首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
中巴喀喇昆仑公路是中巴经济走廊的重要建设部分,但沿线地质灾害多发,对公路正常运营造成严重威胁。尤其是盖孜河谷段地质环境更为复杂,在降水、地震诱发下,崩塌、滑坡、泥石流等地质灾害多发。本研究采用小基线集雷达干涉测量技术(SBAS-InSAR)技术结合实地验证对盖孜河谷段进行地表变形监测和地质灾害早期识别研究,得出如下结论:(1)利用SBAS-InSAR技术得到了中巴公路盖孜河谷段的时间序列地表形变信息,提取了每个形变点的年均形变速率和累计形变量,证实了该方法在山区地质灾害早期识别中的良好优势;(2)选择以公路为中心的10 km缓冲区作为研究范围,利用SBAS-InSAR的方法干涉处理得到研究区2016—2017年雷达视线方向(LOS,Line of Sight)的形变速率值为-76~28 mm/a,结合研究区的坡度、坡向及卫星采集数据的几何姿态等信息将视线方向形变转换到斜坡方向,得到沿斜坡向的最大形变速率值为-157 mm/a。(3)基于斜坡向滑移速率,结合野外考察得到发育在研究区的449处灾害点,包括31处滑坡,416处不稳定斜坡和2处冰川运动,通过遥感解译和野外实地验证识别出区域内23条泥石流沟。(4)利用热带降雨测量任务(TRMM)降水数据对时间序列形变曲线进行分析,得到区域滑坡、不稳定斜坡的发生与强降水相关,且滑移现象滞后于强降水的发生,所以应该重点关注异常降水的发生,为灾害早期识别和防治提供科学依据。  相似文献   

2.
宁厦南部地区以黄土丘陵地貌为主,区内沟壑纵横,小型滑坡较为发育,地表形变监测难度大。为探索黄土丘陵区的地质灾害隐患识别方法,以宁夏回族自治区固原市泾源县为研究区,应用SBAS-InSAR技术对采集到的2016年7月—2021年5月的11期升轨L波段ALOS-2数据进行处理,得到形变速率结果。联合高分光学影像,根据形变速率、形变规模、坡度、形变区到承灾体的距离等因素进行综合分析,在泾源县共识别疑似隐患27处。经实地验证,其中22处形变迹象较明显、而且有明确的承灾体,确定为地质灾害隐患。对其中典型隐患点进行时序形变分析,发现这些区域在监测时间段内有持续显著的地表形变,最大沉降速率达到91.53 mm/a。结果表明:在黄土丘陵区,应用L波段SAR数据,采用SBASInSAR技术的地质灾害形变监测效果显著,联合高分辨率的光学影像数据、应用综合遥感识别的方法,在该地区地质灾害隐患识别的正确率较高,具有很好的适用性。未来可编程采集升、降轨结合的L波段数据、结合无人机LiDAR数据做更深入的研究,以进一步提高地质灾害隐患识别的准确率,为地质灾害精准防治做好技术支撑。  相似文献   

3.
滑坡是一种破坏力极强的地质灾害,对滑坡易发区域进行长期有效的时序形变监测是研究机理和防灾减灾的重要途径,小基线雷达干涉测量技术(SBAS-InSAR)在滑坡等地质灾害形变监测中的应用为当前地灾防治提供了新的手段。文章使用SBAS-InSAR技术对西藏江达县金沙江流域发生的典型滑坡灾害进行了时序形变特征分析。首先,基于2017年7月—2018年12月的23景Sentinel-1A影像数据,获取了江达县东部及其周边区域在时间跨度内的形变分布图以及时序形变特征;在此基础上,结合区域内沃达和白格2处滑坡的实地勘探资料和现有研究成果验证了形变探测结果的准确性;另监测数据显示沃达滑坡中部及前缘位置存在明显形变,且部分位置的形变量超过100 mm,白格滑坡的残留体同样存在较大的形变,尤其是边界区域存在明显的形变漏斗,最大形变量超过110 mm。同时在金沙江流域西岸存在2处滑坡隐患区域,累计沉降量均超过45 mm,最大形变速率分别为?53 mm/a和?45 mm/a。基于数据分析和现场勘查,表明SBAS-InSAR技术在滑坡灾害的形变监测方面是一种有效手段,另江达县金沙江多处岸坡在不断发生形变,应进一步加强该区域地质灾害形变监测,必要时提前开展防治工作。  相似文献   

4.
采用短基线集时序干涉测量(small baseline subset InSAR,SBAS-InSAR)技术,利用多时相合成孔径雷达数据,对川西高山峡谷区开展地表多时相、长时序形变监测与地质灾害隐患早期识别研究。介绍了时序InSAR方法原理,梳理了数据处理流程,分析了小金川河流域雷达可视性,利用2018-11—2019-12共26期的Sentinel-1A历史存档数据开展了流域内地表形变监测,结果表明: 流域内雷达视线方向的年平均形变速率为-51.12~75.28 mm/a; 依据形变异常分布规律,共判译出4处形变异常区与11处潜在地质灾害隐患点,其中6处隐患点为已知地质灾害点,其余5处隐患点尚不为人知。以隐患点P1(阿娘寨滑坡)为典型案例,开展了长时序监测分析与验证,评估利用InSAR技术开展地质灾害隐患早期识别的可靠性,证明了SBAS-InSAR技术在地质灾害早期识别中的优势及有效性,其技术成果在川西高山峡谷区具有大范围推广应用的潜力。  相似文献   

5.
澜沧江卡贡乡—如美镇段位于青藏高原东南部,具有海拔较高、河谷深切、地势起伏大、水力资源丰富的特点。该区域地质构造复杂,发育较多高位地质灾害隐患,严重影响下游水电站建设安全。为保证澜沧江下游水电站的安全建设,利用Stacking-InSAR技术探测澜沧江卡贡乡—如美镇段及其干流两侧5 km范围内的隐患点,获取研究区隐患点数量及分布特征,并选取典型隐患点,分析其在时间序列上的形变特征。结果表明: ①研究区内升轨、降轨影像共探测出崩滑隐患点149处,多具有坡体临空条件好、植被覆盖较少等特点,坡体表面多发育有冲沟,局部多发育浅层崩塌,受风化侵蚀较为严重,结构较为松散; ②研究区的隐患点类型主要为崩塌和滑坡,共探测出崩塌隐患54处,滑坡隐患95处; ③研究区滑坡隐患点坡体多发育有局部崩塌现象,且多处于匀速变形阶段,但视线向年均形变速率与累积形变量较大,坡体较不稳定,对澜沧江沿岸居民及下游水电站建设威胁较大。  相似文献   

6.
针对传统地质灾害调查手段难以有效识别高位远程、高植被覆盖下地质灾害隐患问题,本文研究采用InSAR、机载LiDAR、无人机光学遥感等技术,系统开展了九寨沟地震区域地质灾害隐患早期识别工作。通过SAR数据处理、激光点云数据处理、无人机影像处理等过程,构建了一套集成纹理特征、形变特征、形态特征的地质灾害隐患识别遥感解译图谱。通过综合应用多源遥感技术,完成了九寨沟核心景区230 km2范围内的地质灾害隐患早期识别任务,突破了以往地质灾害灾害调查灾害隐患看不见、看不清、看不准的难题,提高了该区域地质灾害隐患识别的成功率。研究表明,综合应用InSAR、机载LiDAR、无人机遥感等探测技术可以有效提高艰险复杂山地环境地质灾害隐患的识别率,可以为地质灾害隐患早期识别提供技术支撑。  相似文献   

7.
早期识别是实现地质灾害防灾减灾的有效途径之一,然而复杂地形区滑坡的早期识别一直是个难题,尤其是位于高山峡谷区的滑坡隐患点。为了全面准确地获取川藏铁路澜沧江段的滑坡隐患,采用SBAS-InSAR技术,通过Sentinel-1(升轨)和RADARSAT-2(降轨)数据结合互补的方式,对川藏铁路澜沧江段进行滑坡隐患早期识别。解译结果显示2018年8月至2020年2月研究区LOS向的形变速率分别为-58~21 mm/a(升轨)和-42~16 mm/a(降轨),转换后的斜坡向最大平均速率达到-128 mm/a。基于升降轨数据的斜坡向形变结果,识别出川藏铁路澜沧江段的113处滑坡隐患点,其中存在4处滑坡隐患密集区以及13处典型滑坡隐患点,进一步分析了两处重点滑坡隐患的形变特征和滑移机制。本次研究结果对于川藏铁路线路选定以及澜沧江大桥上、下游的防灾减灾具有一定指导作用,不同轨道数据结合互补的方式为川藏铁路沿线的高山峡谷地区的滑坡隐患早期识别提供参考。  相似文献   

8.
2021年8月8日渠县遭遇特大暴雨袭击,引发新增灾害38处,不同程度加剧已有灾害点109处。文中基于实地调查资料,对特大暴雨引发灾害的特征和孕灾地质条件与灾害分布关系开展研究,对比研究了累计降雨量与新增灾害数量和已有灾害加剧程度之间的关系。结果表明:此次渠县特大暴雨引发新增灾害点主要为土质滑坡,占比94.7%;区域斜坡结构对灾害发生的影响程度最高;土质滑坡集中发生在300~325 mm累计雨量区间,高达27处,变形迹象加剧程度严重的灾害点23处,分布在累计雨量为337~348 mm区间内;为该县地质灾害防治区划与汛期地质灾害防御提供科学依据,为类似地区特大暴雨地质灾害防灾减灾提供参考。  相似文献   

9.
张林梵 《西北地质》2023,(3):250-257
中国黄土滑坡灾害频发且分布广泛,传统的地质灾害调查对于地处高位、形变特征不明显和隐蔽型的滑坡隐患难以有效识别,是滑坡灾害监测预警成功率低的主要原因之一。如何有效超前判识别地质灾害隐患是地质灾害防治工作的前提和基础,时序InSAR技术在此领域具有良好的应用潜力,但如何更好地将InSAR技术融入到滑坡灾害相关研究中仍处于探索阶段。笔者以西安市白鹿塬西南区为研究区,在高精度三维倾斜摄影、ALOS-2雷达影像集等数据基础上,以时序InSAR技术反演得到104处地表形变明显区域;结合黄土滑坡易发指数、航拍影像和野外核查,快速识别黄土滑坡及隐患23处,其中包括新识别的滑坡隐患20处和在册的滑坡灾害3处,通过与传统地灾调查数据比对和实地调查核实验证了时序InSAR方法探测结果的优势和有效性,并构建了基于高精度InSAR和DEM数据的黄土滑坡隐患早期识别方法。  相似文献   

10.
中国地质灾害点分布较为广泛,人工调查和排查的手段在特殊地区无法开展地质灾害隐患的识别,为了满足大区域地质灾害普查的需要,提出利用时序InSAR技术对广域地表进行形变监测。本文利用4个轨道92景Sentinel 1影像,基于小基线子集技术,首先,基于特定的时空基线阈值筛选影像集合;其次,利用轨道参数与强度信息进行影像配准,同时利用DEM去除地形相位;然后,通过两次形变反演剔除大气延迟相位与噪声相位;最后,将视线向形变量转换为垂直向形变,生成湖北省省域沉降普查图。结果表明,全省最大沉降速率达51 mm·a-1,荆门市石膏矿区存在缓慢沉降,最大年沉降速率为212 mm·a-1,通过历史灾害资料及实地调查核实,时间序列InSAR技术在广域地表形变监测中的有效性,为全省地质灾害普查提供一种技术支持。  相似文献   

11.
在全球变暖的大背景下,我国藏南地区冰川持续退缩,冰湖不断扩张,从而引发了一系列的地质灾害问题。文章利用Landsat系列影像,在面向对象分类方法的基础上采用波段比值法和NDWI指数提取了藏南希夏邦玛峰地区1994—2018年共9期冰川和冰湖的面积。研究表明,希夏邦玛峰地区净冰川持续退缩,总体速率为(1.28±0.32)%/a,冰湖的扩张速率约为(1.88±1.07)%/a。同时,面积小于1 km2的冰川退缩极为严重,高达33.25%。其次气象再分析数据表明夏季气温和降水的增加可能是该地区净冰川退缩加快的重要原因,并且共同促进了冰湖的加速扩张,大大提高了该地区冰湖溃决的风险。  相似文献   

12.
青藏高原持续隆升使得其周缘地带地质灾害频发,复杂的地质背景,造就了帕隆藏布流域链式灾害发育、堵江致灾风险高的特点。近年来,地处帕隆藏布流域的然乌湖口地质灾害变形强烈,本文通过光学遥感与InSAR监测技术,对然乌湖口82道班沟内进行风险物源识别,解译出研究区共存在高位冰崩、崩塌、冰碛物、崩滑体4种风险物源类型,针对各风险物源的遥感解译数据进行特征分析,综合然乌湖流域内的地质背景,阐述风险物源的致灾因素及成灾模式。结合InSAR监测结果,将然乌湖口右岸斜坡体及上部解译风险物源区划分为82道班、迫隆与哑隆三个高风险区,并依据变形监测结果进行形变特征分析。  相似文献   

13.
西藏阿里地区大、小昂龙冰川变化观测研究   总被引:1,自引:1,他引:0  
在西藏阿里地区狮泉河上游的大、小昂龙冰川开展了连续2年(2014—2016年)的冰川变化地面观测,主要包括冰川表面物质平衡与差分GPS高程变化同步观测,以及冰川表面流速观测,冰川末端观测和冰川雷达测厚。观测结果表明:大、小昂龙冰川表面物质平衡与同期差分GPS观测结果之间存在差异。冰川表面物质平衡结果显示,2014—2016年间,大、小昂龙冰川分别以每年72 mm w.e.和219 mm w.e.的速率减薄。差分GPS观测结果显示,同期大、小昂龙冰川分别以每年(442±90) mm w.e.和(265±90) mm w.e.的速率减薄;在2015/2016年,大、小昂龙冰川表面平均流速分别为4.4 m·a-1和2.3 m·a-1,其中大昂龙冰川表面平均流速较上一物质平衡年增加了10.5%;2014—2016年间,小昂龙冰川先是前进了11 m,之后又退缩了34 m,两年内平均每年退缩11.5 m;大昂龙冰川平均冰厚为67.9 m,实测最大厚度为216 m,根据雷达测厚数据插值计算的冰川储量为0.452 km3;小昂龙冰川实测最大厚度为190 m。  相似文献   

14.
TECTONIC DEFORMATION AND STRONG EARTHQUAKE ACTIVITIES ON THE EAST BORDER OF TIBET PLATEAU  相似文献   

15.
以2014—2015年的GF 1为主、少量OLI影像为基础,参考第二次中国冰川目录等文献资料,修编完成青海省和西藏自治区两省区的现代冰川编目,查明青藏两省区目前共有冰川24 796条,总面积约2624×104 km2,约占青藏两省区区域面积的137%,冰川储量为2027×103~2121×103 km3。调查区冰川数量以面积<10 km2、冰川面积介于10~100 km2之间的冰川为主,其中面积<10 km2的冰川有19 983条,占总数量的8059%,面积介于10~100 km2之间的冰川面积为11 96240 km2,占总面积的4559%;面积最大的中锋冰川的面积达23737 km2。调查区内的山系(高原)均有冰川分布,念青唐古拉山冰川数量最多,其次是喜马拉雅山和冈底斯山,这3座山系冰川数量占调查区内冰川总数量的6333%;念青唐古拉山、喜马拉雅山和昆仑山的冰川面积和冰储量位列前3位,其冰川面积和冰储量分别占总数的6809%和7344%;然而昆仑山和羌塘高原的单条冰川的平均面积大于念青唐古拉山和喜马拉雅山的平均面积。从冰川海拔分布来看,海拔5 000~6 500 m之间是冰川集中发育区域,约占调查区冰川数量和冰川总面积的85%以上。调查区的冰川在各流域的分布差异显著,恒河流域是冰川分布数量最多、面积最大的一级外流区,其数量占冰川总量的47%以上,面积占总面积的52%以上;青藏高原内陆流域的冰川数量、面积次之,其冰川数量占总数量的21%,面积占总面积的24%以上,并且内流区单条冰川的平均面积略大于外流区的平均面积。总体上,西藏的冰川数量、面积和冰储量分别占西藏和青海两省区的8492%、8492%、8668%,单条冰川的平均面积两省区相近。  相似文献   

16.
藏东南地区地理位置特殊、地形地貌独特、水力资源丰沛、战略地位重要,规划建设有诸多重大战略性基础设施和建设工程。受构造性隆升、地震活动、海洋性冰川、立体气候和人类工程活动等内外动力因素影响,该区域内密集发育高位远程滑坡地质灾害,严重威胁重大工程的安全运营。高位远程滑坡具有隐蔽性强、冲击力大、致灾范围广等特点,使得当前的研究面临“起滑机制不清、灾变机理不明、运动预测不准”的挑战,亟需解决复杂地质环境下高位远程滑坡具有的超高起滑势能、超强运动特性和超大致灾能力3个方面的科学问题,有待揭示藏东南地区孕灾环境特征和滑坡分布规律、高海拔脆性岩体起滑机制、高位崩滑体运动形态转化机制和崩滑体流态化远程运动机制等研究难点。基于这些成果构建的高位远程滑坡动力学将有助于指导藏东南重大工程规划建设中地质灾害风险防范的理论依据,对藏东南地区可持续发展具有重要的现实意义。  相似文献   

17.
基于MODIS数据的青藏高原冰川反照率时空分布及变化研究   总被引:1,自引:1,他引:0  
冰川反照率对冰川融化具有重要影响,以2000-2013年MODIS的MOD10A1逐日积雪反照率数据资料为基础,分析了青藏高原冰川反照率的时空分布及变化。结果表明:冰川年平均反照率变化范围是0.42(枪勇冰川)~0.75(PT5冰川),其中夏季平均反照率变化范围是0.45(来古冰川)~0.69(东绒布冰川和古里雅冰川)。冰川反照率空间分布并没有明显的规律性,而冰川反照率的变化速率空间分布规律明显——南部较大往北减小,北部反照率出现增大现象。研究区内大部分冰川反照率呈波动降低的趋势,年平均反照率和夏季平均反照率变化速率最大值都出现在枪勇冰川,分别是-0.015 a-1和-0.019 a-1。木吉和木孜塔格冰川年平均和夏季平均冰川反照率都增大,木吉冰川是由于2012年的高反照率引起的,而木孜塔格冰川主要与该地区气温降低、降水增多有关。  相似文献   

18.
SAR偏移量技术和光学偏移量技术是冰川运动监测重要的技术手段,但目前对于融合不同平台的影像进行三维形变的研究较少。文章选取2019年11月至2021年1月西藏聂拉木县希夏邦马峰地区的大型冰川作为研究对象,基于方差分量估计融合该研究区的Sentinel-1与Landsat8两种数据进行冰川的三维位移解算,选取了同一时期的光学影像对偏移量估计结果进行对比分析,同时选取稳定区域进行精度评估,分析该方法在冰川运动监测中的适用性和精确性。结果表明,该冰川在2019年11月至2021年1月,联合解算的东西向最大流速为21 cm/d,南北向最大流速为68 cm/d,垂直向最大流速为17 cm/d。对比单一影像获取的冰川位移结果,多影像联合解算方法,能够弥补SAR数据的失相干和光学数据的低质量像元值的不足,获得更加完整和详细的冰川信息,监测结果精度更高。可为利用不同平台的数据联合监测山地冰川的多维度和高精度变化提供参考和技术支持。  相似文献   

19.
2008—2018年中国冰川变化分析   总被引:5,自引:3,他引:2  
调查冰川资源的分布与变化,对区域乃至全球的自然环境与经济社会发展都具有十分重要的意义。基于315景Landsat 8 OLI遥感影像,结合中国第二次冰川编目数据与Google Earth软件,通过人工目视解译等方法调查了2018年中国冰川的分布与变化。结果表明:中国现存冰川53 238条,总面积为(47 174.21±19.93) km2,72%的冰川面积<0.5 km2,规模在1~32 km2的冰川的面积占中国冰川总面积的60%。2008—2018年,中国冰川总面积减少1 393.97 km2,面积变化率为-0.43%?a-1。冰川面积变化率表现出明显的空间差异,面积退缩最快的是冈底斯山,达-1.07%?a-1;最慢的是羌塘高原,为-0.05%?a-1。坡度上,各山系之间的冰川面积变化率差异较为明显。超过70%的山系位于正东和东南方向的冰川面积退缩快,2008—2018年退缩率为-5.0%;正北方向的冰川面积退缩相对缓慢,同时期退缩率为-3.8%。气温和降水变化率差异以及海拔、坡度、坡向等地形差异,共同影响中国冰川的变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号