首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 882 毫秒
1.
The rare earth element patterns of the gneisses of Bastar and Bundelkhand are marked by LREE enrichment and HREE depletion with or without Eu anomaly. The spidergram patterns for the gneisses are characterized by marked enrichment in LILE with negative anomalies for Ba, P and Ti. The geochemical characteristics exhibited by the gneisses are generally interpreted as melts generated by partial melting of a subducting slab. The style of subduction was flat subduction, which was most common in the Archean. The rare earth patterns and the multi-element diagrams with marked enrichment in LILE and negative anomalies for Ba, P and Ti of the granitoids of both the cratons indicate interaction between slab derived melts and the mantle wedge. The subduction angle was high in the Proterozoic. Considering the age of emplacement of the gneisses and granitoids that differs by ∼ 1 Ga, it can be assumed that these are linked to two independent subduction events: one during Archaean (flat subduction) that generated the precursor melts for the gneisses and the other during the Proterozoic (high angle subduction) that produced the melts for the granitoids. The high values of Mg #, Ni, Cr, Sr and low values of SiO2 in the granitoids of Bastar and Bundelkhand cratons compared to the gneisses of both the cratons indicate melt-mantle interaction in the generation of the granitoids. The low values of Mg#, Ni, Cr, Sr and high values of SiO2 in the gneisses in turn overrules such melt-mantle interaction.  相似文献   

2.
The end of an orogenic Wilson cycle corresponds to amalgamation of terranes into a Pangaea and is marked by widespread magmatism dominated by granitoids. The post-collision event starts with magmatic processes still influenced by subducted crustal materials. The dominantly calc-alkaline suites show a shift from normal to high-K to very high-K associations. Source regions are composed of depleted and later enriched orogenic subcontinental lithospheric mantle, affected by dehydration melting and generating more and more K- and LILE-rich magmas. In the vicinity of intra-crustal magma chambers, anatexis by incongruent melting of hydrous minerals may generate peraluminous granitoids bearing mafic enclaves. The post-collision event ends with emplacement of bimodal post-orogenic (PO) suites along transcurrent fault zones. Two suites are defined, (i) the alkali-calcic monzonite–monzogranite–syenogranite–alkali feldspar granite association characterised by [biotite+plagioclase] fractionation and moderate [LILE+HFSE] enrichments and (ii) the alkaline monzonite–syenite–alkali feldspar granite association characterised by [amphibole+alkali feldspar] fractionation and displaying two evolutionary trends, one peralkaline with sodic mafic mineralogy and higher enrichments in HFSE than in LILE, and the other aluminous biotite-bearing marked by HFSE depletion relative to LILE due to accessory mineral precipitation. Alkali-calcic and alkaline suites differ essentially in the amounts of water present within intra-crustal magma chambers, promoting crystallisation of various mineral assemblages. The ultimate enriched and not depleted mantle source is identical for the two PO suites. The more primitive LILE and HFSE-rich source rapidly replaces the older orogenic mantle source during lithosphere delamination and becomes progressively the thermal boundary layer of the new lithosphere. Present rock compositions are a mixture of major mantle contribution and various crustal components carried by F-rich aqueous fluids circulating within convective cells created around magma chambers. In favourable areas, PO suites pre-date a new orogenic Wilson cycle.  相似文献   

3.
岛弧火山岩主要为俯冲带的俯冲板片脱水形成的富大离子亲石元素流体交代地幔楔,并使其发生部分熔融,产生岛弧岩浆作用而形成的,岩石组合通常为玄武岩—安山岩—英安岩—流纹岩及相应侵入岩组合。它以Al2O3、K2O高,低Ti O2,且K2ONa2O为特征,相对富集LILE,亏损HFSE,特别是Ti、Nb、Ta等。本文主要从岛弧岩浆作用的起因着手,分析流体和熔体对地幔楔的交代作用,以及岛弧岩浆作用过程,进而分析岛弧火山岩的地球化学特征。  相似文献   

4.
Neoarchaean–Palaeoproterozoic granitoids of the Aravalli craton, represented by four plutons with different ages, viz. Gingla (2.6–2.4 Ga), Ahar River (2562 Ma), Untala (2505 Ma), and Berach (2440 Ma) granitoids, are classified into three suites: TTG-like, Sanukitoid, and High-K Granitoid suite, all exhibiting negative Nb and Ti anomalies. The TTG-like suite is characterized by high contents of SiO2, Na2O, and LREEs, high (La/Yb)N, low contents of K2O, MgO, Cr, and Ni, and low (Dy/Yb)N, suggesting that this suite formed by partial melting of a subducted basaltic slab without interacting with a mantle wedge. In contrast, the calc-alkaline Sanukitoid suite is marked by a high content of LILEs and mantle-compatible elements, which indicate that this suite formed by partial melting of a slab-fluid metasomatized mantle wedge in a subduction-related arc environment. On the other hand, the High-K Granitoid suite is characterized by high contents of SiO2 and K2O, and low contents of Na2O, MgO, Cr, and Ni with variable Eu anomaly, along with high (La/Sm)N and (La/Yb)N, and low (Dy/Yb)N and Nb/Th. Some high-K granitoids also exhibit A-type characteristics. These features indicate that the High-K Granitoid suite formed by melting of crustal rocks. Early Neoarchaean continental crust formation reflected a slab-melting-dominated magmatic process as evidenced by the TTG-like suite, whereas Palaeoproterozoic petrogenesis was governed by the interaction of slab melt with mantle wedge as demonstrated by the Sanukitoid suite. The High-K Granitoid suite formed during the waning stages of subduction. This study reveals that granitic rocks of the Aravalli craton evolved from slab melting in the Neoarchaean to melting of mantle wedge in the Palaeoproterozoic. Melting of older crust led to the formation of the High-K Granitoid suite.  相似文献   

5.
俯冲带复杂的壳幔相互作用   总被引:15,自引:0,他引:15  
俯冲带除俯冲板片脱水形成的富大离子亲石元素流体、交代地幔楔形成的岛弧钙碱性玄武岩安山岩-英安岩-流纹岩及相应侵入岩组合外,还存在由俯冲扳片熔融形成的埃达克质熔体交代地慢楔形成的埃达克岩-富铌玄武岩-富镁安山岩组合,从而构成了俯冲带的流体交代与熔体交代两大类壳慢相互作用体系及相应的岩石组合。熔体交代作用的显著特点是Mg、高场强元素Nb、Ti、P等含量增加,Nd/Sr值增高,而Si、K、Na及La/Yb降低。洋壳板片或洋脊俯冲、玄武质岩浆底侵使地壳增厚,或板片断离、撕裂等作用均可产生埃达克质熔体并随之产生熔体交代作用。流体和熔体与地幔橄揽岩的相互作用构成了俯冲带复杂的地球化学体系。  相似文献   

6.
High Field Strength Element Anomalies in Arc Lavas: Source or Process?   总被引:12,自引:5,他引:12  
An understanding of the origin of depletion in the high fieldstrength elements (HFSE), Nb, Zr and Ti, relative to rare earthelements (REE) in arc lavas is critical to models both for magmagenesisin ares and for the relationship between are magmatism and growthof the continental crust. The presence of HFSE depletion inboth are lavas and in the bulk continental crust constitutessome of the strongest evidence that continental crust is/wasgenerated in subduction zones, especially if the HFSE are retainedrelative to REE in the subducting slab (Saunders et al., 1980;McDonough, 1991). Recently, however, it has been proposed thatHFSE depletion develops during the main are magma melting eventin the mantle wedge (McKenzie & O'Nions, 1991), during meltascent to the surface (Kelemen et al., 1990), or even that aworld-wide shallow mantle reservoir with HFSE depletion exists(Salters & Shimizu, 1988). If so, it is possible that HFSEdepletion may have developed in magmas unrelated to subductionzones during crust-generation processes in the Precambrian.The common presence of high-MgO lavas in the Southern LesserAntilles provides a rare opportunity to test these models, becausetheir chemistry is essentially unmodified since derivation fromthe mantle. We show that depletion (relative to REE) in theHFSE Ti, Zr, and Nb exists in the mantle wedge before melting,and is probably produced by an REE-rich slab flux. In contrastto many other arcs (Woodhead et al., 1993), there is no evidencethat the Lesser Antilles mantle source is more depleted in HFSEthan the source of mid-ocean ridge basalts. Relative to REE,Ti depletion in melts is enhanced during melting, requiringa Ti-rich phase in the residue at low melt fractions. Ti depletionis also enhanced during fractionation of magnetite and amphibole,whereas relative Zr depletion is reduced during fractionation.In most arc magmas (usually <6% MgO), fractionation is probablya major control on the extent of Ti and Zr depletion. In theLesser Antilles, the extent of Nb depletion relative to La islargely unaffected by melting or crystal fractionation processes.  相似文献   

7.
胡受奚  叶瑛等 《岩石学报》2001,17(3):425-435
海西期末形成的初始欧亚板块,从三叠纪(250Ma)开始,便与古太平洋板块-太平洋板块发生强烈的挤压碰撞作用和俯冲作用,及由此引起的远距离效应使中国广大的东部地区从中生代开始成为活动大陆边缘,俯冲作用及构造环境的演化是控制胶东地体等大多数中生代榴0辉岩等变质岩类,花岗岩类,火山岩类,煌斑岩类以及金等矿床形成和使它们出露地表的重要因素,胶东地体中富钾的钙-碱性煌斑岩类的特征与其它活动大陆边缘和造山带中金矿有关的煌斑岩很相似,例如呈脉状产出,晚期侵位,强烈的自变质,富含大离子亲石元素(LILE)和挥发分,高的金含量,高的LREE/HREE和^87Sr/^86Sr比值,低的^143Nd/^144Nd比值,与花岗岩类,橄榄安粗岩,酸性脉岩以及热液金矿床的密切共生及它们这间与富集地幔楔的成因联系等,这些都表明它们与板块或板片俯冲过程中的去气,去碱,去ILE作用或壳-幔物质交换作用及由此形成的富集地幔楔有着紧密的联系。  相似文献   

8.
The Neoarchean Yishui Terrane (YST) is situated in the east of Western Shandong Province (WSP), south-eastern margin of the North China Craton (NCC). The metavolcanic rocks of the YST are fine-grained hornblende plagioclase gneisses (Group #1) and fine-grained amphibolites (Group #2) in the Yangzhuangzhen area and fine- to medium-grained amphibolites (Group #3) in the Leigushan area. The high-K granitoids associated with Groups #1 and 2 are dominated by fine- to medium-grained monzogranitic gneisses. Zircon LA-ICP-MS U-Pb dating reveals that the magmatic precursors of Groups #1 and #2 were formed at 2641 Ma and the magmatic precursors of concomitant monzogranitic gneisses were emplaced from 2615 to 2575 Ma, whereas Group #3 represents a later 2500 Ma volcanic eruption, and all these metamorphic volcanic rocks and monzogranitic gneisses were subjected to subsequent 2470–2460 Ma metamorphism.The metamorphic volcanic rock samples in Group #1 exhibit the chemical compositions of calc-alkaline andesites, showing fractionated chondrite-normalized REE patterns ((La/Yb)N = 10.48–19.30) and negative Nb, Ta and Ti anomalies ((Nb/La)PM = 0.13–0.22), which are akin to those of typical high-Mg andesites (HMAs) in the subduction-related settings. The magmatic precursors of the Group #1 samples were derived from partial melting of a fluid- or melt-metasomatized depleted mantle wedge at deep levels in the upper mantle. Samples in Group #2 show calc-alkaline chemical compositions with less fractionated chondrite-normalized REE patterns ((La/Yb)N = 2.24–3.34) and negative Nb, Ta and Ti anomalies ((Nb/La)PM = 0.47–0.76), which are consistent with those of the volcanic rocks in the Aleutian island arc. The magmatic precursors of Group #2 were generated by partial melting of a fluid-metasomatized depleted mantle wedge at shallow levels in the upper mantle. The monzogranitic gneisses exhibit high SiO2 and K2O contents with high-K calc-alkaline affinities and peraluminous characteristics. Based on their distinct HREE contents and chondrite-normalized REE patterns, these granitoid samples are subdivided into low-Yb monzogranitic gneisses (LYMGs) and high-Yb monzogranitic gneisses (HYMGs). The LYMG magma was derived from partial melting of a mixed source of juvenile two-mica pelites and minor basic-intermediate igneous rocks at lower crustal levels with pyroxene + amphibole + garnet as the main residual phases, and the HYMG magma was derived from partial melting of multi-sourced juvenile two-mica pelites at middle to lower crustal levels with pyroxene + amphibole and subordinate plagioclase and garnet as the main residual phases. In addition, Group #3 resembles tholeiitic back-arc basalts in the Okinawa Trough and displays flat chondrite-normalized REE patterns ((La/Yb)N = 1.22–2.08) and slightly negative Nb and Ta anomalies ((Nb/La)PM = 0.35–0.59). This group was most likely derived from partial melting of a depleted mantle source that had been modified by the addition of subducted slab-derived fluids at shallow levels in the upper mantle. These metavolcanic rocks and concomitant high-K granitoids record important Neoarchean crust-mantle interactions involving the first modification and partial melting of the lithospheric mantle induced by oceanic crust subduction; then, upwelling and underplating of mantle-derived magmas triggered partial melting of the middle to lower crust and mixing between crust- and mantle-derived magmas. These processes imply that Neoarchean crust-mantle interaction played a crucial role in the evolution of the southeastern margin of the NCC.Available whole-rock Sm-Nd and zircon Lu-Hf isotopic data from metamorphic volcanic rocks and plutonic granitoids from this study and previous studies reveal that YST experienced three crucial juvenile crustal growth events from ~2.78–2.69 Ga, ~2.64–2.56 Ga and ~2.54–2.50 Ga.  相似文献   

9.
The submarine volcanoes, located in the southern part of Andaman Sea, north eastern Indian Ocean, result from the subduction of the Indo-Australian Plate beneath the Southeast Asian Plate and represent one of the less studied submarine volcanism among the global arc systems. The present study provides new petrological and geochemical data for the recovered rocks from the submarine volcanoes and documents the petrogenetic evolution of Andaman arc system. Geochemical attributes classify the studied samples as basaltic andesite, andesite, dacite to rhyodacite reflecting sub-alkaline, intermediate to acidic composition of the magma. Petrographic studies of the basaltic andesites and andesites show plagioclase [An38-An57 in basaltic andesites; An27-An28 in andesites] and clinopyroxene as dominant phenocrystal phase in a cryptocrystalline groundmass. Plagioclase (An25-An45) marks the principal phenocrystal phase in dacite with sub-ordinate proportion of biotite and amphibole of both primary and secondary origin along with minor amount of K-feldspar. The submarine volcanic rocks from Andaman arc system exhibit pronounced LILE, LREE enrichments and HFSE (negative Nb, Ta and Ti anomalies), MREE and HREE depletion thereby endorsing the influence of subduction zone processes in their genesis. Elevated abundances of Th with relatively higher LREE/HFSE than LILE/HFSE, LILE/LREE suggest significant contribution of sediments from the subducting slab over slab-dehydrated aqueous fluids towards mantle wedge metasomatism thereby modifying the sub-arc mantle. Partial melting curves calculated using the non-modal batch melting equation suggest primary magma generated due to ~31–35 % degree of partial melting of spinel lherzolite mantle beneath the arc system. Fractional crystallization model suggests fractionation of 45 % plagioclase, 40 % clinopyroxene, 5–10 % amphibole and 5–10 % biotite which is consistent with the petrographic observations. Further, the assimilation-fractional-crystallization (AFC) model for the studied rocks indicates nominal crustal contamination. Therefore, this study infers that the melt evolution history for the Andaman arc volcanic rocks can be translated in terms of (i) generation of precursor magma by ~31–35 % partial melting of a spinel lherzolite mantle wedge, metasomatized predominantly by subducted slab sediments and (ii) the parent magma generation was ensued by fractionation dominated melt differentiation with nominal input from arc crust.  相似文献   

10.
The Egyptian older and younger granitic rocks emplaced during pre- and post-collision stages of Neoproterozoic Pan-African orogeny, respectively, are widely distributed in the southern Sinai Peninsula, constituting 70% of the basement outcrops. The Wadi El-Akhder, southwestern Sinai, is a mountainous terrain exposing two granitoid suites, namely the Wadi El-Akhder Older Granites (AOG) and the Homra Younger Granites (HYG). The AOG (granodiorites with subordinate tonalite compositions) have geochemical characteristics of medium-K calc-alkaline, metaluminous to mildly peraluminous granitoids formed in an island-arc environment, which are conformable with well-known Egyptian older granitoids rocks, whereas the HYG display calc-alkaline to slightly alkaline nature, peraluminous syeno-, monzogranites and alkali feldspar granites matching well those of the Egyptian younger granites. With respect to the AOG granitoids, the HYG granites contain lower Al2O3, FeO*, MgO, MnO, CaO, TiO2, Sr, Ba, and V, but higher Na2O, K2O, Nb, Zr, Th, and Rb. The AOG are generally characterized by enrichment in LILE and LREE and depletion in HFSE relative to N-MORB values (e.g., negative Nb and Ta anomalies). The geochemical features of the AOG follow assimilation-fractional crystallization (AFC) trends indicative of extensive crustal contamination of magma derived from a mantle source. The chemical characteristics of the AOG are remarkably similar to those of subduction-related granitoids from the Arabian-Nubian Shield (ANS). The compositional variations from monzogranites through syenogranites to alkali feldspar granite within HYG could not be explained by fractional crystallization solely. Correlating the whole-rock composition of the HYG to melts generated by experimental dehydration melting of meta-sedimentary and magmatic rocks reveals that they appear to be derived by extended melting of psammitic and pelitic metasediments, which is similar to the most of younger granitic suites in the ANS.  相似文献   

11.
The ophiolitic extrusive sequence, exposed in an area north of Sabzevar, has three major parts: a lower part, with abundant breccia, hyaloclastic tuff, and sheet flow, a middle part with vesicular, aphyric pillow lava, and an upper part with a sequence of lava and volcanic-sedimentary rocks. Pelagic limestone interlayers contain Late Cretaceous (Maastrichtian–Late Maastrichtian) microfauna. The supra-ophiolitic series includes a sequence of turbidititic and volcanic-sedimentary rocks with lava flow, aphyric and phyric lava, and interlayers of pelagic limestone and radiolarian chert. Paleontological investigation of the pelagic limestone and radiolarite interlayers in this series gives a Late Cretaceous age, supporting the idea that the supra-ophiolitic series formed in a trough, synchronous with the Sabzevar oceanic crust during the Late Cretaceous. Geochemical data indicate a relationship between lava in the upper part of the extrusive sequence and lava in the supra-ophiolitic series. These lavas have a calc-alkaline to almost alkaline characteristic, and show a clear depletion in Nb and definite depletions in Zr and Ti in spider diagrams. Data from these rocks plot in the subduction zone field in tectonomagmatic diagrams. The concentration and position of the heavy rare earth elements in the spider diagrams, and their slight variation, can be attributed to partial melting of the depleted mantle wedge above the subducted slab, and enrichment in the LILE can be attributed to subduction components (fluid, melt) released from the subducting slab. In comparison, the sheet flow and pillow lava of the lower and middle parts of the extrusive sequence show OIB characteristics and high potassium magmatic and shoshonitic trends, and their spider diagram patterns show Nb, Zr, and Ti depletions. The enrichment in the LILE in the spider diagram patterns suggest a low rate of partial melting of an enriched, garnet-bearing mantle. It seems that the marginal arc basin, in which the Sabzevar ophiolite was forming, experienced lithospheric extension in response to slab rollback. This process, which formed a backarc basin, may have aborted the embryonic arc, stopped arc magmatism, and led to the rise of mantle diapirs. The extrusive ophiolite sequence, north of Sabzevar probably formed during the transition from a marginal arc basin to a backarc basin during the Late Cretaceous.  相似文献   

12.
The results of field, petrographic and geochemical work of the granitoids of Hutti-Gurgunta area in the northern part of Eastern Dharwar Craton (EDC) is presented in this paper. This crustal section comprises polyphase banded to foliated TTG gneisses, middle amphibolite facies Gurgunta schist belt and upper greenschist facies Hutti schist belt and abundant granite plutons. The focus of the present study is mainly on basement TTG gneisses and a granite pluton (∼ 240 sq km areal extent), to discuss crustal accretion processes including changing petrogenetic mechanism and geodynamic setting. The TTGs contain quartz, plagioclase, lesser K-feldspar and hornblende with minor biotite while the granite contain quartz, plagioclase, K-feldspar and hornblende. Late stage alteration (chloritisation, sericitisation and epidotisation) is wide spread in the entire area. A huge synplutonic mafic body which is dioritic to meladioritic in composition injects the granite and displays all stages of progressive mixing and hybridization. The studied TTGs and granite show distinct major and trace element patterns. The TTGs are characterized by higher SiO2, high Al2O3, and Na2O, low TiO2, Mg#, CaO, K2O and LILE, and HFS elements compared to granite. TTGs define strong trondhjemite trend whilst granite shows calc-alkaline trend. However, both TTGs and granite show characteristics of Phanerozoic high-silica adakites. The granite also shows characteristics of transitional TTGs in its high LILE, and progressive increase in K2O with differentiation. Both TTGs and granite define linear to sub-linear trends on variation diagrams. The TTGs show moderate total REE contents with fractionated REE patterns (La/YbN =17.73–61.73) and slight positive or without any significant Eu anomaly implying little amount of amphibole or plagioclase in residual liquid. On the other hand, the granite displays poor to moderate fractionation of REE patterns (La/YbN = 9.06–67.21) without any significant Eu anomaly. The TTGs have been interpreted to be produced by low-K basaltic slab melting at shallow depth, whereas the granite pluton has been formed by slab melting at depth and these melts interacted with peridotite mantle wedge. Such changing petrogenetic mechanisms and geodynamic conditions explain increase in the contents of MgO, CaO, Ni and Cr from 2700 Ma to 2500 Ma granitoids in the EDC.  相似文献   

13.
安徽庐枞地区位于下扬子断陷带内,区内中生代岩浆活动强烈,壳幔交换频繁,形成了一系列A型花岗岩类,其中产有一些同源岩石包体。这些A型花岗岩类以富碱富钾为特征,为准铝质硅饱和岩石,具有高的104×Ga/Al比值和REE含量,明显富集Rb,Th,K等大离子亲石元素,而Nb,Ta,Ti和Zr等高场强元素和Sr,P相对亏损。与寄主岩相比,岩石包体SiO2和全碱含量偏低,Cr,Co,Sc,V等元素明显偏高,Zr和Eu的负异常不明显。包体和寄主岩的(87Sr/86Sr)i 值为0.7053~0.7089,εNd(t)值为-2.2~-8.66。这些资料表明,庐枞地区中生代A型花岗岩类是起源于富集岩石圈地幔的玄武质岩浆与地壳物质发生轻度同化混染作用,并经历结晶分异作用的产物,在岩浆演化过程中,结晶分异作用发挥着主导作用。从岩石组合来看,庐枞地区的A型花岗岩类主要由石英正长斑岩、正长斑岩、辉石二长岩和碱长花岗岩组成,属于碰撞后准铝质镁铁质-长英质岩套的一部分。岩石样品分析数据在Nb-Y-Ce,Nb-Y-3Ga和Rb/Nb-Y/Nb图上的投影结果表明,庐枞A型花岗岩类为碰撞后环境结束阶段的产物。结合区域地质背景分析,可以认为庐枞地区A型花岗岩类形成于岩石圈伸展背景下的碰撞后岩浆活动的末期,其出现可能标志着碰撞后环境的结束。  相似文献   

14.
This study presents new geochemical data on rocks from the Vespor suite, an important mafic unit from the Juruena arc, Roosevelt-Juruena terrain, SW Amazonian craton, northwest Mato Grosso, Brazil, attempting to define their tectonic setting and type of mantle source. The Juruena arc may be part of a magmatic belt (Jamari and Juruena arcs) at the southwestern Amazonian craton during assembly of the Columbia supercontinent. The investigated rocks represent a Paleoproterozoic subduction-related mafic suite of sigmoidal bodies, composed mainly of gabbro, norite, gabbronorite and diorite, that underwent amphibolite facies metamorphism. Here we present also preliminary petrology aspects and zircon U–Pb geochronology. Geochemical character and variation trends of major and trace elements as well as selected trace element ratios suggest that Vespor suite rocks have a tholeiitic lineage of arc affinity controlled by fractional crystallization with a prominent iron enrichment trend. Gabbros, norites and gabbronorites are characterized by enrichment of LILE and weakly to moderately differentiated HFSE patterns, suggesting their deviation from an enriched heterogeneous lithospheric mantle source. Vespor suite rocks are characterized by depletion of Nb–Ta, P and Ti, with flat distribution of HFSE, markedly large variations in most of the LILE, positive anomalies displayed by Ba, K, Th, Sr, Pb and weak negative anomalies of Hf–Zr. These features reflect limited degrees of crustal contamination associated with a subduction-related magma process where the mantle wedge was chemically modified. In addition, the enrichment in LILE and Pb, low values of the ratios (Lan/Smn – 0.83 to 4.58) and (Nbn/Lan – 0.04 to 0.45), but high Th/Yb ratios, gently to moderately sloping REE profiles (La/Ybn = 2.53–7.37), negative anomalies in HFSE (Ta, Zr, Hf, and Ti), and positive anomalies in LILE (Th, Ba, Sr), suggest derivation from a metasomatized lithospheric mantle source above a subduction zone with weak crustal contamination. Both the composition of the mantle source and the degree of partial melting that produced the parental magmas of these rocks, determined by using REE abundance and ratios, indicate that gabbroic/dioritic melts were generated at different degrees of melting of the source: about 5–20% partial melting of a garnet-spinel lherzolite, around 1–10% partial melting of spinel lherzolite source, and approximately 1–5% partial melting of intermediate source composition, and crystallizing between 1.773 and 1.764 Ma.  相似文献   

15.
The Neoarchaean Tati granite–greenstone terrane occurs within the southwestern part of the Zimbabwe craton in NE Botswana. It comprises 10 intrusive bodies forming part of three distinct plutonic suites: (1) an earlier TTG suite dominated by tonalites, trondhjemites, Na-granites distributed into high-Al (Group 1) and low-Al (Group 2) TTG sub-suite rocks; (2) a Sanukitoid suite including gabbros and Mg-diorites; and (3) a younger high-K granite suite displaying I-type, calc-alkaline affinities.

The Group 1 TTG sub-suite rocks are marked by high Sr/Y values and strongly fractionated chondrite-normalized rare earth element (REE) patterns, with no Eu anomaly. The Group 2 TTG sub-suite displays higher LREE contents, negative Eu anomaly and small to no fractionation of HREE. The primordial mantle-normalized patterns of the Francistown TTGs are marked by negative Nb–Ti anomalies. The geochemical characteristics of the TTG rocks are consistent with features of silicate melts from partial melting of flat subducting slabs for the Group 1 sub-suite and partial melting of arc mafic magmas underplated in the lower crust for the Group 2 sub-suite. The gabbros and high-Mg diorites of the Sanukitoid suite are marked by Mg#>0.5, high Al2O3 (>>16%), low TiO2 (<0.6%) and variable enrichment of HFSE and LILE. Their chondrite-normalized REE patterns are flat in gabbros and mildly to substantially fractionated in high-Mg diorites, with minor negative or positive Eu anomalies. The primordial mantle-normalized diagrams display negative Nb–Ti (and Zr in gabbros) anomalies. Variable but high Sr/Y, Sr/Ce, La/Nb, Th/Ta and Cs/La and low Ce/Pb ratios mark the Sanukitoid suite rocks. These geochemical features are consistent with melting of a sub-arc heterogeneously metasomatised mantle wedge source predominantly enriched by earlier TTG melts and fluids from dehydration of a subducting slab. Melting of the mantle wedge is consistent with a steeper subduction system. The late to post-kinematic high-K granite suite includes I-type calc-alkaline rocks generated through crustal partial melting of earlier TTG material. The Neoarchaean tectonic evolution of the Zimbabwe craton is shown to mark a broad continental magmatic arc (and related accretionary thrusts and sedimentary basins) linked to a subduction zone, which operated within the Limpopo–Shashe belt at 2.8–2.65 Ga. The detachment of the subducting slab led to the uprise of a hotter mantle section as the source of heat inducing crustal partial melting of juvenile TTG material to produce the high-K granite suite.  相似文献   


16.
大兴安岭南段晚中生代双峰式火山作用   总被引:52,自引:24,他引:52  
郭锋  范蔚茗等 《岩石学报》2001,17(1):161-168
大兴安岭南段晚中生代克头鄂博组山岩表现出双峰式特征,主要由玄武质安山岩、英安岩和流纹岩组成。基性火山岩属于代钾拉斑系列,轻微富集LREE,Eu异常不明显(Eu/Eu=0.99-1.04)和HREE无明显分馏的特征(Dy/YbcN=1.030-1.089);富集大离子亲石元素(LILE)而亏损高场强元素(HFSE),尤其是强烈亏损Nb,Ta。英安岩和流纹岩为钙碱性系列,在REE配分模式上为LREE富集型,其中英安岩为Eu弱负异常(Eu/Eu=0.81-1.01),流纹岩的Eu负异常明显(Eu^*/Eu=0.65-0.76);在微量元素蛛网图上,英安岩类似于基性火山岩,流纹岩除了具LILE富集和HFSE亏损特征外,还显示出Sr,P,Ti等元素的强烈亏损,可能与岩浆演化过程中斜长石、磷灰石的分离结晶作用相关。晚中生代双峰式火山岩分离结晶的结果。流纹岩表现出较高的La/Sm比值和很高的K/P、K/Ti比值,其成因可能与地壳混染作用或与大陆中、下地壳重熔作用有关。结合区域晚中生代盆岭构造格局特征、大兴安岭南段晚中生代双峰式火山岩形成于造山后阶段,是岩石圈快速伸展体制下导致受早期流体交代的岩石圈地幔发生减压部分熔融作用的产物。  相似文献   

17.
LA-ICPMS U-Pb zircon dating of the Sanpinggou, Gangou and Fengzishan granitoids in the Douling Group of the Eastern Qinling yields ages of 760-685 Ma, which represents a strong tectono-magmatic event in the southern Qinling during the late Neoproterozoic. Geochemical data show that these intrusions have wide compositions ranging from minor gabbros through diorites to granodiorites. They are relatively enriched in LILE, poor in HFSE and strongly depleted in Nb and Ta, displaying affinities of Ⅰ-type granites formed in an active continental margin with oceanic subduction. In contrast to granitoids, gabbros and enclaves in the granitoids have higher REE abundances, relatively flat REE patterns, lower LILE, slightly higher HFSE and more depletion in Nb and Ta. All these suggest that the gabbros were formed by partial melting of the upper mantle above the subduction zone and the granitoids by the partial melting of the lower crust. Combined with regional geological data, the subduction-related granitoids in  相似文献   

18.
《地学前缘(英文版)》2019,10(3):1187-1210
Several types of felsic granitoid rocks have been recognized, intrusive in both the mantle and the crustal sequence of the Semail ophiolite. Several models have been proposed for the source of this suite of tonalites, granodiorites, trondhjemites intrusions, however their genesis is still not clearly understood. The sampled Dadnah tonalites that intruded in the mantle section of the Semail ophiolite display arc-type geochemical characteristics, are high siliceous, low-potassic, metaluminous to weakly peraluminous, enriched in LILE, show positive peaks for Ba, Pb, Eu, negative troughs for U, Ti and occur with low δ18OH2O, moderate εSr and negative εNd values. They have crystallized at temperatures that range from ∼550 °C to ∼720 °C and pressure ranging from 4.4 kbar to 6.5 kbar. The isotopic ages from our tonalite samples range between 98.6 Ma and 94.9 Ma, slightly older and overlapping with the age of the metamorphic sole. Our field observations, mineralogical, petrological, geochemical, isotopic and melt inclusion data suggest that the Dadnah tonalites formed by partial melting (∼10%–15% continuous or ∼12% batch partial melting), accumulation of plagioclase, fractional crystallization (∼55%–57%), and interaction with their host harzburgites. These tonalites were the end result of partial melting and subsequent contamination and mixing of ∼4% oceanic sediments with ∼96% oceanic lithosphere from the subducted slab. This MORB-type slab melt composed from ∼97% recycled oceanic crust and ∼3% of the overlying mantle.We suggest that a possible protolith for these tonalites was the basaltic lavas from the subducted oceanic slab that melted during the initial stages of the supra-subduction zone (SSZ), which was forming synchronously to the spreading ridge axis. The tonalite melts mildly modified due to low degree of mixing and interaction with the overlying lithospheric mantle. Subsequently, the Dadnah tonalites emplaced at the upper part of the mantle sequence of the Semail ophiolite and are geochemically distinct from the other mantle intrusive felsic granitoids to the south.  相似文献   

19.
Petrogenesis and tectonic setting of the Roman Volcanic Province, Italy   总被引:11,自引:0,他引:11  
L. Beccaluva  P. Di Girolamo  G. Serri 《Lithos》1991,26(3-4):191-221
The volcanism in the Roman Province of Italy can be modelled by the partial melting of heterogeneously enriched mantle sources. The heterogeneity was created by materials derived from a subducted slab which can still be traced geophysically beneath the central Apennines.

New petrographical and chemical data are presented for the high-K calc-alkaline and the shoshonitic volcanics of the Campania region. Primary magmas are present only locally. The existence of spatial zonation in the volcanism of Campania is documented for the first time. The shoshonitic, leucite-basanitic and leucititic volcanics of the Phlegraean Fields-Procida-Ischia and the Somma-Vesuvius areas are, at similar degrees of evolution, about two times richer in Nb and Ba than those of northwestern Campania and the Latium part of the Roman Province. Accordingly, distinct north-western and south-eastern subprovinces can be defined. The evaluation of enrichment factors, that is the abundance ratio between the average contents of each element in the relatively primitive lavas of the low K- and the high K suites, shows that the mantle sources prior to K-metasomatism were different in the two sub-provinces of the Roman Province. In the north-western one, they resembled the sources of ocean-island tholeiites and moderately enriched MOR-basalts. In the south-east they were similar to those of ocean island alkaline lavas and enriched MORB's.

Modelling based on K, P, Ce, Sr, Rb, Ba, Th, Sm, Eu, Gd, Y, Nb and 87Sr/86Sr was carried out. It indicates that the range of mantle sources of the volcanics in northwestern Campania and Latium can be modelled by the addition of 3 to 20% of materials derived by partial melting of carbonaceous pelites to a Sr-enriched mantle wedge comparable to the Honolulu mantle source least enriched in Nb.

The production of Sr-enriched mantle wedge requires either the action of fluids produced by dehydration of subducted oceanic crust, or a small amount of metasomatism caused by the presence of carbonatite melts.

The near absence of Ti, Ta, Nb, Yb and the highly fractionated REE in the metasomatizing component requires the presence of residual garnet and accessory Ti-rich minerals during the partial melting of the subducted sediments. The writers propose that the mantle wedge overlying the subducted slab was hybridized by melts produced by partial fusion of subducted material derived from the continental crust, probably sediments. This process played a dominant role in the generation of the mantle sources from which the high-K calc-alkaline, shoshonitic, leucite-basanitic and leucititic magmas of the Roman Province were derived.  相似文献   


20.
宋衍茹  叶凯  续海金 《岩石学报》2009,25(1):147-158
苏鲁超高压变质地体中发现了大量包裹在超高压(UHP)变质片麻岩和混合岩中的造山带石榴橄榄岩。根据它们的野外产出特征和全岩地球化学成分,其中一部分石榴橄榄岩的原岩来自于亏损地幔,后来被卷入俯冲陆壳并经受过俯冲陆壳产生的熔/流体的交代。但是,对这些岩石早期的亏损过程尚缺乏清晰的认识。本文报道了东海芝麻坊石榴子石二辉橄榄岩早期变质演化的新证据。根据详细的变质反应结构观察和矿物成分研究,芝麻坊石榴子石二辉橄榄岩在经历高压低温俯冲带型超高压变质之前经历了至少两期变质演化。其原岩矿物组合由石榴子石变斑晶的高Ca-Cr核部及其中包裹的高Mg单斜辉石、高Al-Cr斜方辉石和高Mg-Ni橄榄石所记录;指示芝麻坊石榴子石二辉橄榄岩的原岩为高温-高压的富集石榴子石二辉橄榄岩。第二期矿物组合为包裹在低Cr变斑晶石榴子石幔部和细粒新生石榴子石核部的大量富Al铬铁矿和高Mg低Ni橄榄石以及少量高Mg斜方辉石。该期组合未发现单斜辉石,表明岩石随后被转变为高温低压的难熔尖晶石方辉橄榄岩或尖晶石纯橄岩。芝麻坊石榴子石二辉橄榄岩的早期变质演化记录了它们被卷入大陆板片俯冲带之前的地幔楔上升对流过程。笔者认为芝麻坊石榴子石二辉橄榄岩的原岩来源于早期俯冲大洋板片之上的深部高温富集地幔楔,洋壳俯冲过程中的地幔楔对流导致其上升到弧后或岛弧之下的地幔楔浅部,减压部分熔融使原本富集的石榴子石二辉橄榄岩转化为难熔的尖晶石方辉橄榄岩或尖晶石纯橄岩。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号