domains and across domain boundaries show small circle dispersions around rational crystallographic axes. The domain boundaries are likely to be subgrain boundaries formed by dislocation creep and recovery. The second sample is a porphyroblast in which the domains have no internal distortion and the orientation domain boundaries have random misorientation axes. These boundaries probably formed by coalescence of originally separate garnets. We suggest that misorientations across these boundaries were reduced by physical relative rotations driven by boundary energy. The data illustrate the potential of orientation maps and misorientation analysis in microstructural studies of any crystalline material.  相似文献   

16.
In the Littleton Formation, garnet porphyroblasts preserve three generations of growth that occurred before formation of the Bolton Syncline. Inclusion trails of foliations overgrown by these porphyroblasts are always truncated by the matrix foliation suggesting that garnet growth predated the matrix foliation. In contrast, many staurolite porphyroblasts grew synchronously with formation of the Bolton Syncline. However, local rim overgrowths of the matrix foliation suggest that some staurolite porphyroblasts continued to grow after development of the fold during younger crenulation producing deformations. The axes of curvature or intersection of foliations defined by inclusion trails inside the garnet porphyroblasts lie oblique to the axial plane of the Bolton Syncline but do not change orientation across it. This suggests the garnets were not rotated during the subsequent deformation associated with fold development or during even younger crenulation events. Three samples also contain a different set of axes defined by curvature of inclusion trails in the cores of garnet porphyroblasts suggesting a protracted history of garnet growth. Foliation intersection axes in staurolite porphyroblasts are consistently orientated close to the trend of the axial plane of the Bolton Syncline on both limbs of the fold. In contrast, axes defined by curvature or intersection of foliations in the rims of staurolite porphyroblasts in two samples exhibit a different trend. This phase of staurolite growth is associated with a crenulation producing deformation that postdated formation of the Bolton Syncline. Measurement of foliation intersection axes defined by inclusion trails in both garnet and staurolite porphyroblasts has enabled the timing of growth relative to one another and to the development of the Bolton Syncline to be distinguished in rocks where other approaches have not been successful. Consistent orientation of foliation intersection axes across a range of younger structures suggests that the porphyroblasts did not rotate relative to geographical coordinates during subsequent ductile deformation. Foliation intersection axes in porphyroblasts are thus useful for correlating phases of porphyroblastic growth in this region.  相似文献   

17.
Whether or not a growing porphyroblast can displace its surrounding matrix is an important but contentious issue affecting the interpretation of metamorphic textures. As an alternative to treating the problem in terms of force of crystallization, this paper examines the mechanics of porphyroblast-matrix interaction using a different and much simpler conceptual framework. New microstructural evidence for matrix displacement is then presented and analysed in detail. This evidence, from a hornfelsed metagreywacke, consists of dome-shaped accumulations of muscovite and graphite, each dome being attached to (and concave towards) a rhombdodecahedral face of a garnet porphyroblast. Muscovite within the domes shows a dimensional preferred orientation subparallel to the dome outlines while, in the matrix away from the domes, there is no preferred orientation.Our model for the origin of the mica domes envisages muscovite and graphite being swept ahead of, and mechanically accumulated onto, the growing garnet faces as they advance through the matrix. Rigorous testing of this model provides strong evidential support for matrix displacement by growing porphyroblasts. A new analysis is provided of the conditions under which matrix grains are included or displaced by porphyroblasts. It is concluded that matrix grain displacement may be very common, although the special combination of circumstances necessary to produce a diagnostic microstructural pattern probably occurs very rarely.  相似文献   

18.
The behaviour of spherical versus highly ellipsoidal rigid objects in folded rocks relative to one another or the Earth’s surface is of particular significance for metamorphic and structural geologists. Two common porphyroblastic minerals, garnet and staurolite, approximate spherical and highly ellipsoidal shapes respectively. The motion of both phases is analysed using the axes of inflexion or intersection of one or more foliations preserved as inclusion trails within them (we call these axes FIAs, for foliation inflexion/intersection axes). For staurolite, this motion can also be compared with the distribution of the long axes of the crystals. Schists from the regionally shallowly plunging Bolton syncline commonly contain garnet and staurolite porphyroblasts, whose FIAs have been measured in the same sample. Garnet porphyroblasts pre-date this fold as they have inclusion trails truncated by all matrix foliations that trend parallel to the strike of the axial plane. However, they have remarkably consistent FIA trends from limb to limb. The FIAs trend 175° and lie 25°NNW from the 020° strike of the axial trace of the Bolton syncline. The plunge of these FIAs was determined for six samples and all lie within 30° of the horizontal. Eleven of these samples also contain staurolite porphyroblasts, which grew before, during and after formation of the Bolton syncline as they contain inclusion trails continuous with matrix foliations that strike parallel to the axial trace of this fold. The staurolite FIAs have an average trend of 035°, 15°NE from the 020° strike of the axial plane of this fold. The total amount of inclusion trail curvature in staurolite porphyroblasts, about the axis of relative rotation between staurolite and the matrix (i.e. the FIA), is greater than the angular spread of garnet FIAs. Although staurolite porphyroblasts have ellipsoidal shapes, their long axes exhibit no tendency to be preferentially aligned with respect to the main matrix foliation or to the trend of their FIA. This indicates that the axis of relative rotation, between porphyroblast and matrix (the FIA), was not parallel to the long axis of the crystals. It also suggests that the porphyroblasts were not preferentially rotated towards a single stretch direction during progressive deformation. Five overprinting crenulation cleavages are preserved in the matrix of rocks from the Bolton syncline and many of these result from deformation events that post-date development of this fold. Staurolite porphyroblast growth occurred during the development of all of these deformations, most of which produced foliations. Staurolite has overgrown, and preserved as helicitic inclusions, crenulated and crenulation cleavages; i.e. some inclusion trail curvature pre-dates porphyroblast growth. The deformations accompanying staurolite growth involved reversals in shear sense and changing kinematic reference frames. These relationships cannot all be explained by current models of rotation of either, or both, the garnet and staurolite porphyroblasts. In contrast, we suggest that the relationships are consistent with models of deformation paths that involve non-rotation of porphyroblasts relative to some external reference frame. Further, we suggest there is no difference in the behaviour of spherical or ellipsoidal rigid objects during ductile deformation, and that neither garnet nor staurolite have rotated in schists from the Bolton syncline during the multiple deformation events that include and post-date the development of this fold.  相似文献   

19.
Mushroom‐ and atoll‐shaped garnet crystals were found in high‐pressure quartz‐rich pelitic layers from the Monte Mucrone area (Western Alps, Italy). These garnet crystals are characterized by a peninsula‐shaped core surrounded by a partially crystallized, dodecahedral external rim. Textural observations and thermodynamic modelling point towards growth of the atoll garnet from the Monte Mucrone area during two distinct orogenic cycles. The core region and the inner part of the ring forming the edge of the atoll grew under Barrovian metamorphic conditions of likely Hercynian age, while the outer rim of the atoll structure developed under Alpine high‐pressure conditions. Electron backscatter diffraction analyses indicate that the atoll‐shaped structure has one single crystallographic orientation, despite its complex compositional zoning. Thermodynamic modelling reveals marked changes in equilibrium assemblage leading to changes in stoichiometry of the garnet‐forming reaction, which in turn explain the characteristic garnet morphology. Small amounts of quartz are consumed during the earlier stage of garnet growth history, whereas the production of garnet requires a much larger amount of quartz during the final stage of its growth. This leads to a change from initial poikiloblastic to non‐poikiloblastic textures. This change is responsible for the formation of atoll‐shaped garnet. Finally, garnet in intercalated mica‐rich layers forms idiomorphic crystals, continuous from the centre to rim. This study highlights the importance of the difference between the local matrix composition and the aggregate composition of the reactants needed for the garnet‐forming reaction. Finally, we show that interaction between matrix and reaction stoichiometry can lead to porphyroblast precipitation inside the already grown porphyroblast.  相似文献   

20.
Chemical zoning in the outer few 10s of microns of garnet porphyroblasts has been investigated to assess the scale of chemical equilibrium with matrix minerals in a pelitic schist. Garnet porphyroblasts from the Late Proterozoic amphibolite facies regional metamorphic mica schists from Glen Roy in the Scottish Highlands contain typical prograde growth zoning patterns. Edge compositions have been measured via a combination of analysis of traverses across the planar edges of porphyroblast surfaces coupled to X-ray mapping of small areas within polished thin sections at the immediate edge of the porphyroblasts. These approaches reveal local variation in garnet composition, especially of grossular (Ca) and almandine (Fe) components, with a range at the edge from <7 mol.% grs to >16 mol.% grs, across distances of less than 50 µm. This small-scale patchy compositional zoning is as much variation as the core–rim compositional zoning across the whole of a 3 mm porphyroblast. Ca and Fe heterogeneity occurs on a scale suggesting a combination of inefficient diffusive exchange across grain boundaries during prograde growth and the evolving microtopography of the porphyroblast surface control garnet composition. The latter creates haloes of compositional zoning adjacent to some inclusions, which typically extend from the inclusion towards the porphyroblast edge during further growth. The lack of a consistent equilibrium composition at the garnet edge is also apparent in the internal zoning of the porphyroblast and so processes occurring during entrapment of some mineral inclusions have a profound influence on the overall chemical zoning. Garnet compositions and associated zoning patterns are widely used by petrologists to reconstruct P–T–t paths for crustal rocks. The evidence of extremely localized (10–50 µm scale) equilibrium during growth further undermines these approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号