首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Stochastic Simulation of Patterns Using Distance-Based Pattern Modeling   总被引:6,自引:2,他引:4  
The advent of multiple-point geostatistics (MPS) gave rise to the integration of complex subsurface geological structures and features into the model by the concept of training images. Initial algorithms generate geologically realistic realizations by using these training images to obtain conditional probabilities needed in a stochastic simulation framework. More recent pattern-based geostatistical algorithms attempt to improve the accuracy of the training image pattern reproduction. In these approaches, the training image is used to construct a pattern database. Consequently, sequential simulation will be carried out by selecting a pattern from the database and pasting it onto the simulation grid. One of the shortcomings of the present algorithms is the lack of a unifying framework for classifying and modeling the patterns from the training image. In this paper, an entirely different approach will be taken toward geostatistical modeling. A novel, principled and unified technique for pattern analysis and generation that ensures computational efficiency and enables a straightforward incorporation of domain knowledge will be presented.  相似文献   

2.
In many earth sciences applications, the geological objects or structures to be reproduced are curvilinear, e.g., sand channels in a clastic reservoir. Their modeling requires multiple-point statistics involving jointly three or more points at a time, much beyond the traditional two-point variogram statistics. Actual data from the field being modeled, particularly if it is subsurface, are rarely enough to allow inference of such multiple-point statistics. The approach proposed in this paper consists of borrowing the required multiple-point statistics from training images depicting the expected patterns of geological heterogeneities. Several training images can be used, reflecting different scales of variability and styles of heterogeneities. The multiple-point statistics inferred from these training image(s) are exported to the geostatistical numerical model where they are anchored to the actual data, both hard and soft, in a sequential simulation mode. The algorithm and code developed are tested for the simulation of a fluvial hydrocarbon reservoir with meandering channels. The methodology proposed appears to be simple (multiple-point statistics are scanned directly from training images), general (any type of random geometry can be considered), and fast enough to handle large 3D simulation grids.  相似文献   

3.
Characterization of complex geological features and patterns remains one of the most challenging tasks in geostatistics. Multiple point statistics (MPS) simulation offers an alternative to accomplish this aim by going beyond classical two-point statistics. Reproduction of features in the final realizations is achieved by borrowing high-order spatial statistics from a training image. Most MPS algorithms use one training image at a time chosen by the geomodeler. This paper proposes the use of multiple training images simultaneously for spatial modeling through a scheme of data integration for conditional probabilities known as a linear opinion pool. The training images (TIs) are based on the available information and not on conceptual geological models; one image comes from modeling the categories by a deterministic approach and another comes from the application of conventional sequential indicator simulation. The first is too continuous and the second too random. The mixing of TIs requires weights for each of them. A methodology for calibrating the weights based on the available drillholes is proposed. A measure of multipoint entropy along the drillholes is matched by the combination of the two TIs. The proposed methodology reproduces geologic features from both TIs with the correct amount of continuity and variability. There is no need for a conceptual training image from another modeling technique; the data-driven TIs permit a robust inference of spatial structure from reasonably spaced drillhole data.  相似文献   

4.
Direct Pattern-Based Simulation of Non-stationary Geostatistical Models   总被引:5,自引:2,他引:3  
Non-stationary models often capture better spatial variation of real world spatial phenomena than stationary ones. However, the construction of such models can be tedious as it requires modeling both statistical trend and stationary stochastic component. Non-stationary models are an important issue in the recent development of multiple-point geostatistical models. This new modeling paradigm, with its reliance on the training image as the source for spatial statistics or patterns, has had considerable practical appeal. However, the role and construction of the training image in the non-stationary case remains a problematic issue from both a modeling and practical point of view. In this paper, we provide an easy to use, computationally efficient methodology for creating non-stationary multiple-point geostatistical models, for both discrete and continuous variables, based on a distance-based modeling and simulation of patterns. In that regard, the paper builds on pattern-based modeling previously published by the authors, whereby a geostatistical realization is created by laying down patterns as puzzle pieces on the simulation grid, such that the simulated patterns are consistent (in terms of a similarity definition) with any previously simulated ones. In this paper we add the spatial coordinate to the pattern similarity calculation, thereby only borrowing patterns locally from the training image instead of globally. The latter would entail a stationary assumption. Two ways of adding the geographical coordinate are presented, (1) based on a functional that decreases gradually away from the location where the pattern is simulated and (2) based on an automatic segmentation of the training image into stationary regions. Using ample two-dimensional and three-dimensional case studies we study the behavior in terms of spatial and ensemble uncertainty of the generated realizations.  相似文献   

5.
Super-resolution or sub-pixel mapping is the process of providing fine scale land cover maps from coarse-scale satellite sensor information. Such a procedure calls for a prior model depicting the spatial structures of the land cover types. When available, an analog of the underlying scene (a training image) may be used for such a model. The single normal equation simulation algorithm (SNESIM) allows extracting the relevant pattern information from the training image and uses that information to downscale the coarse fraction data into a simulated fine scale land cover scene. Two non-exclusive approaches are considered to use training images for super-resolution mapping. The first one downscales the coarse fractions into fine-scale pre-posterior probabilities which is then merged with a probability lifted from the training image. The second approach pre-classifies the fine scale patterns of the training image into a few partition classes based on their coarse fractions. All patterns within a partition class are recorded by a search tree; there is one tree per partition class. At each fine scale pixel along the simulation path, the coarse fraction data is retrieved first and used to select the appropriate search tree. That search tree contains the patterns relevant to that coarse fraction data. To ensure exact reproduction of the coarse fractions, a servo-system keeps track of the number of simulated classes inside each coarse fraction. Being an under-determined stochastic inverse problem, one can generate several super resolution maps and explore the space of uncertainty for the fine scale land cover. The proposed SNESIM sub-pixel resolution mapping algorithms allow to: (i) exactly reproduce the coarse fraction, (ii) inject the structural model carried by the training image, and (iii) condition to any available fine scale ground observations. Two case studies are provided to illustrate the proposed methodology using Landsat TM data from southeast China.  相似文献   

6.
地下储层分布是位置的函数,不同位置处的沉积模式具有差异性。在储层预测时,除了挖掘已有资料所提供的结构和统计信息外,还应该引入待估点位置的信息,以反映沉积储层模式随位置变化的非平稳特征。提出了一种基于沉积模式的多点地质统计学方法,通过距离函数将储层特征与沉积位置相关联,采用整体替换、结构化随机路径以及多重网格策略再现沉积模式。基于现代鄱阳湖沉积所建立的合成非平稳性三角洲前缘沉积地层建模表明,新设计的方法较传统的建模方法更好地反映了三角洲相沉积地层非平稳沉积模式,新设计方法有更好的地质适用性。研究丰富了储层三维建模理论和方法,为实际油藏建模提供了新手段。  相似文献   

7.
Fast FILTERSIM Simulation with Score-based Distance   总被引:5,自引:3,他引:2  
FILTERSIM is a pattern-based multiple-point geostatistical algorithm for modeling both continuous and categorical variables. It first groups all the patterns from a training image into a set of pattern classes using their filter scores. At each simulation location, FILTERSIM identifies the training pattern class closest to the local conditioning data event, then samples a training pattern from that prototype class and pastes it onto the simulation grid. In the original FILTERSIM algorithm, the selection of the closest pattern class is based on the pixel-wise distance between the prototype of each training pattern class and the local conditioning data event. Hence, FILTERSIM is computationally intensive for 3D simulations, especially with a large and pattern-rich training image. In this paper, a novel approach is proposed to accelerate the simulation process by replacing that pixel-wise distance calculation with a filter score comparison, which is the difference between the filter score of local conditioning data event and that of each pattern prototype. This score-based distance calculation significantly reduces the CPU consumption due to the tremendous data dimension reduction. The results show that this new score based-distance calculation can speed up FILTERSIM simulation by a factor up to 10 in 3D applications.  相似文献   

8.
Multiple-point statistics (MPS) allows simulations reproducing structures of a conceptual model given by a training image (TI) to be generated within a stochastic framework. In classical implementations, fixed search templates are used to retrieve the patterns from the TI. A multiple grid approach allows the large-scale structures present in the TI to be captured, while keeping the search template small. The technique consists in decomposing the simulation grid into several grid levels: One grid level is composed of each second node of the grid level one rank finer. Then each grid level is successively simulated by using the corresponding rescaled search template from the coarse level to the fine level (the simulation grid itself). For a conditional simulation, a basic method (as in snesim) to honor the hard data consists in assigning the data to the closest nodes of the current grid level before simulating it. In this paper, another method (implemented in impala) that consists in assigning the hard data to the closest nodes of the simulation grid (fine level), and then in spreading them up to the coarse grid by using simulations based on the MPS inferred from the TI is presented in detail. We study the effect of conditioning and show that the first method leads to systematic biases depending on the location of the conditioning data relative to the grid levels, whereas the second method allows for properly dealing with conditional simulations and a multiple grid approach.  相似文献   

9.
Multiple-point statistics (MPS) provides a flexible grid-based approach for simulating complex geologic patterns that contain high-order statistical information represented by a conceptual prior geologic model known as a training image (TI). While MPS is quite powerful for describing complex geologic facies connectivity, conditioning the simulation results on flow measurements that have a nonlinear and complex relation with the facies distribution is quite challenging. Here, an adaptive flow-conditioning method is proposed that uses a flow-data feedback mechanism to simulate facies models from a prior TI. The adaptive conditioning is implemented as a stochastic optimization algorithm that involves an initial exploration stage to find the promising regions of the search space, followed by a more focused search of the identified regions in the second stage. To guide the search strategy, a facies probability map that summarizes the common features of the accepted models in previous iterations is constructed to provide conditioning information about facies occurrence in each grid block. The constructed facies probability map is then incorporated as soft data into the single normal equation simulation (snesim) algorithm to generate a new candidate solution for the next iteration. As the optimization iterations progress, the initial facies probability map is gradually updated using the most recently accepted iterate. This conditioning process can be interpreted as a stochastic optimization algorithm with memory where the new models are proposed based on the history of the successful past iterations. The application of this adaptive conditioning approach is extended to the case where multiple training images are proposed as alternative geologic scenarios. The advantages and limitations of the proposed adaptive conditioning scheme are discussed and numerical experiments from fluvial channel formations are used to compare its performance with non-adaptive conditioning techniques.  相似文献   

10.
Applications of multiple-point statistics (mps) algorithms to large non-repetitive geological objects such as those found in mining deposits are difficult because most mps algorithms rely on pattern repetition for simulation. In many cases, an interpreted geological model built from a computer-aided design system is readily available but suffers as a training image due to the lack of patterns repetitiveness. Porphyry copper deposits and iron ore formations are good examples of such mining deposits with non-repetitive patterns. This paper presents an algorithm called contactsim that focuses on reproducing the patterns of the contacts between geological types. The algorithm learns the shapes of the lithotype contacts as interpreted by the geologist, and simulates their patterns at a later stage. Defining a zone of uncertainty around the lithological contact is a critical step in contactsim, because it defines both the zones where the simulation is performed and where the algorithm should focus to learn the transitional patterns between lithotypes. A larger zone of uncertainty results in greater variation between realizations. The definition of the uncertainty zone must take into consideration the geological understanding of the deposit, and the reliability of the contact zones. The contactsim algorithm is demonstrated on an iron ore formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号