首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
张宏福 《岩石学报》2008,24(11):2457-2467
橄榄岩的Re-Os同位素体系作为探讨岩石圈地幔形成年龄的重要手段已受到人们越来越多的重视。然而,Re-Os体系是否会受到橄榄岩的低温蚀变如蛇纹石化和地幔交代作用或橄榄岩—熔体相互作用的影响并不十分清楚。本文在总结国际上典型造山带橄榄岩剖面研究和地幔橄榄岩捕虏体研究的基础上,发现橄榄岩的Re-Os同位素体系基本不受蛇纹石化等低温蚀变作用的影响; 但橄榄岩—熔体相互作用会造成橄榄岩的Re-Os体系的变化即Re或Os的带入。当熔体/岩石比例较小时(≤1),橄榄岩—熔体相互作用会造成橄榄岩的Re含量显著增加,而放射成因的Os同位素即187Os增量有限。但当熔体/岩石比例很大时(≥1),会造成187Os同位素显著增加。同时,橄榄岩的Re含量与中等程度不相容主、微量元素如Al、Ti、Yb的正相关关系可以通过橄榄岩的两阶段演化模式来解释,即早期的部分熔融残留和后期的橄榄岩—熔体相互作用共同影响的结果。橄榄岩的Re含量与Cr含量的正相关关系进一步说明了这一问题。上述结果对华北东部岩石圈地幔的演化过程有重要的启示作用。因为华北东部古生代时期的确存在太古宙岩石圈地幔,然而新生代时期地幔橄榄岩捕虏体普遍具有元古宙而非太古宙的事实证明橄榄岩—熔体的相互作用的确广泛存在,从而造成岩石圈地幔橄榄岩变年轻。因此,新生代地幔捕虏体的Re-Os同位素年龄并不是岩石圈地幔的形成年龄,而是混合作用的结果。汉诺坝地幔橄榄岩的Re含量和Sr、Nd同位素组成符合橄榄岩—多元熔体相互作用的混合趋势,其橄榄岩的全岩Al2O3含量和橄榄石Fo的反相关性能够通过橄榄岩—熔体相互作用来解释。  相似文献   

2.
本文报道了汉诺坝新生代碱性玄武岩中地幔橄榄岩包体的主量、微量元素和Re-Os同位素。14个尖晶石橄榄岩Re、Os含量分别为0.022~0.193ng/g和1.237~4.304ng/g,^187Os/^188Os比值为0.1183~0.1244,与^187Os/^188Os比值相关性不好,但与熔体亏损指标如重稀土元素Yb的含量、全岩Al2O3的百分含量有很好的线性关系,可能反映了地幔熔融后的Re或/和Os的活动。全岩Al2O3、CaO、TiO2含量均与MgO有很好的负相关性,全岩原始地幔标准化REE丰度模式呈现了LREE亏损,表明该区橄榄岩包体是由软流圈地幔经过部分熔融,亏损了玄武质组分后形成的。由Os同位素代理等时线得到该区陆下岩石圈地幔的形成年龄为1.7~2.0Ga,表明尖晶石相橄榄岩所代表的岩石圈地幔是中元古代的陆下岩石圈地幔减薄后的残留体。  相似文献   

3.
位于安徽省境内的女山新生代碱性玄武岩中含有大量而且类型丰富的地幔橄榄岩包体,主要类型有尖晶石相、石榴石相、尖晶石-石榴子石过渡相二辉橄榄岩以及少量的方辉橄榄岩,其中部分尖晶石二辉橄榄岩样品中出现富含挥发分的角闪石、金云母和磷灰石。本文选择该区的尖晶石二辉橄榄岩和方辉橄榄岩包体进行了较为详细的岩石学、矿物学、地球化学研究工作。结果显示,除2个方辉橄榄岩表现难熔特征外,其它25件尖晶石相二辉橄榄岩均具有饱满的主量元素组成。二辉橄榄岩样品的Sr-Nd-Hf同位素均表现为亏损地幔的性质,不同于古老克拉通型难熔、富集的岩石圈地幔。富含挥发份交代矿物的出现以及轻稀土元素不同程度的富集,表明女山岩石圈地幔经历了较为强烈的交代作用,然而Re-Os同位素及PGE分析结果表明交代作用并没有显著改变Os同位素组成。二辉橄榄岩样品均具有较高的Os同位素组成,结合其饱满的主量元素组成,亏损的同位素特征,表明女山地区岩石圈地幔整体为新生岩石圈地幔。但1个方辉橄榄岩样品给出了较低的Os同位素比值0.1184,其Re亏损年龄为1.5Ga,它可能来自于软流圈中残留的古老难熔地幔。  相似文献   

4.
华北克拉通东部宽甸新生代碱性玄武岩中携带的地幔橄榄岩包体为我们认识该地区岩石圈地幔性质和演化过程提供了约束。根据橄榄石的Mg#可将宽甸橄榄岩包体分成两类: 第1类为低Mg#二辉橄榄岩包体(橄榄石Mg#相对较低: 89.8~90.3),其单斜辉石具有高TiO2(0.38%~0.57%)、Al2O3(4.41%~6.87%)、FeOT(2.46%~3.73%)、MnO(0.08%~0.11%)含量和低Cr#(7.42~14.2)的特征,它们所经历的部分熔融程度较低,这些特征类似于中国东部晚白垩世和新生代玄武岩中低Mg#橄榄岩,代表了新生饱满的岩石圈地幔;第2类为高Mg#方辉橄榄岩包体(橄榄石Mg#相对较高:91.0~92.3),其单斜辉石具有低TiO2(0.03%~0.33%)、Al2O3(2.27%~5.49%)、FeOT(2.04%~2.40%)、MnO(0.07%~0.08%)含量和高Cr#(15.3~25.8)的特征,它们经历了较高程度的部分熔融作用,其难熔的地球化学特征完全不同于低Mg#二辉橄榄岩,却与克拉通内部太古宙和元古宙地幔包体类似,代表了古老难熔岩石圈地幔的残留。两类橄榄岩包体的平衡温度没有显著差异说明宽甸岩石圈地幔不存在明显的分层现象,而是新老岩石圈地幔混杂出现。宽甸橄榄岩包体的微量元素特征表明了它们受到过多期复杂的地幔交代作用,交代介质类型不仅有硅酸盐熔/流体还有碳酸盐熔体,其来源既有太平洋板块俯冲释放的熔/流体,又有因受太平洋板块俯冲扰动而上涌的软流圈熔体,因此太平洋板块俯冲可能对华北克拉通的破坏起到了重要作用。  相似文献   

5.
苏皖地区新生代碱性玄武岩中有丰富的地幔橄榄岩捕虏体 ,测定了 2 0多个样品的Re Os元素丰度和锇同位素组成 ,结果 :Re =0 .0 2 7× 10 - 9~ 0 .375×10 - 9,Os=0 .112×10 - 9~ 3.35× 10 - 9,1 87Os 1 88Os=0 .117~ 0 .134。由代理等时线法1 87Os 1 88Os Yb获得该区岩石圈地幔早期熔体亏损事件的年龄为 1.7Ga(中元古代 )。苏皖地区岩石圈地幔的古老性表明它是元古代后岩石圈拆沉 减薄作用的残余地幔部分。岩石圈地幔经过了亏损 富集多阶段演化。  相似文献   

6.
周琴  吴福元  储著银  葛文春 《岩石学报》2010,26(4):1241-1264
吉林省伊通新生代火山群中大孤山所伴生的东小山火山含有丰富的地幔橄榄岩包体,详细的岩石学和矿物学工作显示,这些包体的主要岩石类型为尖晶石二辉橄榄岩,含有少量的方辉橄榄岩和异剥橄榄岩。包体的结构类型多样,包括粒状变晶结构、碎斑状结构、糜棱结构和筛状变晶结构。主量元素及矿物化学资料表明,这些地幔橄榄岩包体大都比较饱满,说明其所经历的部分熔融程度较低。微量元素显示,包体在形成以后经受过不同程度地幔交代作用的影响。矿物平衡温度计算结果表明包体的平衡温度为989~1142℃,来源深度约为40~70km。Sr-Nd-Hf同位素资料反映二辉橄榄岩包体具有亏损地幔的特征。Re-Os同位素资料显示上述岩石圈地幔的主体形成于显生宙期间,少量具有中元古代Re亏损年龄的样品所代表的古老地幔与本区上覆地壳成因无关,可能是软流圈中固有的较古老的大陆岩石圈地幔。  相似文献   

7.
吉林省蛟河市境内大石河新生代玄武岩中含有丰富的地幔橄榄岩包体,详细的岩石学与矿物学研究显示,这些包体的主要岩石类型为尖晶石二辉橄榄岩-方辉橄榄岩,未发现石榴石橄榄岩。岩相学及地球化学资料显示它们都是经历过熔体抽取而形成的岩石圈地幔残留。矿物平衡温度计算发现,本区的这些地幔橄榄岩包体来自地下40~60km 深度,且下部以二辉橄榄岩为主,而上部以贫单斜辉石的二辉橄榄岩和方辉橄榄岩为主,显示明显的岩石圈地幔分层现象。Sr-Nd-Hf 同位素资料反映这些地幔包体均表现为亏损性质,而 Re-Os 同位素资料确定上述岩石圈地幔形成于中元古代,明显老于上覆地壳的新元古宙时代,反映壳幔年龄上的解耦。因此我们推测,该区曾经历过华北克拉通类似的早期岩石圈地幔的整体丢失事件,然后形成于其它地区的中元古宙岩石圈地幔在本区增生。  相似文献   

8.
高山  刘勇胜 《地学前缘》2003,10(3):61-67
测定了辽宁复县奥陶纪金伯利岩和河北汉诺坝与山东栖霞第三纪碱性玄武岩中产出的地幔包体的Re Os同位素组成。金伯利岩中地幔包体的Re贫化Os同位素模式年龄 (TRD)为 2 .5~ 2 .8Ga ,从Re Os同位素定年角度证明了华北克拉通确实存在太古宙岩石圈地幔。对汉诺坝二辉橄榄岩包体获得了 (1.9± 0 .18)Ga的Re Os同位素等时线年龄 ,表明现今保存在那里的地幔主要是古元古代时形成的。汉诺坝地区出露有大量新太古代岩石 ,表明曾存在太古宙地幔。由于缺乏太古宙年龄 ,说明由汉诺坝所代表的克拉通中部曾存在的太古宙地幔在古元古代时已被减薄 ,并被 1.9Ga的新生岩石圈地幔置换。该事件与华北克拉通中部广泛的古元古代碰撞造山过程导致的麻粒岩相变质作用的时代相同 ,说明有关的岩石圈置换作用可能主要与拆沉作用有关。栖霞地幔包体具有与现代对流地幔相同的Os同位素组成 ,且Os同位素组成与Re/Os比值没有明显相关性 ,表明年龄很新。结合其它地质地球化学证据 ,说明克拉通东部的太古宙岩石圈地幔的置换作用主要发生在中生代 ,且可能与三叠纪华北和扬子陆块的陆陆碰撞造山导致的岩石圈地幔和下地壳的拆沉作用有关。本研究表明华北克拉通岩石圈地幔置换作用在时空上的分布是十分不均一的。 2 .5~ 2 .8Ga与 1.9Ga不仅?  相似文献   

9.
火山岩携带的橄榄岩捕虏体是研究深部岩石圈地幔成分特征与热结构状态的最直接样品。湖北大洪山早奥陶世钾镁煌斑岩携带的石榴二辉橄榄岩具有富集的地球化学特征,指示当时的岩石圈厚度可达110 km。华南内陆地区宁远和道县早侏罗世玄武岩所携带的地幔包体具有饱满的成分特征,代表遭受了较低程度部分熔融的地幔残留。宁远地幔包体的全岩Re-Os同位素特征显示该地区中生代大陆岩石圈地幔为从软流圈新增生而形成的新生地幔。这表明内陆地区古生代存在的富集地幔被完全拆沉,并被新生地幔所取代;中生代内陆地区的岩石圈拆沉作用可能与该地区自225 Ma以来大规模的岩石圈伸展作用有关。华南新生代地幔包体主要分布在沿海地区。通过地幔包体矿物成分估算获得的温度与压力资料揭示新生代沿海地区岩石圈厚度约为80~90 km,并具有热的地温梯度。无论是全岩还是硫化物的Re-Os同位素特征都表明沿海地区在新生代仍残留有古元古代岩石圈地幔,表明新生代沿海地区的拉张作用仅导致了岩石圈地幔的部分拆沉和减薄。  相似文献   

10.
夏萍  徐义刚 《地球化学》2006,35(1):27-40
滇东南马关地区新生代钾质玄武岩携带的幔源包体为研究该地区上地幔性质提供了物质基础。分析表明,全岩及单矿物中的玄武质组分与M gO含量之间均有很好的负相关性,与世界尖晶石二辉橄榄岩的变化趋势一致,表明橄榄岩包体代表了成分均一的上地幔经不同程度部分熔融后的残余;绝大多数包体亏损LREE及除U、Th以外的其他不相容元素,SrN-d同位素组成单一(87Sr8/6Sr=0.7022~0.7029,Nεd=9.5~12.3),显示了M ORB型地幔的成分特点。相对亏损橄榄岩(Fo>90)的平衡温度(928~959℃)低于饱满型橄榄岩F(o<90,956~1110℃)。这些特征表明,马关橄榄岩包体很可能代表了MORB型软流圈地幔底辟上涌、减压熔融后新增生的岩石圈地幔。  相似文献   

11.
Ultramafic xenoliths entrained in the late Miocene alkali basalts and basanites from NW Turkey include refractory spinel-harzburgites and dunites accompanied by subordinate spinel-lherzolites. Whole-rock major and trace element characteristics indicate that the xenoliths are mostly the solid residues of varying degrees of partial melting (~4–~15%), but some have geochemical signatures reflecting the processes of melt/rock interaction. Mantle-normalized trace element patterns for the peridotites vary from LREE-depleted to strongly LREE-enriched, reflecting multistage mantle processes from simple melt extraction to metasomatic enrichment. Rhenium and platinum group element (PGE) abundances and 187Os/188Os systematics of peridotites were examined in order to identify the nature of the mantle source and the processes effective during variable stages of melt extraction within the sub-continental lithospheric mantle (SCLM). The peridotites are characterized by chondritic Os/Ir and Pt/Ir ratios and slightly supra-chondritic Pd/Ir and Rh/Ir ratios, representing a mantle region similar in composition to the primitive mantle (PM). Moderate enrichment in PPGE (Pd–Pt–Rh)/IPGE (Ir–Os–Ru) ratios with respect to the PM composition in the metasomatized samples, however, reflects compositional modification by sulphide addition during possible post-melting processes. The 187Os/188Os ratios of the peridotites range from 0.11801 to 0.12657. Highly unradiogenic Os isotope compositions (γOs at 10 Ma from –7.0 to –3.2) in the chemically undisturbed mantle residues are accompanied by depletion in Re/Os ratios, suggesting long-term differentiation of SCLM by continuous melt extraction. For the metasomatized peridotites, however, systematic enrichments in PPGE and Re abundances, and the observed positive covariance between 187Re/188Os and γOs can most likely be explained by interaction of solid residues with basaltic melts produced by melting of relatively more radiogenic components in the mantle. Significantly, the wide range of 187Os/188Os ratios characterizing the entire xenolith suite seems to be consistent with multistage evolution of SCLM and suggests that parts of the lithospheric mantle contain materials that have experienced ancient melt removal (~1.3 Ga) which created time-integrated depletion in Re/Os ratios; in contrast, some other parts display evidence indicative of recent perturbation in the Re–Os system by sulphide addition during interaction with metasomatizing melts.  相似文献   

12.
Re-Os同位素体系在蛇绿岩应用研究中的进展   总被引:2,自引:1,他引:2  
Re-Os不同于由亲石元素构成的同位素体系,在原始上地幔(PUN)部分熔融过程中,母体Re是中等不相容元素,优先进入熔体相,子体Os是强相容元素,富集在残留相中,是研究蛇绿岩的极好示踪剂。在蛇绿岩应用研究中已经取得了4个方面的进展:(1)明确了熔体相的Re/Os和^187Os/^188Os比值高,而残留相的低;(2)铬铁矿中铂族元素矿物(PGM)的Re亏损年龄(TRD)证实了蛇绿岩中复杂的超镁铁岩体是多阶段部分熔融的产物;(3)现代大洋橄榄岩和玄武岩的Re-Os同位素研究表明熔体相和残留相的^187Os/^188Os比值在高于亏损地幔值(DMM)的部分是一致的,而低于DMM的存在不一致性,为研究蛇绿岩中熔体相与残留相是否存在“耦合”关系提供了新的制约因素;(4)揭示了蛇绿岩地幔橄榄岩中含有古大陆岩石圈地幔,这是前所未知的。虽然取得了不少进展,但是由于Re-Os同位素体系用于蛇绿岩研究的时间较短,尚存在一些问题,如显生宙蛇绿岩地幔橄榄岩的定年问题,有待进一步深化研究。  相似文献   

13.
Dunitic xenoliths from late Palaeogene, alkaline basalt flows on Ubekendt Ejland, West Greenland contain olivine with 100 × Mg/(Mg + Fe), or Mg#, between 92.0 and 93.7. Orthopyroxene has very low Al2O3 and CaO contents (0.024–1.639 and 0.062–0.275 wt%, respectively). Spinel has 100 × Cr/(Cr + Al), or Cr#, between 46.98 and 95.67. Clinopyroxene is absent. The osmium isotopic composition of olivine and spinel mineral separates shows a considerable span of 187Os/188Os values. The most unradiogenic 187Os/188Os value of 0.1046 corresponds to a Re-depletion age of ca. 3.3 Gy, while the most radiogenic value of 0.1336 is higher than present-day chondrite. The Os isotopic composition of the xenoliths is consistent with their origin as restites from a melt extraction event in the Archaean, followed by one or more subsequent metasomatic event(s). The high Cr# in spinel and low modal pyroxene of the Ubekendt Ejland xenoliths are similar to values of some highly depleted mantle peridotites from arc settings. However, highly depleted, arc-related peridotites have higher Cr# in spinel for a given proportion of modal olivine, compared to cratonic xenolith suites from Greenland, which instead form coherent trends with abyssal peridotites, dredged from modern mid-ocean ridges. This suggests that depleted cratonic harzburgites and dunites from shallow lithospheric mantle represent the residue from dry melting in the Archaean.  相似文献   

14.
Previous studies of samples of subcontinental lithospheric mantle (SCLM) that underlay the North China Craton (NCC) during the Paleozoic have documented the presence of thick Archean SCLM at this time. In contrast, samples of SCLM underlying the NCC during the Cenozoic are characterized by evidence for melt depletion during the Proterozoic, and relatively recent juvenile additions to the lithosphere. These observations, coupled with geophysical evidence for relatively thin lithosphere at present, have led to the conclusion that the SCLM underlying the NCC was thinned and modified subsequent to the late Paleozoic. In order to extend the view into both the Paleozoic and modern SCLM underlying the NCC, we examine mantle xenoliths and xenocrystic chromites extracted from three Paleozoic kimberlites (Tieling, Fuxian and Mengyin), and mantle xenoliths extracted from one Cenozoic basaltic center (Kuandian). Geochemical data suggest that most of the Kuandian xenoliths are residues of small degrees of partial melting from chemically primitive mantle. Sr-Nd-Hf isotopic analyses indicate that the samples were removed from long-term depleted SCLM that had later been variably enriched in incompatible elements. Osmium isotopic compositions of the two most refractory xenoliths are depleted relative to the modern convecting upper mantle and have model melt depletion ages that indicate melt depletion during Paleoproterozoic. Other relatively depleted xenoliths have Os isotopic compositions consistent with the modern convecting upper mantle. This observation is generally consistent with earlier data for xenoliths from other Cenozoic volcanic systems in the NCC and surrounding cratons. Thus, the present SCLM underlying the NCC has a complex age structure, but does not appear to retain materials with Archean melt depletion ages. Results for what are presumed to be early Paleozoic xenoliths from Teiling are generally highly depleted in melt components, e.g. have low Al2O3, but have also been metasomatically altered. Enrichment in light rare earth elements, low εNd values (∼−10), and relatively high 87Sr/86Sr (0.707-0.710) are consistent with a past episode of metasomatism. Despite the metasomatic event, 187Os/188Os ratios are low and consistent with a late Archean melt depletion event. Thus, like results for xenoliths from other early Paleozoic volcanic centers within the NCC, these rocks sample dominantly Archean SCLM. The mechanism for lithospheric thinning is still uncertain. The complex age structure currently underlying the NCC requires either variable melt depletion over the entire history of this SCLM, or the present lithospheric material was partly or wholly extruded under the NCC from elsewhere by the plate collisions (collision with the Yangtze Craton and/or NNW subduction of the Pacific plate) that may have caused the thinning to take place.  相似文献   

15.
Sulphide-bearing diamonds recovered from the ∼20 Ma Ellendale 4 and 9 lamproite pipes in north-western Australia were investigated to determine the nitrogen aggregation state of the diamonds and Re-Os isotope geochemistry of the sulphide inclusions. The majority of diamond studies have been based on diamonds formed in the sub-continental lithospheric mantle (SCLM) below stable cratons, whereas the Ellendale lamproites intrude the King Leopold Orogen, south of the Kimberley craton. The sulphide inclusions consist of pyrrhotite-pentlandite-chalcopyrite assemblages, and can be divided into peridotitic and eclogitic parageneses on the basis of their Ni and Os contents. A lherzolitic paragenesis for the high-Ni sulphide inclusions is suggested from their Re and Os concentrations. Regression analysis of the Re-Os isotope data for the lherzolitic sulphides yields an age of 1426 ± 130 Ma, with an initial 187Os/188Os ratio of 0.1042 ± 0.0034. The upper limit of the uncertainty on the 187Os/188Os initial ratio gives a Re depletion age of 2.96 Ga, indicating the presence of SCLM beneath Ellendale since at least the Mesoarchaean, with the lherzolitic diamond-forming event much younger and unrelated to the craton keel stabilisation. The nitrogen aggregation state of the diamonds and calculated mantle residence temperatures suggest an origin and storage of the Ellendale diamonds in a stable cratonic SCLM, consistent with the King Leopold Orogen being cratonised by about 1.8 Ga. The diamonds do not show evidence for pervasive deformation or platelet degradation, which suggests that the diamonds had a relatively undisturbed 1.4 billion year mantle storage history.  相似文献   

16.
Studies of mantle xenolith and xenocryst studies have indicated that the subcontinental lithospheric mantle (SCLM) at the Karelian Craton margin (Fennoscandian Shield) is stratified into at least three distinct layers cited A, B, and C. The origin and age of this layering has, however, remained unconstrained. In order to address this question, we have determined Re–Os isotope composition and a comprehensive set of major and trace elements, from xenoliths representing all these three layers. These are the first Re–Os data from the SCLM of the vast East European Craton.

Xenoliths derived from the middle layer B (at  110–180 km depth), which is the main source of harzburgitic garnets and peridotitic diamonds in these kimberlites, are characterised by unradiogenic Os isotopic composition. 187Os/188Os shows a good correlation with indices of partial melting implying an age of  3.3. Ga for melt extraction. This age corresponds with the oldest formation ages of the overlying crust, suggesting that layer B represents the unmodified SCLM stabilised during the Paleoarchean. Underlying layer C (at 180–250 km depths) is the main source of Ti-rich pyropes of megacrystic composition but is lacking harzburgitic pyropes. The osmium isotopic composition of layer C xenoliths is more radiogenic compared to layer B, yielding only Proterozoic TRD ages. Layer C is interpreted to represent a melt metasomatised equivalent to layer B. This metasomatism most likely occurred at ca. 2.0 Ga when the present craton margin formed following continental break-up. Shallow layer A (at  60–110 km depth) has knife-sharp lower contact against layer B indicative of shear zone and episodic construction of SCLM. Layer A peridotites have “ultradepleted” arc mantle-type compositions, and have been metasomatised by radiogenic 187Os/188Os, presumably from slab-derived fluids. Since layer A is absent in the core of the craton, its origin can be related to Proterozoic processes at the craton margin. We interpret it to represent the lithosphere of a Proterozoic arc complex (subduction wedge mantle) that became underthrusted beneath the craton margin crust during continental collision  1.9 Ga ago.  相似文献   


17.
Major elements, highly siderophile elements (HSE) and Re-Os isotope ratios were analysed in situ on individual sulfide grains in spinel peridotite xenoliths hosted by Miocene intraplate basalts from the Penghu Islands, Taiwan. The xenoliths represent texturally and compositionally different mantle domains, and the geochemical characteristics of the sulfides show changes in HSE distribution and Re-Os isotope systematics, produced as their host rocks were metasomatised by percolating fluids/melts. In prophyroclastic and partly metasomatised peridotites from the Kueipi (KP) locality, the sulfides have subchondritic to superchondritic 187Re/188Os and 187Os/188Os ratios. Many of these sulfides reflect fluid/melt interaction with residual MSS and/or crystallization of fractionated sulfide melts, which produced high contents of Cu and PPGEs and high Re/Os; inferred melt/rock ratios are low. In contrast, sulfides in equigranular and extensively metasomatised peridotites from the Tungchiyu (TCY) locality are mainly more sulfur-rich Ni-(Co)-rich MSS, with subchondritic to chondritic 187Os/188Os and subchondritic 187Re/188Os. These sulfides are interpreted as products of interaction between pre-existing MSS and percolating silicate melts. Melt/rock ratios were high and the percolating melt was less differentiated than the melt that percolated the KP peridotites. Sulfides in a TCY pyroxenite are mainly MSS; they have the lowest HSE contents, subchondritic to superchondritic 187Os/188Os and subchondritic 187Re/188Os, and may have precipitated from sulfide melts that segregated from basaltic melts under S-saturated conditions. In most sulfides melt percolation appears to have induced fractionation among the HSEs and disturbed Re-Os isotope compositions. Despite the metasomatic effects, rare residual MSS, sulfides that from crystallised sulfide melts and sulfides modified by addition of Re (with no evidence for Os addition) can still provide useful chronological information. Such sulfides yield TRD age peaks of 1.9, 1.7-1.6, 1.4-1.3 and 0.9-0.8 Ga, which may record the timing of melt extraction and/or metasomatic events in the mantle. These periods are contemporaneous with the major crustal events recorded by U-Pb dates and Nd and Hf model ages in the overlying crust. This close correspondence indicates that the sulfide TRD ages reflect the timing of lithosphere-scale tectonothermal events (such as melting and metasomatism) that affected both the lithospheric mantle and the overlying crust. The sulfide TRD ages, taken together with the crustal data, suggest that most of the Cathaysia block had formed at least by Paleo-Proterozoic time, and that some domains are Archean in age.  相似文献   

18.
Northeastern Queensland, a part of the Phanerozoic composite Tasman Fold Belt of eastern Australia, has a Paleozoic to Mesozoic history dominated by subduction zone processes. A suite of 13 peridotite xenoliths from the <3 Ma Atherton Tablelands Volcanic Province, predominantly from Mount Quincan, comprise fertile (1.8-3.4 wt.% Al2O3 and 38.7-41.9 wt.% MgO) spinel lherzolites free from secondary volatile-bearing phases and with only weak metasomatic enrichment of incompatible trace elements (SmN/YbN = 0.23-1.1; LaN/YbN = 0.11-4.9). The suite is isotopically heterogeneous, with measured Sr (87Sr/86Sr = 0.7027-07047), Nd (143Nd/144Nd = 0.51249-0.51362), and to a lesser extent, Os (187Os/188Os = 0.1228-0.1292) compositions broadly overlapping MORB source mantle (DMM) and extending to more depleted compositions, reflecting evolution in a time-integrated depleted reservoir. Major and rare earth element systematics are consistent with mantle that is residual after low to moderate degrees of melt extraction predominantly in the spinel facies, but with a few samples requiring partial melting at greater pressures in the garnet field or near the garnet-spinel transition. In contrast to most previously studied suites of continental lithospheric mantle samples, the incompatible trace element contents and Sr and Nd isotopic systematics of these samples suggest only minimal modification of the sampled lithosphere by metasomatic processes.Five of six Mount Quincan xenoliths preserving depleted middle to heavy REE patterns form a whole rock Sm-Nd isochron with an age of ∼275 Ma (εNdi = +9), coincident with widespread granitoid emplacement in the overlying region. This isochron is interpreted to indicate the timing of partial melting of a DMM-like source. Xenoliths from other Atherton localities scatter about the isochron, suggesting that the sampled mantle represents addition of DMM mantle to the lithosphere in the Permian, when the region may have broadly been within a subduction zone setting. A sixth middle to heavy REE-depleted Mount Quincan xenolith has a distinct Nd and Os isotopic composition consistent either with an earlier, possibly Precambrian melt extraction event, or with Permian derivation from a mantle source with a less depleted (time-averaged lower Sm/Nd) Nd isotopic composition, but a more depleted (low Re/Os) Os isotopic composition.The range in measured whole rock Os isotopic compositions cannot solely be the result of time-integrated effects of variable melt extraction, especially considering the coherent Sm-Nd systematics of the suite. The Os heterogeneity more likely reflects either a heterogeneous ∼275 Ma DMM source that would have a present-day Os composition (187Os/188Os ∼ 0.1265-0.1287) overlapping both abyssal peridotites and chondrites, or significant and variable enrichment within the lithospheric mantle by secondary sulfides carrying radiogenic Os in a cryptic chalcophile enrichment event. Regardless of the origin of the Os isotopic variability, these data highlight the mantle Re-Os isotopic heterogeneity that may be present over small length scales where the lithophile Sm-Nd system may be relatively homogeneous.  相似文献   

19.
Elevated 187Os/188Os ratios compared to ambient oceanic mantle, i.e.,187Os/188Os>0.13, have been reported for both arc lavas and mantle wedge xenoliths, which have been ascribed to the addition of crustal Os through slab dehydration or melting. By contrast, much lower 187Os/188Os ratios of spinels from Izu‐Bonin‐Mariana boninites indicate slight or no crustal Os was transferred from the slab to the forearc mantle. Here we report Os isotopic compositions of peridotites from New Caledonia ophiolites, which represent relics of a forearc mantle. Some New Caledonia peridotites are characterized by Os concentrations of <1 ppb, yet have187Os/188Os ratios comparable to the ambient oceanic mantle (i.e., 187Os/188Os<0.13). This confirms that little crustal Os was transported to the forearc mantle via slab dehydration. Contrasting Os isotopes between forearc peridotites and mantle wedge xenoliths may reflect the changing behavior of Os in diverse agents released from the descending slab as a function of depth, which is mainly controlled by the stability of sulfides in the slabs. During dehydration at shallow depths, sulfides keep stable and thus little Os is transported to the overlying mantle. In comparison, sulfides become unstable and tend to break down at deeper depths where slab melting or supercritical fluid generation occurs, and thus Os behaves like a mobile element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号